Ahmed et al.

Iraqi Journal of Science, 2022, Vol. 63, No. 11, pp: 4918-4927 DOI: 10.24996/ijs.2022.63.11.28

ISSN: 0067-2904

γ– algebra of Sets and Some of its Properties

Ibrahim S. Ahmed ¹*, Hassan H. Ebrahim ¹, Ali Al-Fayadh ²

¹ Department of Mathematics, College of Computer Science and Mathematics, Tikrit University, Tikrit, Iraq ²Department of Mathematics and Computer Applications, College of Science, Al – Nahrain University, Baghdad, Iraq

Received: 3/1/2022 Accepted: 12/2/2022 Published: 30/11/2022

Abstract

The main objective of this work is to generalize the concept of fuzzy σ -algebra by introducing the notion of fuzzy γ -algebra. Characterization and examples of the proposed generalization are presented, as well as several different properties of fuzzy γ -algebra are proven. Furthermore, the relationship between fuzzy γ -algebra and fuzzy algebra is studied, where it is shown that the fuzzy γ -algebra is a generalization of fuzzy algebra too. In addition, the notion of restriction, as an important property in the study of measure theory, is studied as well. Many properties of restriction of a nonempty family of fuzzy subsets of fuzzy power set are investigated and it is shown that the restriction of fuzzy γ -algebra is fuzzy γ -algebra too.

Keywords: σ -algebra, Algebra, Measure, Fuzzy set, Outer measure.

دراسة الجبرا ضبابي من النمط- γ و بعض خصائصها

ابراهيم صالح احمد ¹*, حسن حسين ابراهيم ¹, علي الفياض² ¹ قسم الرياضيات , كلية علوم الحاسوب والرياضيات , جامعة تكريت , صلاح الدين , العراق ²قسم الرياضيات و تطبيقات الحاسوب, كلية العلوم, جامعة النهرين, بغداد, العراق

الخلاصة

الهدف الرئيسي من هذا العمل هو تعميم المفهوم الجبرا ضبابي من النمط - σ من خلال تقديم مفهوم الجبرا الضبابي من النمط - γ . تم تقديم مميزات وأمثلة للتعميم المقترح ، بالإضافة إلى العديد من الخصائص المختلفة للجبرا الضبابي من النمط - γ تم برهانه. علاوة على ذلك ، تمت دراسة العلاقة بين أن الجبرا ضبابي من النمط - γ والجبرا ضبابي, حيث تبين أن الجبرا ضبابي من النمط - γ والجبرا ضبابي, حيث تبين أن الجبرا صبابي من النمط - γ والجبرا فرايش المقدر من الجبرا مسابق مهمة في دراسة مو تعميم المقدر منابي ، تمت

^{*} Email: ibrahim1992@tu.edu.iq

دراستها أيضًا. تم التحقق في العديد من خصائص تقييد لعائلة غير خالية من مجموعات جزئية ضبابية لمجموعة القوة المضببة و تم اثبات أن تقييد الجبرا الضبابي من النمط - ٢ هو أيضًا الجبرا ضبابي من النمط - ٢ .

1. Introduction and Basic concepts

Wang [1] in 2009 studied some types of collections of sets which are generalizations of σ -algebra such as ring, σ -ring and proved some important results of these concepts, where a nonempty class \mathcal{H} is called a ring iff $E, F \in \mathcal{H}$, then E-F and EUF $\in \mathcal{H}$. In 2019 Ahmed and Ebrahim [2] introduced some generalizations of σ -algebra and σ -ring. Many other authors are interested in studying σ -algebra and σ - ring, for example, see [3], [4] and [5]. Zadeh [6] in 1965 first introduced the concept of the fuzzy set where \mathcal{X} is a nonempty set, then a fuzzy set F in \mathcal{X} is defined as a set of ordered pairs { $(\omega, v_F(\omega)) : \omega \in \mathcal{X}$ } where $v_F : \mathcal{X} \to [0, 1]$ is a function such that for every $\omega \in \mathcal{X}$, $v_F(\omega)$ represents the degree of membership of ω in F. Brown [7] studied some types of fuzzy sets such as fuzzy power set, empty fuzzy set, universal fuzzy set, the complement of a fuzzy set, the union of two fuzzy sets and intersection of two fuzzy. Ahmed et al. [8-11] first introduced the concept of fuzzy σ -algebra and $\mathcal{P}^*(\mathcal{X})$ be a fuzzy power set of \mathcal{X} . A nonempty collection $\mathcal{H}^* \subseteq \mathcal{P}^*(\mathcal{X})$ is said to be a fuzzy σ -algebra of sets over a fuzzy set $\mathcal{X}^* = \{(\omega, 1) : \forall \omega \in \mathcal{X}\}$, if the following conditions are satisfied:

1. $\phi^* \in \mathcal{H}^*$, where $\phi^* = \{(\omega, 0) : \forall \omega \in \mathcal{X} \}$.

2. If $E \in \mathcal{H}^*$, then $E^c \in \mathcal{H}^*$.

3. If $E_1, E_2, \dots \in \mathcal{H}^*$, then $\bigcap_{k=1}^{\infty} E_k \in \mathcal{H}^*$.

If condition 3 is satisfied only for finite sets, then \mathcal{H}^* is said to be a fuzzy algebra over a fuzzy set \mathcal{X}^* .

Another generalization of the fuzzy σ -algebra introduced in this paper, which is a fuzzy γ -algebra. The main aim of this chapter is to study this generalization and introduce some of its basic properties, examples and some characterizations of them.

Definition (1.1) [4]

Let $\mathcal{X} \neq \emptyset$. A collection \mathcal{H} is called σ -ring if and only if the following conditions hold: 1. If $F, E \in \mathcal{H}$, then $F \setminus E \in \mathcal{H}$.

2. If $E_1, E_2, \dots \in \mathcal{H}$, then $\bigcup_{k=1}^{\infty} E_k \in \mathcal{H}$.

Definition (1.2) [8]

Let $\mathcal{X} \neq \emptyset$. A collection \mathcal{H} is called σ -field if and only if the following conditions hold::

- 1. $\mathcal{X} \in \mathcal{H}$.
- 2. If $F \in \mathcal{H}$, then $F^c \in \mathcal{H}$.

3. If $E_1, E_2, \dots \in \mathcal{H}$, then $\bigcup_{k=1}^{\infty} E_k \in \mathcal{H}$.

Proposition (1.3) [1]

Every σ -field is a σ - ring.

Definition (1.4) [9]

Let \mathcal{X} be a nonempty set. Then the union of the two fuzzy sets F and E in \mathcal{X} with respective membership functions $v_{\mathrm{F}}(\omega)$ and $v_{\mathrm{E}}(\omega)$ is a fuzzy set G in \mathcal{X} whose membership function is related to those of F and E by $v_{\mathrm{G}}(\omega) = \max_{\omega \in \mathcal{X}} \{v_{\mathrm{F}}(\omega), v_{\mathrm{E}}(\omega)\}$, In symbols: G = FUE \Leftrightarrow G = {($\omega, \max_{\omega \in \mathcal{X}} \{v_{\mathrm{F}}(\omega), v_{\mathrm{E}}(\omega)\}$) : $\omega \in \mathcal{X}$ }.

