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Abstract  

    In this paper, we introduce the concept of s.p-semisimple module. Let S be a 

semiradical property, we say that a module M is s.p - semisimple if for every 

submodule N of M, there exists a direct summand K of M such that K ≤ N and N / K 

has S. we prove that a module M is s.p - semisimple module if and only if for every 

submodule A of M, there exists a direct summand B of M such that A = B + C and C 

has S. Also, we prove that for a module M is s.p - semisimple if and only if for every 

submodule A of M, there exists an idempotent e ∊ End(M) such that e(M) ≤ A and 

(1- e)(A) has S.   

 

Keywords: Semiradical (radical) property, Semisimple modules, t- semisimple 

modules. 

 
 المقاسات البسيطة نسبة الى خاصية شبه جذرية

 

حمد بهار ، احمد انتصار  
 قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

 
  الخلاصة 

خاصية شبه  Sالمقاسات شبه بسيطة نسبة لخاصية شبه جذرية. لنفترض أن  في هذا البحث نقدم مفهوم    
من  N مقاس جزئيإذا كان لكل  نسبة لخاصية شبه جذرية بسيط شبه وه M المقاسجذرية  فنحن نقول أن 

M ،مباشر  جمع يوجدK في M  بحيث يكونK ≤ N  وN / K تمتلك S .المقاس برهنا ان M  هو شبه بسيط
بحيث  Mمن  B، يوجد جمع مباشر  Mمن  A مقاس جزئيإذا وفقط إذا كان لكل نسبة لخاصية شبه جذرية 

شبه بسيط نسبة لخاصية شبه  كون ي M لمقاساذلك.  برهنا. كما أننا S تمتلك Cو  A = B + C    يكون 
 e (M) بحيث ان e∈ End (M)متساوي القوى ، يوجد  Mمن  A مقاس جزئيلكل إذا وفقط إذا كان  جذرية
≤ A و           (1- e) (A )تمتلك S. 

 
1. Introduction 

     Throughout this paper, all rings are associative with identity and all modules are unitary 

left R-modules. Let A be a submodule of a module M. A is called an essential submodule of 

M (denoted by A ≤ e M) if A ∩ B ≠ 0, ∀ 0 ≠ B ≤ M. A submodule B of M is called a closed 

submodule of M if B has no proper essential extension. A module M is called an extending 

module if every submodule of M is essential in a direct summand. Equivalently, every closed 

submodule of M is a direct summand, see [1], [2], [3]. 

                   ISSN: 0067-2904 
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      Let M be a module. Recall that the socle of M (denoted by Soc(M)) is the sum of all 

simple submodules of M, a module M is called a semisimple if Soc(M) = M. Equivalently a 

module M is semisimple if and only if every submodule is a direct summand of M, see [1], 

[4]. Recall that the Jacobson radical of M (denoted by J(M)) is the intersection of all maximal 

submodules of M. If M has no maximal submodule, we write  J(M) = M, see [5]. 

 

     Let x ∈ M. Recall that ann (x) = {r ∈ R: rx = 0}. For a module M, the singular submodule 

is defined as follows Z(M) = {x ∈ M | ann x ≤ e R} or equivalently, Ix = 0 for some essential 

left ideal I of R. If Z(M) = M, then M is called a singular module. If Z(M) = 0, then M is 

called a nonsingular module. The second singular (or Goldie torsion) submodule of a module 

M (denoted by Z2(M)) is defined by Z(M / Z(M)) = Z2(M) / Z(M), see [1],[6]. 

 

     A submodule A of a module M is called t- essential submodule (denoted by A ≤ tes M) if 

for any submodule B of M, A ⋂ B ≤ Z2(M) implies B ≤ Z2(M). A module M is called                

t-semisimple if for every submodule N of M there exists a direct summand K of M such that  

K ≤ tes N, see [5]. [7]. 

 

     A property S is called a radical property if: 

1- for every module M, there exists a submodule (denoted by S(M)) such that 

a- S(M) has S. 

b- A ≤ S(M), for every submodule A of M  such that A has S. 

2- If  f: M → N is an epimorphism and M has S, then N has S. 

3- S(M / S(M)) = 0 for every R- module M, see [8]. 

