The Effect of Short Range Correlation on The Nuclear Charge Density Distribution, Elastic and Inelastic Electron Scattering Coulomb Form Factors of 18O Nucleus
Keywords:
18O (e, e') inelastic longitudinal form factors calculated without and with the effect of short range correlationsAbstract
The effect of short range correlations on the inelastic longitudinal Coulomb form
factors for the lowest four excited 2+ states in 18O is analyzed. This effect (which
depends on the correlation parameter β) is inserted into the ground state charge
density distribution through the Jastrow type correlation function. The single particle
harmonic oscillator wave function is used with an oscillator size parameter b. The
parameters β and b are, considered as free parameters, adjusted for each excited state
separately so as to reproduce the experimental root mean square charge radius of
18O. The model space of 18O does not contribute to the transition charge density. As
a result, the inelastic Coulomb form factor of 18O comes absolutely from the core
polarization transition charge density. According to the collective modes of nuclei,
the core polarization transition charge density is assumed to have the form of Tassie
shape. It is found that the introduction of the effect of short range correlations is
necessary for obtaining a remarkable modification in the calculated inelastic
longitudinal Coulomb form factors and considered as an essential for explanation the
data amazingly throughout the whole range of considered momentum transfer.
PACS: 25.30.Dh; 21.60.Cs; 27.20.+n