Definition (1.5) [10]

Let \mathcal{X} be a nonempty set. Then the intersection of two fuzzy sets F and E in \mathcal{X} with respective membership functions $v_{F}(\omega)$ and $v_{E}(\omega)$ is a fuzzy set G in \mathcal{X} whose membership function is related to those of F and E by $v_{G}(\omega) = \min_{\omega \in \mathcal{X}} \{v_{F}(\omega), v_{E}(\omega)\}$, In symbols: $G = F \cap E \iff G = \{(\omega, \min_{\omega \in \mathcal{X}} \{v_{F}(\omega), v_{E}(\omega)\}) : \omega \in \mathcal{X}\}.$

Definition (1.6) [6]

Let \mathcal{X} be a nonempty set and F is a fuzzy sets in \mathcal{X} . Then the complement of a fuzzy set F is denoted by F^c and defined as: F^c ={ $(\omega, 1 - v_F(\omega)) : \in \mathcal{X}$ }. **Proposition (1.7)** [11]

Every fuzzy σ -algebra is a fuzzy algebra.

2. The main results:

In this section, we introduce the concept of fuzzy γ -algebra which is a generalization for the concept of the fuzzy σ -algebra and fuzzy algebra. Also, we present many properties of fuzzy γ -algebra.

Definition (2.1):

Let \mathcal{X} be a nonempty set. A nonempty collection $\mathcal{H}^* \subseteq \mathcal{P}^*(\mathcal{X})$ is said to be a fuzzy γ -algebra of sets (γ -field) over a fuzzy set \mathcal{X}^* , if the following conditions are satisfied: 1. $\emptyset^*, \mathcal{X}^* \in \mathcal{H}^*$, where $\emptyset^* = \{(\omega, 0) : \forall \omega \in \mathcal{X}\}$ and $\mathcal{X}^* = \{(\omega, 1) : \forall \omega \in \mathcal{X}\}$. 2. If $E_1, E_2, ..., E_n \in \mathcal{H}^*$, then $\bigcup_{k=1}^n E_k \in \mathcal{H}^*$.

Definition(2.2):

Let \mathcal{X} be a nonempty set and $\mathcal{H}^* \subseteq \mathcal{P}^*(\mathcal{X})$ be a fuzzy γ -algebra (γ -field) over a fuzzy set \mathcal{X}^* . Then the pair (\mathcal{X}^* , \mathcal{H}^*) is said to be fuzzy measurable space relatively to fuzzy γ -algebra.

Example(2.3):

Let
$$\mathcal{X} = \{a, b\}$$
 and $\mathcal{H}^* = \begin{cases} \emptyset^*, \{(a, 0.1), (b, 0.6)\}, \\ \{(a, 0.3), (b, 0.5)\}, \\ \{(a, 0.3), (b, 0.6)\}, \mathcal{X}^* \end{cases}$. Then the pair $(\mathcal{X}^*, \mathcal{H}^*)$ is said

to be fuzzy measurable space relatively to fuzzy γ -algebra.

Example(2.4):

Let
$$\mathcal{X} = \{ a, b \}$$
 and $\mathcal{H}^* = \begin{cases} \emptyset^*, \{ (a, 0.4), (b, 0.2) \}, \\ \{ (a, 0.3), (b, 0.5) \}, \mathcal{X}^* \end{cases}$.

Then \mathcal{H}^* is not a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* , because $\{(a,0.4), (b,0.2)\} \in \mathcal{H}^*$ and $\{(a,0.3), (b,0.5)\} \in \mathcal{H}^*$, but $\{(a,0.4), (b,0.2)\} \cup \{(a,0.3), (b,0.5)\} = \{(a, Max\{0.4, 0.3\}), (b, Max\{0.2, 0.5\})\}$ $= \{(a,0.4), (b,0.5)\} \notin \mathcal{H}^*.$

Proposition(2.5):

Let \mathcal{X} be an infinite set and $\mathcal{H}^* = \{ \emptyset^* , \mathcal{X}^*, \text{ all } E \subset \mathcal{X}^* \text{ s.t } E^c \text{ is finite} \}$. Then $(\mathcal{X}^*, \mathcal{H}^*)$ is a fuzzy measurable space relatively to fuzzy γ -algebra.

Proof:

From the definition of \mathcal{H}^* , we get \emptyset^* , $\mathcal{X}^* \in \mathcal{H}^*$. Let $E_1, E_2, ..., E_n \in \mathcal{H}^*$. Then E_k^c is finite for all k = 1, 2, ..., n. Hence, $\bigcap_{k=1}^n E_k^c$ is finite. Now, since $\bigcap_{k=1}^n E_k^c = \{(\omega, \min_{k=1,2,...,n} \{1 - v_{E_k}(\omega)\}) : \omega \in \mathcal{X}\}$

$$= 1 - \{(\omega, \max_{k=1,2,\dots,n} \{ v_{E_k}(\omega) \}) : \omega \in \mathcal{X} \}$$
$$= 1 - (\bigcup_{k=1}^n E_k)$$

 $= \left(\bigcup_{k=1}^{n} E_{k}\right)^{c}$

Then $\bigcup_{k=1}^{n} E_k \in \mathcal{H}^*$. Therefore, \mathcal{H}^* is a fuzzy γ - algebra over a fuzzy set \mathcal{X}^* and $(\mathcal{X}^*, \mathcal{H}^*)$ is a fuzzy measurable space relatively to fuzzy γ -algebra.

Proposition(2.6):

Let \mathcal{X} be a nonempty set and F be a fuzzy set such that $\emptyset^* \neq F \subset \mathcal{X}^*$ and let $E \subseteq \mathcal{X}^*$ denote to $v_E \leq v_{\mathcal{X}^*}$. If $\mathcal{H}^* = \emptyset^* \cup \{E \subseteq \mathcal{X}^* : F \subset E\}$. Then $(\mathcal{X}^*, \mathcal{H}^*)$ is a fuzzy measurable space relatively to fuzzy γ -algebra.

Proof:

From the definition of \mathcal{H}^* , we get $\emptyset^* \in \mathcal{H}^*$. Since $\mathcal{X}^* \subseteq \mathcal{X}^*$ and $F \subset \mathcal{X}^*$, then $\mathcal{X}^* \in \mathcal{H}^*$. Let $E_1, E_2, ..., E_n \in \mathcal{H}^*$. Then $F \subset E_k$ for all k=1,2,...,n and hence $F \subset \bigcup_{k=1}^n E_k$. Thus $\bigcup_{k=1}^n E_k \in \mathcal{H}^*$. Therefore, \mathcal{H}^* is a fuzzy γ - algebra over a fuzzy set \mathcal{X}^* . Consequentially, $(\mathcal{X}^*, \mathcal{H}^*)$ is a fuzzy measurable space relatively to fuzzy γ -algebra.