     A property S is called a semiradical property if it satisfies  conditions 1 and 2, see [8]. 

 

     It's known that each of the following two properties is a radical property, see [8]. 

 

1- S = Z2. For a module M, S(M) = Z2(M), the second singular of M.   

2- S = Snr. For a module M, Snr(M) is a submodule of M such that 

a1- J(Snr(M)) = Snr(M) {i.e. Snr(M) has no maximal submodule}. 

b2- A ≤ Snr (M), for every submodule A of M such that J(A) = A, see [8]. 

 

     While each of the following two properties is a semiradical property (but it is not radical 

property), see [8]. 

1- S = Z. For a module M, S(M) = Z (M), the singular submodule of M.  

2- S = Soc. For a module M, S(M) = Soc(M) = ∑     
           

. 

     Let S be a semiradical property. It is known that  

1- M has S if and only if S(M) = M. 

2- S(S(M)) =  S(M). 

3- If M = ⊕i ∈I Mi, then S(M) = ⊕i∈I S(Mi), where I is any index set. 

4- if S(M) = 0, then S(A) = 0, ∀ A ≤ M.  

5- For any short exact sequence 0 → M → N → K→ 0, if S(M) = 0 and S(K) = 0, then                        

S(N) = 0, see [8]. 

 

     In this paper, S is a semiradical property, unless otherwise stated. 
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2- s.p - semisimple modules 

    In this section, we introduce the concept of s.p-semisimple modules and give the basic 

properties of this module. Also, we illustrate it with some examples.  

 

Definition2.1. Let S be a semiradical property. We say that a module M is s.p - smisimple 

module if for each submodule N of M, there exists a direct summand K of M such that K ≤ N 

and N / K has S. 

 

Remarks and Examples2.2. 

1- Every semisimple module is s.p - semisimple. The converse is not true in general. 

Proof.  Let N be a submodule of a semisimple module M, then N is a direct summand of M, 

by [4]. Let K = N, hence S(N / K) = S(N / N) = S(0) = 0 ≅ N /  K. Thus M is s.p - semisimple. 

For example Z6 as Z6- module is s.p - semisimple module. 

 

    For the converse, Let S = Second singularity. Consider module Z4 as Z- module. Since Z4 is 

singular, then every submodules of Z4 is singular, by [1]. Therefore,  Z2(N) =  Z(N) = N, ∀ N 

≤ Z4. Let  K = 0, hence Z2(N / 0) ≌ Z2(N) = Z(N) = N ≌ N / 0. So N / 0 has S, ∀ N ≤ Z4. Thus 

Z4 is s.p - semisimple. Cleary that Z4 is not semisimple. 

 

    Recall that a semiradical property S is called hereditary if S is closed under submodules,  

see [8].  

2- Let S be a hereditary property and M be a module. If M has S, then M is s.p - semisimple. 

 

Proof. Let N be a submodule of M and S(M) = M. Since S is hereditary, then S(N) = N. Let            

K = 0, then S(N / 0) ≌ S(N) = N ≌ N / 0. Thus M is s.p - semisimple.   

 

3- Let S = singularity. Consider module Q as Z-module. Clearly, that Q is nonsingular. Hence, 

Z(Q) = 0. Let N = 3Z. Since Q is indecomposable, then 0 is the only direct summand 

contained in 3Z. So S(3Z / 0 ) ≅ S(3Z) = Z(3Z) = 0. Thus Q is not s.p - semisimple module.  

 

Proposition2.3. Every submodule of s.p - semisimple module M is s.p – semisimple, For 

every property S. 

Proof. Let N be a submodule of M and A ≤ N. Since M is s.p - semisimple, then there exists a 

direct summand K of M such that K ≤ A and A / K has S. By modular law, K is a direct 

summand of N. Thus N is s.p - semisimple. 

 

Proposition2.4. Let M be an indecomposable module and S be an assumed. Then M is s.p - 

semisimple if and only if every proper submodule of M has S. 

Proof. ⇒) Let N be a proper submodule of M. Since M is s.p - semisimple, then there exists a 

direct summand K of M such that K ≤ N and N / K has S. But M is an indecomposable. 

