Townsend Discharge and Streamer Breakdown within Sphere-Air-Sphere Configuration

Authors

  • Thamir H. Khalaf Department of physics, College of science, University of Baghdad, Baghdad, Iraq https://orcid.org/0000-0001-9989-1779
  • Dawser Hussain Ghayb Department of physics, College of science for Women, University of Baghdad, Baghdad, Iraq

DOI:

https://doi.org/10.24996/ijs.2023.64.9.14

Keywords:

Breakdown voltage, temperature, Townsend, streamer, sphere configuration

Abstract

     The main aim of the present paper is to study the electric breakdown in a uniform electric discharge system. The system consists of two spheres separated by a dielectric. The dielectric is dry air. Certain boundary conditions are taken into consideration as applied voltage, pressure, and domain. The formation of discharge types as Townsend and streamer under different distance gaps (1, 0.9,0.8, 0.6, 0.4, 0.2, 0.1) mm was sudied. The temperature effect on the breakdown voltages for the discharge process is also included. Seven different temperature steps are chosen in the study.  Comsol Multiphysics software is used for the simulation model as a plasma model. Results show that as the gap distance increases the breakdown voltage increases for each of the discharges. For maximum electric field, as the distance increases the field also increases. For gap distance, the temperature effects are more apparent at the higher values of the pressure.  The maximum electric field increases as the voltage increases with the temperature.

Author Biography

Thamir H. Khalaf, Department of physics, College of science, University of Baghdad, Baghdad, Iraq

college of sceince for women

physics department

Downloads

Published

2023-09-30

Issue

Section

Physics

How to Cite

Townsend Discharge and Streamer Breakdown within Sphere-Air-Sphere Configuration. (2023). Iraqi Journal of Science, 64(9), 4446-4454. https://doi.org/10.24996/ijs.2023.64.9.14

Similar Articles

51-60 of 529

You may also start an advanced similarity search for this article.