Proposition(2.7):

Let $(\mathcal{X}^*, \mathcal{H}^*)$ be a fuzzy measurable space relatively to fuzzy γ -algebra and let $E \subset \mathcal{X}^*$. Define $\mathcal{H}_1^* = \{ F \subseteq \mathcal{X}^* : F \cup E \in \mathcal{H}^* \}$, then $(\mathcal{X}^*, \mathcal{H}_1^*)$ is a fuzzy measurable space relatively to fuzzy γ -algebra.

Proof:

Since \mathcal{H}^* is a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* , then $\mathcal{X}^* \in \mathcal{H}^*$. By hypothesis $E \subset \mathcal{X}^*$ implies that $\mathcal{X}^* = \mathcal{X}^* \cup E$ and hence $\mathcal{X}^* \in \mathcal{H}_1^*$. Consider $E = \emptyset^*$, then $\emptyset^* \subset \mathcal{X}^*$ and $\emptyset^* \cup \emptyset^* = \emptyset^* \in \mathcal{H}^*$, hence $\emptyset^* \in \mathcal{H}_1^*$. Let $E_1, E_2, ..., E_n \in \mathcal{H}_1^*$. Then by definition of \mathcal{H}_1^* we have, $E_k \cup E \in \mathcal{H}^*$ for all k=1, 2, ..., n. Hence, $\bigcup_{k=1}^n (E_k \cup E) \in \mathcal{H}^*$ because \mathcal{H}^* is a fuzzy γ - algebra over a fuzzy set \mathcal{X}^* this implies that $((\bigcup_{k=1}^n E_k) \cup E) \in \mathcal{H}^*$. Thus $\bigcup_{k=1}^n E_k \in \mathcal{H}_1^*$ by definition of \mathcal{H}_1^* . Therefore, \mathcal{H}_1^* is a fuzzy γ - algebra over a fuzzy set \mathcal{X}^* and $(\mathcal{X}^*, \mathcal{H}_1^*)$ is a fuzzy measurable space relatively to fuzzy γ -algebra.

Proposition(2.8):

Let $(\mathcal{X}^*, \mathcal{H}^*)$ be a fuzzy measurable space relatively to fuzzy γ -algebra and $F \subset \mathcal{X}^*$. If $\mathcal{H}_1^* = \{ G \subseteq \mathcal{X}^*: F \cap E \subseteq G \text{ for some } E \in \mathcal{H}^* \}$ Then $(\mathcal{X}^*, \mathcal{H}_1^*)$ is a fuzzy measurable space relatively to fuzzy γ -algebra.

Proof:

Since $(\mathcal{X}^*, \mathcal{H}^*)$ is a fuzzy measurable space relatively to fuzzy γ -algebra, then $\emptyset^*, \mathcal{X}^* \in \mathcal{H}^*$. By hypothesis $F \subset \mathcal{X}^*$ implies that $F \cap \mathcal{X}^* \subseteq \mathcal{X}^*$, hence by definition of \mathcal{H}_1^* we have, $\mathcal{X}^* \in \mathcal{H}_1^*$. Now, $F \cap \emptyset^* = \emptyset^* \subseteq \emptyset^*$, hence by definition of \mathcal{H}_1^* we have, $\emptyset^* \in \mathcal{H}_1^*$. Let

 $G_1, G_2, ..., G_n \in \mathcal{H}_1^*$. Then there is $E_k \in \mathcal{H}$ such that $F \cap E_k \subseteq G_k$ where k=1,2,...,n. So, we have $\bigcup_{k=1}^n G_k \supseteq \bigcup_{k=1}^n (F \cap E_k) = (F \cap E_1) \bigcup (F \cap E_2) \bigcup ... \bigcup (F \cap E_n)$

 $= F \cap (E_1 \cup E_2 \cup \dots \cup E_n) = F \cap (\bigcup_{k=1}^n E_k).$

But $E_k \in \mathcal{H}^*$ and \mathcal{H}^* is a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* , then $\bigcup_{k=1}^{n} E_k \in \mathcal{H}^*$, hence by definition of \mathcal{H}_1^* we have, $\bigcup_{k=1}^{n} G_k \in \mathcal{H}_1^*$. Therefore, \mathcal{H}_1^* is a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* and (\mathcal{X}^* , \mathcal{H}_1^*) is a fuzzy measurable space relatively to fuzzy γ -algebra.

Proposition(2.9):

Let \mathcal{X} be an infinite set and let $\mathcal{X}^* = \{(\omega, 1) : \forall \omega \in \mathcal{X} \}$. If $\mathcal{H}^* = \{E \subseteq \mathcal{X}^* : E \text{ is infinite fuzzy set}\}$. Then $(\mathcal{X}^*, \mathcal{H}^*)$ is a fuzzy measurable space relatively to fuzzy γ -algebra.

Proof:

Since \mathcal{X} be an infinite set, then each of \emptyset^* , \mathcal{X}^* be an infinite fuzzy set, but $\mathcal{X}^* \subseteq \mathcal{X}^*$ and $\emptyset^* \subseteq \mathcal{X}^*$, then by definition of \mathcal{H}^* we have, $\emptyset^*, \mathcal{X}^* \in \mathcal{H}^*$. Let $E_1, E_2, ..., E_n \in \mathcal{H}^*$. Then E_k is an infinite fuzzy set for every k=1,2,..., n and hence $\bigcup_{k=1}^n E_k$ is an infinite fuzzy set. Therefore, $\bigcup_{k=1}^n E_k \in \mathcal{H}^*$ and \mathcal{H}^* is a fuzzy γ - algebra over a fuzzy set \mathcal{X}^* .

Proposition (2.10):

Let $\{\mathcal{H}_i^*\}_{i \in I}$ be a collection of fuzzy γ - algebra over a fuzzy set \mathcal{X}^* . Then $\bigcap_{i \in I} \mathcal{H}_i^*$ is a fuzzy γ - algebra over a fuzzy set \mathcal{X}^* .

Proof:

Since \mathcal{H}_i^* is a fuzzy γ - algebra over a fuzzy set \mathcal{X}^* , $\forall i \in I$, then $\emptyset^*, \mathcal{X}^* \in \mathcal{H}_i^* \forall i \in I$. Hence $\emptyset^* \neq \bigcap_{i \in I} \mathcal{H}_i$ and $\emptyset^*, \mathcal{X}^* \in \bigcap_{i \in I} \mathcal{H}_i$. Let $E_1, E_2, ..., E_n \in \bigcap_{i \in I} \mathcal{H}_i^*$. Then $E_1, E_2, ..., E_n \in \mathcal{H}_i^*$, $\forall i \in I$. Since \mathcal{H}_i^* is a fuzzy γ - algebra over a fuzzy set $\mathcal{X}^* \forall i \in I$, then $\bigcup_{k=1}^n E_k \in \mathcal{H}_i^*$, $\forall i \in I$. Hence, $\bigcup_{k=1}^n E_k \in \bigcap_{i \in I} \mathcal{H}_i^*$, therefore $\bigcap_{i \in I} \mathcal{H}_i^*$ is a fuzzy γ - algebra over \mathcal{X}^* .