Therefore, K = 0. Hence S(N) ≅ S(N / 0) = S(N / K) = N / K = N / 0 ≌ N. Thus N has S. 

⇐) Clear. 

    Let S be a semiradical property. Recall that S is called a cohereditary property, if S(M) = 0 

is closed under homomorphic images of M for every module M, see [8].  

 

Proposition2.5. Let S be a cohereditary property and let M be a module. If S(M) = 0. Then M 

is semisimple if and only if M is s.p - semisimple. 

 

 

 



Al–Dhaheri and Al–Bahrani                  Iraqi Journal of Science, 2022, Vol. 63, No. 11, pp: 4901-4910 
 

4904 

Proof. ⇒) Clear.  

⇐) Let N be a submodule of M. Since M is s.p - semisimple, then there exists a direct 

summand K of M such that K ≤ N and N / K has S. But S(M) = 0, therefore S(N) = 0, by [8]. 

Since S is cohereditary property, then S(N / K) = 0. Hence N = K is a direct summand of M. 

Thus M is semisimple. 

 

Remark2.6. Let S be a hereditary property and M be a module. If S(M) = M, then M / N is                            

s.p - semisimple module, for each submodule N of M. 

 

Proof. Let N be a submodule of M and S(M) = M, then M / N has S, by [8]. Thus by. 2.2-2,  

M / N is s.p - semisimple module. 

 

Proposition2.7. Let M be s.p - semisimple module. Then every submodule N of M such that 

S(N) = 0 is a direct summand of M. The converse is true if S(M) = 0. 

 

Proof. Assume that N is a submodule of M such that S(N) = 0. Then there exists a direct 

summand K of M such that K ≤ N and N / K has S. Let M = K ⊕ K1, for some submodule K1 

of M. By modular law, N = K ⊕ (N ∩ K1). Since N ∩ K1 ≤ N and S(N)=0, then S(N∩K1) = 0, 

by [8]. Since N / K = (K ⊕ (N∩K1)) / K ≅ (N ∩ K1) / 0 ≌ N ∩ K1, by the second 

isomorphism theorem, then S(N / K) = 0. But S(N / K) = N / K, therefore N / K = 0. Thus               

N = K is a direct summand of M. 

 

Conversely, let S(M) = 0 and N be a submodule of M. Then S(N) = 0, by [8]. By our 

assumption N, is a direct summand of M. Therefore M is semisimple. Thus by 2.2-1, M is     

s.p - semisimple module. 

 

Proposition 2.8. Let M = A + S(M) be s.p - semisimple module. Then there exists a direct 

summand B of M such that B ≤ A, M = B + S(M) and A / B has S. 

 

Proof. Assume that M is s.p - semisimple module. Then there exists a direct summand B of M 

such that B ≤ A and A / B has S. Let M = B ⊕ C, for some submodule C of M. Then               

A = B ⊕ (C ∩ A), by modular law. But A / B ≌ (C ∩ A), by the second isomorphism 

theorem, therefore (C ∩ A) has S. Since (C ∩ A) has S, then (C ∩ A) ≤ S(M). Thus                   

M = A + S(M) = B + (C∩A) + S(M) and hence M = B + S(M).   

 

Proposition2.9. Let S be a hereditary property and M = M1 ⊕ M2 be a module such that M1 

has S and M2 is semisimple. Then M is s.p - semisimple module. 

 

Proof. Let N be a submodule of M. Since M2 is semisimple, then N ∩ M2 is a direct summand 

of M2. But, M2 is a direct summand of M, therefore N ∩ M2 is a direct summand of M. By the 

second isomorphism theorem, M / M2 = (M1⊕M2) / M2 ≌ M1. Since M1 has S, then M / M2 

has S. But N / (N ∩ M2) ≅ (N + M2) / M2 ≤ M / M2 and S hereditary property. So N / (N ∩ 

M2) has S. Thus M is s.p - semisimple module. 

 

Corollary 2.10. Let S be a hereditary property and M be a module. If M = S(M) ⊕ M1, where 

M1 is a semisimple module, then M is s.p - semisimple module. 
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Proof. Clear. 

