Elderly Healthcare System for Chronic Ailments using Machine Learning Techniques – a Review
DOI:
https://doi.org/10.24996/ijs.2021.62.9.29Keywords:
Machine Learning, Chronic diseases, Data mining, Internet of Things (IoT), Deep LearningAbstract
World statistics declare that aging has direct correlations with more and more health problems with comorbid conditions. As healthcare communities evolve with a massive amount of data at a faster pace, it is essential to predict, assist, and prevent diseases at the right time, especially for elders. Similarly, many researchers have discussed that elders suffer extensively due to chronic health conditions. This work was performed to review literature studies on prediction systems for various chronic illnesses of elderly people. Most of the reviewed papers proposed machine learning prediction models combined with, or without, other related intelligence techniques for chronic disease detection of elderly patients at an early stage to avoid emergency situations. This method provides a promising approach in the analysis of either structured or unstructured datasets to produce very substantial pattern discoveries. By defining the generic architecture for the prediction model, we reviewed various papers involved in similar fields, based on suggested methodologies and their associated outcomes. The study discussed the pros and cons of different prediction models using traditional and modern machine learning techniques.