Definition(2.11):

Let \mathcal{X} be a nonempty set and $\mathfrak{T}^* \subseteq \mathcal{P}^*(\mathcal{X})$. Then the intersection of all fuzzy γ -algebra over a fuzzy set \mathcal{X}^* , which includes \mathfrak{T}^* , is said to be the fuzzy γ -algebra over a fuzzy set \mathcal{X}^* that is generated by \mathfrak{T}^* and denoted by $\gamma(\mathfrak{T}^*)$, that is,

that is generated by \mathfrak{T}^* and denoted by $\gamma(\mathfrak{T}^*)$, that is, $\gamma(\mathfrak{T}^*) = \bigcap \left\{ \begin{array}{l} \mathcal{H}_i^* \colon \mathcal{H}_i^* \text{ is a fuzzy } \gamma \text{- algebra over a fuzzy set } \mathcal{X}^* \\ \text{ and } \mathcal{H}_i^* \supseteq \mathfrak{T}^*, \forall i \in I \end{array} \right\}$

Proposition (2.12):

Let \mathcal{X} be a nonempty set and $\mathfrak{T}^* \subseteq \mathcal{P}^*(\mathcal{X})$. Then $\gamma(\mathfrak{T}^*)$ is the smallest fuzzy γ -algebra over a fuzzy set \mathcal{X}^* that includes \mathfrak{T}^* .

Proof:

From the definition of $\gamma(\mathfrak{T}^*)$, we have:

 $\gamma(\mathfrak{T}^*) = \bigcap \begin{cases} \mathcal{H}_i^*: \mathcal{H}_i^* \text{ is a fuzzy } \gamma-\text{algebra over a fuzzy set } \mathcal{X}^* \\ \text{and } \mathcal{H}_i^* \supseteq \mathfrak{T}^*, \forall i \in I \end{cases}$. Hence $\gamma(\mathfrak{T}^*)$ is fuzzy $\gamma-\text{algebra over a fuzzy set } \mathcal{X}^*$. To prove $\gamma(\mathfrak{T}^*) \supseteq \mathfrak{T}^*$. For each $i \in I$ let \mathcal{H}_i^* be a fuzzy $\gamma-\text{algebra over a fuzzy set } \mathcal{X}^*$ that includes \mathfrak{T}^* . Then $\mathfrak{T}^* \subseteq \bigcap_{i \in I} \mathcal{H}_i^*$, thus $\mathfrak{T}^* \subseteq \gamma(\mathfrak{T}^*)$. Now, let \mathcal{H}^* be a fuzzy $\gamma-\text{algebra over a fuzzy set } \mathcal{X}^*$ that includes \mathfrak{T}^* . Then

 $\bigcap \left\{ \begin{array}{c} \mathcal{H}_{i}^{*} \colon \mathcal{H}_{i}^{*} \text{ is a fuzzy } \gamma \text{-algebra over a fuzzy set} \\ \mathcal{X}^{*} \text{ and } \mathcal{H}_{i}^{*} \supseteq \mathfrak{T}^{*}, \forall i \in I \end{array} \right\} \subseteq \mathcal{H}^{*}, \text{ hence } \gamma(\mathfrak{T}^{*}) \subseteq \mathcal{H}^{*}. \text{ Therefore,} \\ \gamma(\mathfrak{T}^{*}) \text{ is the smallest fuzzy } \gamma \text{-algebra over a fuzzy set } \mathcal{X}^{*} \text{ that includes } \mathfrak{T}^{*}. \end{array}$

Example (2.13):

Let $\mathcal{X} = \{a, b, c\}$ and $\mathfrak{X}^* = \{\{(a, 0.4), (b, 0.2), (c, 0.3)\}, \{(a, 0.2), (b, 0.3), (c, 0.4)\}\}$. Then $\gamma(\mathfrak{X}^*) = \{\emptyset^*, \{(a, 0.4), (b, 0.2), (c, 0.3)\}, \{(a, 0.2), (b, 0.3), (c, 0.4)\}, \{(a, 0.4), (b, 0.3), (c, 0.4)\}, \mathcal{X}^* = \{(a, 1), (b, 1), (c, 1)\}\}$. Therefore, $\gamma(\mathfrak{X}^*)$ is the smallest fuzzy γ -algebra over a fuzzy set \mathcal{X}^* that includes \mathfrak{X}^* .

Proposition (2.14):

Let \mathcal{X} be a nonempty set and $\mathfrak{T}^* \subseteq \mathcal{P}^*(\mathcal{X})$. Then $\gamma(\mathfrak{T}^*) = \mathfrak{T}^*$ if and only if \mathfrak{T}^* is fuzzy γ -algebra over a fuzzy set \mathcal{X}^* .

Proof:

Let $\mathfrak{T}^* \subseteq \mathcal{P}^*(\mathcal{X})$ and let $\gamma(\mathfrak{T}^*) = \mathfrak{T}^*$. Since $\gamma(\mathfrak{T}^*)$ is a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* , then \mathfrak{T}^* is fuzzy γ -algebra over a fuzzy set \mathcal{X}^* .

Conversely, suppose that \mathfrak{T}^* is a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* . Since $\gamma(\mathfrak{T}^*)$ is a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* which includes \mathfrak{T}^* , then $\gamma(\mathfrak{T}^*) \supseteq \mathfrak{T}^*$. But \mathfrak{T}^* is fuzzy γ -algebra over a fuzzy set \mathcal{X}^* such that $\mathfrak{T}^* \supseteq \mathfrak{T}^*$ and $\gamma(\mathfrak{T}^*)$ is the smallest fuzzy γ -algebra over a fuzzy set \mathcal{X}^* that includes \mathfrak{T}^* , then $\gamma(\mathfrak{T}^*) \subseteq \mathfrak{T}^*$ and hence $\gamma(\mathfrak{T}^*) = \mathfrak{T}^*$.

Proposition (2.15):

Every fuzzy σ - algebra over a fuzzy set \mathcal{X}^* is a fuzzy γ - algebra over a fuzzy set \mathcal{X}^* .

Proof:

Let \mathcal{H}^* be a fuzzy σ -algebra over a fuzzy set \mathcal{X}^* . Then by definition of fuzzy σ -algebra, we have $\emptyset^* \in \mathcal{H}^*$ and hence $\emptyset^{*c} \in \mathcal{H}^*$. Since $\emptyset^{*c} = \mathcal{X}^*$, then $\mathcal{X}^* \in \mathcal{H}^*$. Let $E_1, E_2, ..., E_n \in \mathcal{H}^*$. Consider, $E_m = \emptyset^*$ for all m > n, then we get $E_1, E_2, ..., E_n, E_{n+1}, E_{n+2}, ... \in \mathcal{H}^*$. Hence, from the definition of fuzzy σ -algebra we have, $E_1^c, E_2^c, ..., E_n^c, E_{n+1}^c, E_{n+2}^c, ... \in \mathcal{H}^*$ and $\bigcap_{k=1}^{\infty} E_k^c \in \mathcal{H}^*$, thus $(\bigcap_{k=1}^{\infty} E_k^c)^c \in \mathcal{H}^*$. But $(\bigcap_{k=1}^{\infty} E_k^c)^c = \bigcup_{k=1}^{\infty} E_k$, then $\bigcup_{k=1}^{\infty} E_k \in \mathcal{H}^*$. So, we have: $\bigcup_{k=1}^{\infty} E_k \cup \bigcup_{n+1}^{n} \bigcup_{$

 $= \bigcup_{k=1}^{n} E_k$

Thus $\bigcup_{k=1}^{n} E_k \in \mathcal{H}^*$. Therefore, \mathcal{H}^* is a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* .