 

Proposition 2.11. Let M = M1 ⊕ M2 be a module such that R = Ann(M1) + Ann (M2). If M1 

and M2 are s.p - semisimple modules, then M is s.p - semisimple module. 

 

Proof. Let N be a submodule of M = M1 ⊕ M2. Since R = Ann(M1) + Ann (M2), then by the 

same argument of the proof [9, prop.4.2, CH.1], N = N1 ⊕ N2, where N1 ≤ M1 and N2 ≤ M2. 

Since Mi is s.p - semisimple for i= 1, 2, then there exist direct summands Ki of Mi such that Ki 

is a submodule of Ni and Ni / Ki has S (i = 1, 2). Let Mi = Ki ⊕ Li, for some submodule Li of 

Mi. Therefore M = M1 ⊕ M2 = (K1 ⊕ L1) ⊕  (K2 ⊕ L2) = (K1 ⊕ K2) ⊕  (L1 ⊕ L2). Hence 

(K1 ⊕K2) is a direct summand of M and (K1 ⊕ K2) ≤ N1 ⊕ N2 = N. Now since Ni / Ki has S 

(i = 1, 2), then by [8], (N1 / K1)⊕ (N2 / K2) has S. But (N1 / K1)  ⊕ (N2 /K2) ≅                        

((N1⊕N2) / (K1⊕K2)), by [10, p. 33], hence (N1⊕N2) / (K1⊕ K2) = N / (K1 ⊕ K2) has S. 

Thus M is s.p - semisimple module. 

 

    Let M be an R- module. Recall that M is called a duo-module if every submodule of M is 

fully invariant, see [11]. 

 

Proposition 2.12. Let M = ⊕i ∈ I Mi be a duo module. Then M is s.p - semisimple modules if 

and only if Mi is s.p - semisimple module ∀ i ∊ I.  

 

Proof. Since M is s.p - semisimple, then by prop.2.3, Mi is s.p - semisimple, ∀ i∊ I. 

Conversely, let M = ⊕i∈ I Mi be a module such that Mi is s.p - semisimple, ∀ i ∈ I. Let               

N ≤ M, then N = N ∩ M = N ∩ (⊕i∈ I Mi) = ⊕i∈ I (N ∩ Mi), by [12,lem.2.1]. Let Ni = N ∩ Mi, 

∀ i ∈ I, then Ni ≤ Mi ∀ i∈ I. Since Mi is s.p - semisimple, then there exists Ki is a direct 

summand of Mi such that Ki is a submodule of Ni and Ni / Ki has S ∀ i ∈ I. Hence  ((⊕i∈ I Ni) / 

(⊕i∈ I Ki)) ≅ ⊕i∈ I (Ni / Ki) has S, by [10]. Thus M = ⊕i∈ I Mi is s.p - semisimple. 

 

    Let M1 and M2 be R- modules. M1 is called M2- projective if for every submodule N of M2 

and any homomorphism 𝑓: M1 → M2 / N, there is a homomorphism g : M1 → M2 such that                 
𝜋𝜊g =𝑓. where 𝜋: M2 → M2 / N is the natural epimorphism, see [13]. 

 

              M1 

 

                                                                    𝑔               𝑓 
  

 

 

                 

                                                        M2         𝜋       M2 / N                     0 

                                                                                    
M1 and M2 are called relatively projective if M1 is M2- projective and M2 is M1- projective. 

 

    We know that for a module M = A ⊕ B. A is B-projective if and only if for every 

submodule C of M such that M = B + C, there exists a submodule D of C such that                           

M = B ⊕ D, see [14].          

 
Proposition2.13. Let S be a hereditary property. Let M1 and M2 be s.p - semisimple modules 

such that M1 and M2 are relative projective. Then M = M1 ⊕ M2 is s.p - semisimple. 
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Proof. Let N be a submodule of M. Since (N + M2) ∩ M1 ≤ M1 and M1 is s.p - semisimple, 

then there exists a direct summand A1 of M such that A1 ≤ (N + M2) ∩ M1 and                         

((N + M2) ∩ M1) / A1 has S. Let M1 = A1 ⊕ B1, for some submodule B1 of M1. Hence                        

(N + M2) ∩ M1 = A1⊕ ((N + M2) ∩ M1) ∩ B1, by modular law. Since by the second 

isomorphism theorem, ((N + M2) ∩ M1) / A1 ≌ (N + M2) ∩M1 ∩ B1), then (N + M2) ∩ B1  has 

