Finding the Exact Solution of Kepler’s Equation for an Elliptical Satellite Orbit Using the First Kind Bessel Function

Authors

  • Rasha H. Ibrahim Department of Astronomy and Space, College of Science, University of Baghdad, Baghdad, Iraq https://orcid.org/0000-0001-9329-827X
  • Abdul-Rahman H. Saleh Department of Astronomy and Space, College of Science, University of Baghdad, Baghdad, Iraq

DOI:

https://doi.org/10.24996/ijs.2024.65.2.42

Keywords:

Kepler Equation: The Classical Solution, Bessel Function of the First Kind, Elliptical Orbit, Eccentric Anomaly, Eccentricity

Abstract

     In this study, the first kind Bessel function was used to solve Kepler equation for an elliptical orbiting satellite. It is a classical method that gives a direct solution for calculation of the eccentric anomaly. It was solved for one period from (M=0-360)° with an eccentricity of (e=0-1) and the number of terms from (N=1-10). Also, the error in the representation of the first kind Bessel function was calculated. The results indicated that for eccentricity of (0.1-0.4) and (N = 1-10), the values of eccentric anomaly gave a good result as compared with the exact solution. Besides, the obtained eccentric anomaly values were unaffected by increasing the number of terms (N = 6-10) for eccentricities (0.8 and 0.9). The Bessel function's solution appeared to be close to the exact solution for eccentricity of 1 and more than 10 number of terms. Finally, the representation of the first kind Bessel function J1(x) was closer to the exact representation only for eccentricity 0.5 and (N=1-10).

Downloads

Published

2024-02-29

Issue

Section

Astronomy and Space

How to Cite

Finding the Exact Solution of Kepler’s Equation for an Elliptical Satellite Orbit Using the First Kind Bessel Function. (2024). Iraqi Journal of Science, 65(2), 1129-1137. https://doi.org/10.24996/ijs.2024.65.2.42

Similar Articles

11-20 of 1076

You may also start an advanced similarity search for this article.