In general, the converse of Proposition (2.15) is not true as shown in the following example:

Example (2.16):

Let $\mathcal{X} = \{a, b, c\}$ and $\mathcal{H}^* = \{\emptyset^*, \{(a, 0.4), (b, 0.2), (c, 0.3)\}, \{(a, 0.2), (b, 0.3), (c, 0.4)\}, \{(a, 0.4), (b, 0.3), (c, 0.4)\}, X^*\}$. Then \mathcal{H}^* is a fuzzy γ - algebra over a fuzzy set \mathcal{X}^* but not fuzzy σ - algebra, because $\{(a, 0.4), (b, 0.2), (c, 0.3)\} \in \mathcal{H}^*$, but $\{(a, 0.4), (b, 0.2), (c, 0.3)\} \in \mathcal{H}^*$, but $\{(a, 0.4), (b, 0.2), (c, 0.3)\} \in \mathcal{H}^*$.

Proposition (2.17):

Let \mathcal{X} be a nonempty set and $\mathfrak{T}^* \subseteq \mathcal{P}^*(\mathcal{X})$. Then $\gamma(\mathfrak{T}^*) \subseteq \sigma(\mathfrak{T}^*)$, where $\sigma(\mathfrak{T}^*)$ is the smallest fuzzy σ -algebra over a fuzzy set \mathcal{X}^* that includes \mathfrak{T}^* .

Proof:

Let \mathcal{X} be a nonempty set and $\mathfrak{T}^* \subseteq \mathcal{P}^*(\mathcal{X})$. Then $\sigma(\mathfrak{T}^*)$ is a fuzzy σ -algebra over a fuzzy set \mathcal{X}^* is a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* is a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* is a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* that includes \mathfrak{T}^* . But $\gamma(\mathfrak{T}^*)$ is the smallest fuzzy γ -algebra over a fuzzy set \mathcal{X}^* that includes \mathfrak{T}^* . But $\gamma(\mathfrak{T}^*)$ is the smallest fuzzy γ -algebra over a fuzzy set \mathcal{X}^* that includes \mathfrak{T}^* that includes \mathfrak{T}^* .

Remark (2.18):

Every fuzzy algebra over a fuzzy set \mathcal{X}^* is a fuzzy γ - algebra over a fuzzy set \mathcal{X}^* .

Proof:

The result follows from the definition of fuzzy algebra.

In general, the converse of the previous Remark is not true as shown in the following example:

Example(2.19):

Let $\mathcal{X} = \{a, b, c\}$ and $\mathcal{H}^* = \{\emptyset^*, \{(a, 0.6), (b, 0.3), (c, 0.1)\}, \{(a, 0.4), (b, 0.2), (c, 0.4)\}, \{(a, 0.6), (b, 0.3), (c, 0.4)\}, \mathcal{X}^*\}$. Then \mathcal{H}^* is a fuzzy γ - algebra over a fuzzy set \mathcal{X}^* but it is not fuzzy algebra, because $\{(a, 0.6), (b, 0.3), (c, 0.1)\} \in \mathcal{H}^*$, but $\{(a, 0.6), (b, 0.3), (c, 0.1)\}^c = \{(a, 0.4), (b, 0.7), (c, 0.9)\} \notin \mathcal{H}^*$.

Proposition (2.20):

Let \mathcal{X} be a nonempty set and $\mathfrak{T}^* \subseteq \mathcal{P}^*(\mathcal{X})$. Then $\gamma(\mathfrak{T}^*) \subseteq AL(\mathfrak{T}^*)$, where $AL(\mathfrak{T}^*)$ is the smallest fuzzy algebra over a fuzzy set \mathcal{X}^* that includes \mathfrak{T}^* .

Proof:

It is clear, so that it is omitted.

Definition(2.21):

Let \mathcal{H}^* be a nonempty collection of fuzzy subsets of fuzzy power set $\mathcal{P}^*(\mathcal{X})$ of a nonempty set \mathcal{X} that is $\mathcal{H}^* \subseteq \mathcal{P}^*(\mathcal{X})$ and let \mathcal{T}^* be a nonempty fuzzy subset of a fuzzy set \mathcal{X}^* that is $\mathcal{T}^* \subseteq \mathcal{X}^*$. Then the restriction of \mathcal{H}^* on \mathcal{T}^* is denoted by $\mathcal{H}^*_{|_{\mathcal{T}^*}}$ which is defined as follows:

 $\mathcal{H}^*_{|_{\mathcal{T}^*}} = \{ \text{ F: } F = E \cap \mathcal{T}^*, \text{ for some } E \in \mathcal{H}^* \}.$

Example(2.22):

Let
$$\mathcal{X} = \{ \omega_1, \omega_2 \}$$
 and $\mathcal{H}^* = \begin{cases} \{ (\omega_1, 0.6), (\omega_2, 0.2) \}, \\ \{ (\omega_1, 0.3), (\omega_2, 0.5) \} \end{cases}$. Consider
 $\mathcal{T}^* = \{ (\omega_1, 0.5), (\omega_2, 0.5) \}$ and $\mathcal{H}^*_{|_{\mathcal{T}^*}} = \begin{cases} \{ (\omega_1, 0.5), (\omega_2, 0.2) \}, \\ \{ (\omega_1, 0.3), (\omega_2, 0.2) \}, \end{cases}$. Put,
E_1 = \{ (\omega_1, 0.6), (\omega_2, 0.2) \}, E_2 = \{ (\omega_1, 0.3), (\omega_2, 0.5) \}, F_1 = \{ (\omega_1, 0.5), (\omega_2, 0.2) \}, F_2 = \{ (\omega_1, 0.3), (\omega_2, 0.5) \}. Then E_1, E_2 $\in \mathcal{H}^*$ and F_1, F_2 $\in \mathcal{H}^*_{|_{\mathcal{T}^*}}$.

Now, $E_1 \cap \mathcal{T}^* = \{(\omega_1, Min\{0.6, 0.5\}), (\omega_2, Min\{0.2, 0.5\})\}\$ = $\{(\omega_1, 0.5), (\omega_2, 0.2)\} = F_1.$ $E_2 \cap \mathcal{T}^* = \{(\omega_1, Min\{0.3, 0.5\}), (\omega_2, Min\{0.5, 0.5\})\}\$ = $\{(\omega_1, 0.3), (\omega_2, 0.5)\} = F_2.$ This implies that for any $F \in \mathcal{H}^*_{|_{\mathcal{T}^*}}$ there is $E \in \mathcal{H}^*$

such that $F = E \cap \mathcal{T}^*$.