S, by [8]. Therefore M = M1 ⊕ M2 = A1 ⊕ B1 ⊕ M2 = (N + M2) ∩ M1 + B1 + M2 =                  

N + M2 + B1 + M2 = N + (M2 ⊕ B1). Since (N + B1) ∩ M2 ≤ M2 and M2 is                                 

s.p - semisimple, then there exists a direct summand A2 of M2 such that  A2 ≤ (N + B1) ∩ M2 

and  ((N + B1) ∩ M2) / A2 has S. Let M2 = A2 ⊕ B2, for some submodule B2 of M2 then                  

(N + B1) ∩ M2 = A2 ⊕ ((N + B1) ∩ M2) ∩ B2, by modular law. By the second isomorphism 

theorem, ((N + B1) ∩ M2) / A2 ≌ ((N + B1) ∩ M2) ∩ B2, then (N + B1) ∩ M2 ∩ B2 =                     

(N + B1) ∩ B2  has S, by [8]. Thus M = N + (M2 ⊕ B1) = N + A2 + B2 + B1 =  N + (B1 ⊕ B2). 

Since M = (A1 ⊕ A2) ⊕ (B1 ⊕ B2) and M1 and M2 are relative projective, then A1 is                  

Bj - projective and A2 is Bj - projective for j = 1, 2, by [9, prop. 2.1.6]. So by [15, prop.2.1.7], 

A1 is B1⊕B2-projective and A2 is B1 ⊕ B2 - projective. Hence A1 ⊕ A2 is                                 

B1⊕B2-projective, by [15, prop.2.1.6]. Hence, there exists X ≤ N such that M = X ⊕B1 ⊕ 

B2, by [14, lem. 5 ].  

Now, we want to show that N∩ (B1⊕ B2) has S. Since (N+M2) ∩B1 = ((N + (A2 ⊕ B2)) ∩ B1  

has S and (N + B2) ∩ B1 ≤ ((N + (A2 ⊕ B2)) ∩ B1,  then (N ⊕ B2) ∩ B1  has S. Since                        

(N + B1) ∩ B2 has S, then (N ⊕ B2) ∩ B1 ⊕ (N ⊕ B1) ∩ B2  has S, by [8]. But by 

[15,lem.3.2], N ∩ (B1 ⊕ B2) ≤ (N ⊕ B2) ∩ B1 ⊕ (N ⊕ B1) ∩ B2. Therefore,                               

N ∩ (B1 ⊕ B2) has S. Thus M is s.p - semisimple module. 

 

    Let M be an R-module. M is said to have the summand intersection property (briefly SIP) if 

the intersection of any two direct summands of M is a direct summand of M, see [16].  

 

Proposition 2.14. Let M be s.p - semisimple module. If for any two direct summand A and B 

of M, S(A ∩ B) = 0, then M has SIP. 

 

Proof.  Let A and B be direct summands of M. Since M is s.p - semisimple, then there exists a 

direct summand N of M such that N ≤ A ∩ B and (A ∩ B) / N has S. Let M = N ⊕ N1, for 

some submodule N1 of M, then A∩B = N⊕ (N1∩(A∩B)). Hence by the second isomorphism 

theorem, (A∩B) / N = [N ⊕ (N1∩ (A∩B))] / N ≌  N1∩(A∩B)  ≤ A ∩ B. Since S(A∩B) = 0, 

then S(N1 ∩ (A ∩ B)) = 0, by [8]. So S((A∩B) / N) = 0. But (A ∩ B) / N has S, therefore        

A ∩ B = N. Hence A ∩ B is a direct summand of M. Thus M has SIP. 

 

    Let R be an integral domain. Recall that an R- module M is called a torsion free module if                    

ann (x) = 0, for all 0 ≠ x ∊ M, see [1].  

 

Theorem 2.15. Let R be an integral domain and M be a torsion free module and                           

s.p - semisimple module. Then for every m ∊ M, either Rm is a direct summand of M or Rm 

has S. 

