Crystal Violet Binding Assay for Assessment of Biofilm Formation by Klebsiella pneumoniae on Catheter, Glass and Stainless-steel Surfaces
Keywords:
Biofilm, Klebsiella pneumoniaeAbstract
In this paper, quantified study of the biofilm formed by Klebsiella pneumoniae isolated from urine specimen of patient suffering from acute urinary tract infection (UTI) on catheter, stainless-steel and glass coupon surfaces, as well as determine the relationship between time contact and biofilm progression using crystal-violet binding assay based on the values of optical density at 620nm of the crystal violet stain which bonded total biofilm biomass by resolubizing with 99.9% ethanol at the specific interval times. The result showed biofilm formed on three tested surfaces but in different degrees. According to obtained data, the catheter coupons presents a higher capability to attract bacteria cell and biofilm formation followed by glass surfaces while stainless-steel surfaces regard as a less attractive surfaces in bacterial adhesion and biofilm progression. The attachment of the bacterial cells on the fresh produce surfaces increase with the contact time but the increase reached a maximum at time 48h. in which, the optical densities of catheter, glass and stainless-steel coupon surfaces were (0.169 nm), (0.085 nm) and (0.07 nm) respectively. The statical analysis showed significant differences between substratum type's adherence and biofilm progression.