Therefore, $\mathcal{H}_{|_{\mathcal{T}^*}}^*$ is the restriction of \mathcal{H}^* on \mathcal{T}^* .

Proposition (2.23):

Let \mathcal{H}^* be a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* and let \mathcal{T}^* be a nonempty fuzzy subset of a fuzzy set \mathcal{X}^* . Then $\mathcal{H}^*_{l_{\mathcal{I}^*}}$ is a fuzzy γ -algebra over a fuzzy set \mathcal{T}^* .

Proof:

Since \mathcal{H}^* is a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* , then $\emptyset^*, \mathcal{X}^* \in \mathcal{H}^*$. Since $\mathcal{T}^* \subseteq \mathcal{X}^*$, then $v_{\mathcal{T}^*}(\omega) \leq v_{\mathcal{X}^*}(\omega)$ for all $\omega \in \mathcal{X}$ and hence

 $\begin{aligned} \mathcal{X}^* \cap \mathcal{T}^* &= \{ (\omega, \inf\{ v_{\mathcal{X}^*}(\omega), v_{\mathcal{T}^*}(\omega) \} : \forall \omega \in \mathcal{X}) \} = \{ (\omega, v_{\mathcal{T}^*}(\omega)) : \forall \omega \in \mathcal{X} \} = \mathcal{T}^* \\ \text{Therefore, } \mathcal{T}^* \in \mathcal{H}^*_{|_{\mathcal{T}^*}}. \text{ Now, } \emptyset^* \cap \mathcal{T}^* = \{ (\omega, \inf\{ v_{\emptyset^*}(\omega), v_{\mathcal{T}^*}(\omega) \} : \forall \omega \in \mathcal{X}) \} \\ &= \{ (\omega, v_{\emptyset^*}(\omega)) : \forall \omega \in \mathcal{X} \} = \emptyset^* \end{aligned}$

Then $\phi^* \in \mathcal{H}_{|_{\mathcal{T}^*}}^*$. Let $F_1, F_2, ..., F_n \in \mathcal{H}_{|_{\mathcal{T}^*}}^*$. Then there are $E_1, E_2, ..., E_n \in \mathcal{H}^*$ such that $F_k = E_k \cap \mathcal{T}^*$ for all k = 1, 2, ..., n which implies that

 $\bigcup_{k=1}^{n} F_{k} = \bigcup_{k=1}^{n} (E_{k} \cap \mathcal{T}^{*}) = (\bigcup_{k=1}^{n} E_{k}) \cap \mathcal{T}^{*}.$ Since \mathcal{H}^{*} is a fuzzy γ -algebra over a fuzzy set \mathcal{X}^{*} , then $\bigcup_{k=1}^{n} E_{k} \in \mathcal{H}^{*}$ and hence by definition of $\mathcal{H}^{*}_{|_{\mathcal{T}^{*}}}$ we get $\bigcup_{k=1}^{n} F_{k} \in \mathcal{H}^{*}_{|_{\mathcal{T}^{*}}}.$ Therefore, $\mathcal{H}^{*}_{|_{\mathcal{T}^{*}}}$ is a fuzzy γ -algebra over a fuzzy set $\mathcal{T}^{*}.$

Proposition(2.24):

Let \mathcal{H}^* be a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* and $E \subseteq \mathcal{T}^* \subseteq \mathcal{X}^*$. If $E \in \mathcal{H}^*$, then $E \in \mathcal{H}^*_{|_{\mathcal{T}^*}}$.

Proof:

Let \mathcal{H}^* be a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* and let $E \subseteq \mathcal{T}^* \subseteq \mathcal{X}^*$. Suppose that $E \in \mathcal{H}^*$, since $E \subseteq \mathcal{T}^*$, then $v_E(\omega) \leq v_{\mathcal{T}^*}(\omega) \quad \forall \omega \in \mathcal{X}$. So, we have $E \cap \mathcal{T}^* = \{(\omega, \inf\{ v_E(\omega), v_{\mathcal{T}^*}(\omega)\} : \forall \omega \in \mathcal{X})\} = \{(\omega, v_E(\omega)) : \forall \omega \in \mathcal{X}\} = E$ Therefore $E \in \mathcal{H}^*$

Therefore, $E \in \mathcal{H}_{|_{T^*}}^*$.

Proposition (2.25):

Let \mathcal{H}^* be a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* and let \mathcal{T}^* be a nonempty fuzzy subset of a fuzzy set \mathcal{X}^* such that $\mathcal{T}^* \in \mathcal{H}^*$. Then $\{E \subseteq \mathcal{T}^*: E \in \mathcal{H}^*\} \subseteq \mathcal{H}^*_{|_{\mathcal{T}^*}}$.

Proof:

Let $F \in \{E \subseteq \mathcal{T}^* : E \in \mathcal{H}^*\}$. Then $F \subseteq \mathcal{T}^*$ and $F \in \mathcal{H}^*$, hence $v_F(\omega) \le v_{\mathcal{T}^*}(\omega) \quad \forall \omega \in \mathcal{X}$. So, we have $F \cap \mathcal{T}^* = \{(\omega, \inf\{ v_F(\omega), v_{\mathcal{T}^*}(\omega)\} : \forall \omega \in \mathcal{X})\} = \{(\omega, v_F(\omega)) : \forall \omega \in \mathcal{X}\} = F$. Which implies that $F \in \mathcal{H}^*_{|_{\mathcal{T}^*}}$. Therefore, $\{E \subseteq \mathcal{T}^* : E \in \mathcal{H}^*\} \subseteq \mathcal{H}^*_{|_{\mathcal{T}^*}}$.

Proposition (2.26):

Let \mathcal{H}^* be a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* and let \mathcal{T}^* be a nonempty fuzzy subset of a fuzzy set \mathcal{X}^* such that $\mathcal{T}^* \in \mathcal{H}^*$ and $G \cap \mathcal{T}^* \in \mathcal{H}^*$ whenever $G \in \mathcal{H}^*$. Then $\mathcal{H}^*_{|_{\mathcal{T}^*}} = \{E \subseteq \mathcal{T}^*: E \in \mathcal{H}^*\}$.

Proof:

Let $F \in \{E \subseteq \mathcal{T}^* : E \in \mathcal{H}^*\}$. Then $F \subseteq \mathcal{T}^*$ and $F \in \mathcal{H}^*$. Hence, $F \cap \mathcal{T}^* = F$, which implies that $F \in \mathcal{H}_{|_{\mathcal{T}^*}}^*$. Therefore, $\{E \subseteq \mathcal{T}^* : E \in \mathcal{H}^*\} \subseteq \mathcal{H}_{|_{\mathcal{T}^*}}^*$.