 

Proof. Let 0 ≠ m ∈ M. Then there exists a direct summand K of M such that K ≤ Rm and                

Rm / K has S. Let M = K ⊕ H, for some submodule H of M. Then Rm = K⊕ (Rm ∩ H), by 

modular law. But Rm / K ≌ Rm ∩ H, by the second isomorphism theorem. Therefore Rm ∩ 

H has S.  

Let  : R → Rm be a map defined by 𝑓(r) = rm, for each r ∈ R.It is easy to see that 𝑓 is an 

epimorphism and Ker (𝑓) = ann (m). By the first isomorphism theorem, R / ann(m) ≅ Rm. 

Since M is torsion free module, then ann(m)= 0. Thus R ≅ Rm. But R is indecomposable. 
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Therefore, Rm is indecomposable. Implies that either Rm = K or Rm = Rm ∩ H. Thus either 

Rm is a direct summand of M or Rm has S. 

 

Proposition2.16. Let R be an indecomposable ring and M be a projective module. If M is                         

s.p - semisimple module, then for every m ∊ M, either Rm is a direct summand of M or Rm 

has S. 

 

Proof. Assume that M is a projective and s.p - semisimple module and let m ∊ M. Then there 

exists a direct summand K of M such that K ≤ Rm and Rm / K has S. Let M = K ⊕ H for 

some submodule H of M, then Rm = K ⊕ (H ∩ Rm), by modular law. But                                         

Rm / K ≌ H ∩ Rm, by the second isomorphism theorem.  Therefore,  H ∩ Rm has S.   

  

     Now, let 𝑓: R → Rm be a map defined by 𝑓(r) = rm, for all  r ∊ R. It is clear that 𝑓 is an 

epimorphism map. Let P: Rm → K be the projection map. Clearly, P𝜊𝑓: R → K is an 

epimorphism. Since M is projective, then K is projective by [4]. Therefore, Ker (P𝜊𝑓) is a 

direct summand of R. Since R is indecomposable, then either Ker P𝜊𝑓 = 0 or Ker P𝜊𝑓 = R. 

Ker (P𝜊𝑓) = 𝑓-1
 (Rm ∩ H) = 𝑓-1

 (Rm ∩ H). So either Rm ∩ H = 0 or Rm ∩ H = R. Thus                 

Rm = K or Rm ∩ H = Rm has S. 

 

3- Characterization of s.p - semisimple Modules 

In this section, we give various characterizations of s.p - semisimple modules. 

           

We start with the following theorem.  

Theorem 3.1. Let M be a module. Then the following statements are equivalent 

1- M is s.p - semisimple module. 

2- For every submodule A of M, there exists a decomposition M = B ⊕C such that B ≤ A and    

     A ∩ C has S. 

3- For every submodule A of M, A= A1 ⊕A2, where A1 is a direct summand of M and A2 has         

     S.  

Proof. 1⇒2) Let A be a submodule of M. Since M is s.p - semisimple, then there exists a 

direct summand B of M such that B ≤ A and A / B has S. Let M = B ⊕ C, where C is a 

submodule of M. Then A = B ⊕ (C ∩ A), by modular law. By the second isomorphism 

theorem, A / B ≌ (C ∩ A). Thus A / B ≅ C ∩ A. 

2 ⇒3) Let A be a submodule of M. By (2), there exists a decomposition M = B ⊕ C such that 

B ≤ A and A ∩ C has S. By modular law, A =B ⊕ ( C ∩ A). Let A2 = A ∩ C has S. 

3⇒1) Let A be a submodule of M. By (3), A = A1 ⊕ A2, where A1 is  direct summand of M 

and A2 has S. By the second isomorphism theorem, A / A1 ≌ A2. So A / A1 has S. Thus M is 

s.p - semisimple. 

 

Proposition 3.2. A module M is s.p - semisimple if and only if for every submodule A of M 

there exists a direct summand B of M such that A = B + C, where C is a submodule of M has 

S.  

Proof. ⇒) It is clear by Theorem3.1. 

