Effect of Surface Recombination on Diffusion Length and Active Cavity Life time


  • Ali H. Khidhir Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq




Diffusion length, Fabry-perot cavity, active cavity lifetime


This work presents an analytical study for simulating a Fabry-Perot Bi-stable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonite (InSb). Depending on the obtained results and because of a trade-off between the optical path length of the sample and active cavity lifetime, an optimization procedure was applied on the InSb etalon/CO laser parameters; critical switching irradiance (Ic) was applied via simulation systems  of optimization procedures of optical cavity (Matlap program was used to study the optical Bi-stability of a nonlinear Fabry-Perot cavity). In order to achieve minimum switching power and faster switching time, the optimization surface recombination on the diffusion length and effective cavity lifetime was studied.

In addition, for a specific absorption value 400 cm-1, the lifetime coefficient  values were 0.33 , 0.091 , 0.0172 ns for sample thickness (D) = 500 , 60 , 20 mm, respectively. Also, for a bulk recombination time (Tl) of 200 ns, specific absorption (α) of 50 cm1, and D of 20 mm, the surface recombination speed value was  2.845 x 105 cm/sec, whereas the active lifetime, which is defined as the thickness over the surface recombination speed (sÏ…) (D/2sÏ…), was equal to 3.5ns.


Download data is not yet available.







How to Cite

Effect of Surface Recombination on Diffusion Length and Active Cavity Life time. (2020). Iraqi Journal of Science, 61(12), 3215-3220. https://doi.org/10.24996/ijs.2020.61.12.9

Similar Articles

1-10 of 408

You may also start an advanced similarity search for this article.