Let $F \in \mathcal{H}_{|_{\mathcal{T}^*}}^*$. Then there exists $E \in \mathcal{H}^*$ such that $F = E \cap \mathcal{T}^*$. Since $E, \mathcal{T}^* \in \mathcal{H}^*$, then $E \cap \mathcal{T}^* \in \mathcal{H}^*$, thus $F \in \mathcal{H}^*$. On the other hand,

$$\begin{split} \mathbf{F} =& \mathbf{E} \cap \mathcal{T}^* \text{ which implies that } \boldsymbol{\upsilon}_{\mathbf{F}}(\omega) = \boldsymbol{\upsilon}_{\mathbf{E} \cap \mathcal{T}^*}(\omega), \forall \omega \in \mathcal{X} \\ &= \inf\{ \boldsymbol{\upsilon}_{\mathbf{E}}(\omega), \boldsymbol{\upsilon}_{\mathcal{T}^*}(\omega) \} \leq \boldsymbol{\upsilon}_{\mathcal{T}^*}(\omega), \forall \omega \in \mathcal{X}. \end{split}$$
Thus $\mathbf{F} \subseteq \mathcal{T}^* \cdot \text{Hence}, \ \mathbf{F} \in \{ \mathbf{E} \subseteq \mathcal{T}^* \colon \mathbf{E} \in \mathcal{H}^* \}$ implies that $\mathcal{H}^*_{|_{\mathcal{T}^*}} \subseteq \{ \mathbf{E} \subseteq \mathcal{T}^* \colon \mathbf{E} \in \mathcal{H}^* \}.$ Therefore, $\mathcal{H}^*_{|_{\mathcal{T}^*}} = \{ \mathbf{E} \subseteq \mathcal{T}^* \colon \mathbf{E} \in \mathcal{H}^* \}. \end{split}$

Proposition(2.27):

Let \mathcal{X} be a nonempty set and $\mathfrak{T}^* \subseteq \mathcal{P}^*(\mathcal{X})$ and let \mathcal{T}^* be a nonempty fuzzy subset of a fuzzy set \mathcal{X}^* . Then $\gamma(\mathfrak{T}^*)_{|_{\mathcal{T}^*}}$ is a fuzzy γ -algebra over a fuzzy set \mathcal{T}^* .

Proof:

The result follows from Proposition(2.12) and Proposition(2.23).

Proposition(2.28):

Let \mathcal{X} be a nonempty set and $\mathfrak{T}^* \subseteq \mathcal{P}^*(\mathcal{X})$ and let \mathcal{T}^* be a nonempty fuzzy subset of a fuzzy set \mathcal{X}^* . Then $\gamma(\mathfrak{T}^*|_{\mathcal{T}^*})$ is the smallest fuzzy γ -algebra over a fuzzy set \mathcal{T}^* which includes $\mathfrak{T}^*_{|_{\mathcal{T}^*}}$, where

 $\gamma(\mathfrak{X}^{*}_{|\mathcal{T}^{*}}) = \bigcap \begin{cases} \mathcal{H}^{*}_{i_{|\mathcal{T}^{*}}} : \mathcal{H}^{*}_{i_{|\mathcal{T}^{*}}} \text{ is a fuzzy } \gamma - \text{ algebra over a fuzzy} \\ \text{ set } \mathcal{T}^{*} \text{ which includes } \mathfrak{T}^{*}_{|_{\mathcal{T}^{*}}}, \forall i \in I \end{cases} \end{cases}$

Proof:

From Proposition (2.10), we get $\gamma(\mathfrak{T}^*|_{\mathcal{T}^*})$ is a fuzzy γ - algebra over a fuzzy set \mathcal{T}^* . To prove that $\gamma(\mathfrak{T}^*|_{\mathcal{T}^*}) \supseteq \mathfrak{T}^*|_{\mathcal{T}^*}$, suppose that $\mathcal{H}^*|_{\mathcal{T}^*}$ is a fuzzy γ - algebra over a fuzzy set \mathcal{T}^* which includes $\mathfrak{T}^*|_{\mathcal{T}^*}$, $\forall i \in I$, then $\mathfrak{T}^*|_{\mathcal{T}^*} \subseteq \bigcap \begin{cases} \mathcal{H}^*_{i}|_{\mathcal{T}^*} : \mathcal{H}^*_{i}|_{\mathcal{T}^*} \text{ is a fuzzy } \gamma$ - algebra over a $\underset{|_{\mathcal{T}^*}}{\operatorname{fuzzy set }} \mathcal{T}^* \text{ which includes } \mathfrak{T}^*_{i}, \forall i \in I \end{cases}$. Hence, $\gamma(\mathfrak{T}^*|_{\mathcal{T}^*}) \supseteq \mathfrak{T}^*_{i_{\mathcal{T}^*}}$. Now, let $\mathcal{H}^*_{i_{\mathcal{T}^*}}$ is a fuzzy γ - algebra over a fuzzy set \mathcal{T}^* which includes $\mathfrak{T}^*_{i_{\mathcal{T}^*}}$, $\forall i \in I$. Hence, $\gamma(\mathfrak{T}^*|_{\mathcal{T}^*}) \supseteq \mathfrak{T}^*_{i_{\mathcal{T}^*}}$. Now, let $\mathcal{H}^*_{i_{\mathcal{T}^*}}$ is a fuzzy γ - algebra over a fuzzy set \mathcal{T}^* which includes $\mathfrak{T}^*_{i_{\mathcal{T}^*}}$. Then $\mathcal{H}^*_{i_{\mathcal{T}^*}} \supseteq \gamma(\mathfrak{T}^*|_{\mathcal{T}^*})$. Therefore $\gamma(\mathfrak{T}^*|_{\mathcal{T}^*})$ is the smallest fuzzy γ -algebra over a fuzzy set \mathcal{T}^* which contains $\mathfrak{T}^*_{i_{\mathcal{T}^*}}$.

Lemma(2.29):

Let \mathcal{X} be a nonempty set and $\mathfrak{T}^* \subseteq \mathcal{P}^*(\mathcal{X})$ and let \mathcal{T}^* be a nonempty fuzzy subset of a fuzzy set \mathcal{X}^* , define a collection \mathcal{H}^* as:

 $\mathcal{H}^* = \{ E \subseteq \mathcal{X}^* : E \cap \mathcal{T}^* \in \gamma(\mathfrak{X}^*|_{\mathcal{T}^*}) \}. \text{ Then } \mathcal{H}^* \text{ is a fuzzy } \gamma - \text{ algebra over a fuzzy set } \mathcal{X}^*.$

Proof:

Since $\gamma(\mathfrak{T}^*_{|\mathcal{T}^*})$ is fuzzy γ -algebra over a fuzzy set \mathcal{T}^* , then $\emptyset^*, \mathcal{T}^* \in \gamma(\mathfrak{T}^*_{|\mathcal{T}^*})$. Now $\mathcal{T}^* \subseteq \mathcal{X}^*$, then $\mathcal{T}^* = \mathcal{X}^* \cap \mathcal{T}^*$ and $\mathcal{X}^* \in \mathcal{H}^*$. Also $\emptyset^* = \emptyset^* \cap \mathcal{T}^*$, then $\emptyset^* \in \mathcal{H}^*$. Let $E_1, E_2, ..., E_n \in \mathcal{H}^*$. Then $(E_i \cap \mathcal{T}^*) \in \gamma(\mathfrak{T}^*_{|\mathcal{T}^*})$, for all i=1,2,...,n. Hence, $(\bigcup_{i=1}^n E_i \cap \mathcal{T}^*) \in \gamma(\mathfrak{T}^*_{|\mathcal{T}^*})$, thus $\bigcup_{i=1}^n E_i \in \mathcal{H}^*$. Therefore, \mathcal{H}^* is a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* .