⇐) Let A be a submodule of M. By our assumption, there exists a direct summand B of M 

such that A = B + C and C has S. Let M = B ⊕ D, for some submodule D of M, then                         

A = B ⊕ (A ∩ D), by modular law. Hence,  (A / B) = (B + C) / B ≅ C / (B ∩ C), by the 

second isomorphism theorem. But C has S, then C / (B ∩ C) has S. This implies that A / B has 

S. Thus M is s.p - semisimple. 
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Proposition3.3. A module M is s.p - semisimple if and only if for each submodule A of M, 

there exists an idempotent e ∊ End(M) such that e (M) ≤ A and (1- e)(A) has S. 

 

Proof. ⇒) Let A be a submodule of M. Since M is s.p - semisimple, then there exists a 

decomposition M = B ⊕ C such that B ≤ A and A ∩ C has S, by th.3.1, 1-2. Let e : M → B 

be the projection map. Clearly that e
2
 = e and C = (1 – e) (M). Claim that                                           

(1-e)(A) = (1-e) M)∩A. To show that, let m ∈ (1-e) (A), then there is a ∈ A such that                         

m = (1 – e)(a) = a – e(a). Therefore m ∈ A and hence m ∈ (1-e) (M) ∩ A. Thus                                 

(1-e) (A) ≤ (1-e) (M) ∩ A. Now, let n ∈ (1-e) (M) ∩A, then n ∈ (1-e) (M) and n ∈ A. Hence, 

there is k ∈ M such that n = (1 – e)(k) = k – e(k). So n + e(k) = k ∈ A. then n ∈ (1-e) (A). 

Thus A ∩ C = A ∩ (1-e) (M) = (1-e) (A). Thus (1-e)A has S.   

⇐) Let A be a submodule of M and e ∊ End(M) be  an idempotent such that e(M) ≤ A and                              

(1- e)A has S. Claim that M = e(M)⊕(1-e)(M). To show that, let x ∈M, then x = x+ e(x)- e(x) 

= e(x) + x – e(x)  = e(x) + (1 – e)(x). Thus M = e (M) + (1-e) (M). 

Now, let y ∈ e (M) ∩ (1-e) (M), then y = e(m1) and y = (1 – e)(m2), for some m1, m2 ∈ M. So 

y = e(m) = e(e(m1)) = e((1– e)(m2)) = e(m2) - e(m2) = 0, then y = e(m1) = 0. Thus                             

M = e(M)⊕(1-e)(M). Let B = e(M) ≤ A and C = (1-e)(M). Therefore M = B ⊕ C and                   

A ∩ C = A ∩(1-e)M = (1-e)A has S. Thus M is s.p - semisimple, by Theorem 3.1.  

 

    Let M be a module and N be a submodule of M. Recall that a submodule K of M is called 

an S-generalized supplement of N in M, if M = N + K and N ∩ K ≤ S(K), see [17]. 

          

    Let M be a module. Recall that M is called an S-generalized supplemented module                         

(or briefly S-GS module), if every submodule of M has S-generalized supplement in M, 

where S is semiradical property on modules, see [17]. 

 

Proposition3.4. Every s.p - semisimple module M is S-GS supplemented module. 

  

Proof. Let M is s.p - semisimple module and N be a submodule of M, then there exists a 

direct summand K of M such that K ≤ N and N / K has S. Hence, M = K ⊕ K1, for some 

submodule K1 of M. But K ≤ N, therefore M = N + K1. So by modular law, N = K⊕(N ∩ K1), 

then by the second isomorphism theorem, N / K ≅ N ∩ K1 has S. Thus N ∩ K1 ≤ S(K) by [8].  

 

Proposition3.5. Let M be s.p-semisimple module. If M = N + K, where N is a direct summand 

of M, then N contains an S-generalized supplement submodule of K in M.  

                                                         

Proof. Since M is an s.p - semisimple, then by Theorem 3.1.1-3, N ∩ K = A ⊕ B, where A is 

a direct summand of M and B has S. Let M = A ⊕ C, for some submodule C of M. Hence,          

N = A ⊕(N∩C), by modular law. Let  A1 = N∩C, then M = N + K = (A+A1) + K. But A ≤ K. 

