Strongly Essential Submodules and Modules with the se-CIP
DOI:
https://doi.org/10.24996/ijs.2023.64.5.29Keywords:
Strongly essential submodules, se-closed submodules, modules with the se-CIP, se-UC modules, se-extending modules, se-closed simple modulesAbstract
Let be a ring with identity. Recall that a submodule of a left -module is called strongly essential if for any nonzero subset of , there is such that , i.e., . This paper introduces a class of submodules called se-closed, where a submodule of is called se-closed if it has no proper strongly essential extensions inside . We show by an example that the intersection of two se-closed submodules may not be se-closed. We say that a module is have the se-Closed Intersection Property, briefly se-CIP, if the intersection of every two se-closed submodules of is again se-closed in . Several characterizations are introduced and studied for each of these concepts. We prove for submodules and of that a module has the se-CIP if and only if is strongly essential in implies is strongly essential in . Also, we verify that, a module has the se-CIP if and only if for each se-closed submodule of and for all submodule of , is se-closed in . Finally, some connections and examples are included about (se-CIP)-modules