Theorem (2.30):

Let \mathcal{X} be a nonempty set and $\mathfrak{T}^* \subseteq \mathcal{P}^*(\mathcal{X})$ and let \mathcal{T}^* be a nonempty fuzzy subset of a fuzzy set \mathcal{X}^* . Then $\gamma(\mathfrak{T}^*_{|\mathcal{T}^*}) = \gamma(\mathfrak{T}^*)_{|_{\mathcal{T}^*}}$.

Proof:

Let $F \in \mathfrak{X}_{|\mathcal{T}^*}$, then by Definition(2.21) $F = E \cap \mathcal{T}^*$, for some $E \in \mathfrak{X}^*$. But $\mathfrak{X}^* \subseteq \gamma(\mathfrak{X}^*)$, then $E \in \gamma(\mathfrak{X}^*)$, thus $F \in \gamma(\mathfrak{X}^*)_{|_{\mathcal{T}^*}}$, hence $\mathfrak{X}^*_{|_{\mathcal{T}^*}} \subseteq \gamma(\mathfrak{X}^*)_{|_{\mathcal{T}^*}}$. By Proposition(2.28), we have $\gamma(\mathfrak{X}^*_{|_{\mathcal{T}^*}})$ is the smallest fuzzy γ -algebra over a fuzzy set \mathcal{T}^* which includes $\mathfrak{X}^*_{|_{\mathcal{T}^*}}$. From Proposition(2.27), $\gamma(\mathfrak{X}^*)_{|_{\mathcal{T}^*}}$ is fuzzy γ -algebra over a fuzzy set \mathcal{T}^* , then $\gamma(\mathfrak{X}^*_{|_{\mathcal{T}^*}}) \subseteq$ $\gamma(\mathfrak{X}^*)_{|_{\mathcal{T}^*}}$. Now, define a collection \mathcal{H}^* as: $\mathcal{H}^* = \{E \subseteq \mathcal{X}^* : E \cap \mathcal{T}^* \in \gamma(\mathfrak{X}^*_{|_{\mathcal{T}^*}})\}$. Then \mathcal{H}^* is a fuzzy γ - algebra over a fuzzy set \mathcal{X}^* by Lemma (2.29). Let $G \in \mathfrak{X}^*$, then $G \cap \mathcal{T}^* \in \mathfrak{X}_{|_{\mathcal{T}^*}}$, but $\mathfrak{X}^*_{|_{\mathcal{T}^*}} \subseteq \gamma(\mathfrak{X}^*)_{|_{\mathcal{T}^*}}$ implies that $G \cap \mathcal{T}^* \in \gamma(\mathfrak{X}^*_{|_{\mathcal{T}^*}})$, hence by definition of \mathcal{H}^* we get $G \in \mathcal{H}^*$ and $\mathfrak{X}^* \subseteq \mathcal{H}^*$. Let $F \in \gamma(\mathfrak{X}^*)_{|_{\mathcal{T}^*}}$. Then $F = E \cap \mathcal{T}^*$, for some $E \in \gamma(\mathfrak{X}^*)$. $\gamma(\mathfrak{X}^*)$ is the smallest fuzzy γ -algebra over a fuzzy set \mathcal{X}^* which includes \mathfrak{X}^* by Proposition (2.12) and \mathcal{H}^* is a fuzzy γ -algebra over a fuzzy set \mathcal{X}^* which contains \mathfrak{X}^* , then $\gamma(\mathfrak{X}^*) \subseteq \mathcal{H}^*$ and $E \in \mathcal{H}^*$, hence by definition of \mathcal{H}^* we get $E \cap \mathcal{T}^* \in \gamma(\mathfrak{X}^*_{|_{\mathcal{T}^*}})$, thus $F \in \gamma(\mathfrak{X}^*_{|_{\mathcal{T}^*})$, consequently $\gamma(\mathfrak{X}^*)_{|_{\mathcal{T}^*}} \subseteq \gamma(\mathfrak{X}^*_{|_{\mathcal{T}^*}})$. Therefore, $\gamma(\mathfrak{X}^*_{|_{\mathcal{T}^*}) = \gamma(\mathfrak{X}^*)_{|_{\mathcal{T}^*}}$.

References

- [1] Z. Wang and G. Klir, *Generalized Measure Theory*, 1st ed. Springer Science and Business Media, LLC, New York, 2009.
- [2] I. S. Ahmed and H. H. Ebrahim, "Generalizations of σ -field and new collections of sets noted by δ -field," *AIP Conf. Proc.*, vol. 2096, no. 20019, p. (020019-1)-(020019-6), 2019, doi: 10.1063/1.5097816.
- [3] I. S. Ahmed, S. H. Asaad, and H. H. Ebrahim, "Some new properties of an outer measure on a σ -field," *J. Interdiscip. Math.*, vol. 24, no. 4, pp. 947–952, 2021, doi: 10.1080/09720502.2021.1884386.
- [4] N. Endou, K. Nakasho, and Y. Shidama, "σ-ring and σ-algebra of Sets," *Formaliz. Math.*, vol. 23, no. 1, pp. 51–57, 2015, doi: 10.2478/forma-2015-0004.
- [5] I. S. Ahmed and H. H. Ebrahim, "On α-field and β-field," J. Phys. Conf. Ser., vol. 1294, no. 3, 2019, doi: 10.1088/1742-6596/1294/3/032015.
- [6] L. Zadeh, "Fuzzy Sets," Information and Control, vol. 8. pp. 338–353, 1965.
- [7] J. G. Brown, "A note on fuzzy sets," *Inf. Control*, vol. 18, no. 1, pp. 32–39, 1971, doi: 10.1016/S0019-9958(71)90288-9.
- [8] N. S. J. Math and E. Pap, "σ -Null-Additive Set Functions," *Novi Sad J. Math.*, vol. 32, no. 1, pp. 47–57, 2002.
- [9] L. Godo and S. Gottwald, "Fuzzy sets and formal logics," *Fuzzy Sets Syst.*, vol. 281, no. June 2015, pp. 44–60, 2015, doi: 10.1016/j.fss.2015.06.021.
- [10] R. A. Derrig and K. M. Ostaszewski, "Fuzzy Set Theory," Wiley StatsRef Stat. Ref. Online, 2014, doi: 10.1002/9781118445112.stat04403.
- [11] I. S. Ahmed, H. H. Ebrahim and A. Al-Fayadh, "Fuzzy σ-algebra and some related concepts," *J. Phys. Conf.* Accepted Nov,2021.