Texture Features Analysis using Gray Level Co-occurrence Matrix for Abnormality Detection in Chest CT Images
Keywords:
Texture feature, Co-occurrence matrix, CT-scan, statistical featureAbstract
Texture is an important characteristic for the analysis of many types of images because it provides a rich source of information about the image. Also it provides a key to understand basic mechanisms that underlie human visual perception. In this paper four statistical feature of texture (Contrast, Correlation, Homogeneity and Energy) was calculated from gray level Co-occurrence matrix (GLCM) of equal blocks (30×30) from both tumor tissue and normal tissue of three samples of CT-scan image of patients with lung cancer. It was found that the contrast feature is the best to differentiate between textures, while the correlation is not suitable for comparison, the energy and homogeneity features for tumor tissue always greater than its values for normal tissue.