Therefore, M = K + A1. Now we want to show K ∩ A1 ≤ S(A1). Since N ∩ K = (A ⊕ A1) ∩ 

K = A ⊕ (K∩A1), by modular law. Let  : N = A ⊕ A1 → A1 be the projection map. So we 

have K ∩ A1 = (A ⊕ (K∩A1) = (N ∩ K) = (A ⊕ B) = (B). But B has S. Therefore,          K ∩ 

A1 has S, by [8]. Hence, K∩A1 ≤ S(A1). Thus A1 is an S-generalized supplement submodule 

of K in M and A1 is contained in N.  

 

Proposition3.6. Let S be a hereditary property and M be a module. Then the following 

statements are equivalent                                                                                                       

1- M is s.p - semisimple module. 

2- Every submodule N of M has S-generalized supplement K in M such that N ∩ K is a direct 

summand of N. 
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Proof. 1⇒2) Let N be a submodule of M. Then by the same argument of proof of  Proposition 

3.4.  N has an S-generalized supplement. 

2⇒1) Let N be a submodule of M. Then by our assumption N has an S-generalized 

supplement K in M such that N∩K is a direct summand of N. Hence M = N + K and N ∩ K ≤ 

S(K). Let N= (N ∩ K) ⊕ L, for some submodule L of N. Then M = (N∩K) + L + K = L + K. 

But,  L ∩ K = N ∩ K ∩ L = 0. Therefore, M = L ⊕ K. By the second isomorphism theorem, 

N / L ≅ N ∩ K. Since N ∩ K ≤ S(K) and S is hereditary property, then N ∩ K has S by [8] 

and hence N / L has S. Thus M is s.p-semisimple. 

 

Proposition3.7. Let M be a module. If M is S-GS supplemented module, then M / S(M) is a 

semisimple module.  

 

Proof. Let N / S(M) be a submodule of M / S(M). Since M is S-GS supplemented, then there 

exists a submodule K of M such that M = N + K and N ∩ K ≤ S(K). Then                                       

M /S(M) = (N+K)/S(M) = N /S(M)) + (K+S(M))/S(M)). Since (N/S(M)) ∩ ((K+S(M))/ S(M)) 

= [(N ∩ K) + S(M)] / S(M)), by modular law and N ∩ K ≤ S(K) ≤ S(M), by [17]. Then                       

(N ∩ K) + S(M) = S(M). Therefore M / S(M) = (N / S(M)) ⊕ ((K + S(M) / S(M)). Thus                  

M / S(M) is semisimple. 

 

Corollary3.8. Let M be a module. If M is S-GS supplemented module, then M / S(M) is                     

s.p - semisimple module. 

 

Proof.  It is clear by Proposition. 3.7 and 2.2-1.                                                                                                 

 

Proposition3.9. Let M be s.p-semisimple module. Then every submodule N of M has an              

S-generalized supplement which is a direct summand of M.  

 

Proof.  Let N be a submodule of M, then there exists a decomposition M = A ⊕ B such that 

A ≤ N and N ∩ B has S, by Theorem 3.1, 1-2. Clearly M = N + B and N ∩ B ≤ S(B). Thus B 

is an S-generalized supplement of N which is a direct summand of M. 

 

 Let M be an R- module. Recall that M is called π-projective (or co-continuous) if for every 

two submodules U, V of M with U + V = M there exists 𝑓 ∈ End(M) with Im (𝑓) ≤ U and             

Im (1− f) ≤ V, see [18]. 

 

Proposition3.10. Let S be a hereditary property and a module M be a π-projective module. 

Then M is s.p - semisimple if and only if M is S-GS module. 

 

Proof. ⇒) It is clear by  Proposition 3.4.  

⇐) Let N be a submodule of M. Since M is S-GS module, then there exists a submodule K of 

M such that M = N + K and N ∩ K ≤ S(K). Since M is π- projective, then there exists an 

idempotent e ∊ End (M) such that Im (e) ≤ N and Im (1 − e) ≤ K. But by the same proof of 

Proposition 3.3 we have N(1- e) = N ∩ (1 – e)M ≤ N ∩ K ≤ S(K) and S is hereditary property, 

therefore N(1- e) has S. Thus by Proposition 3.3 M is s.p - semisimple. 

 

Conclusion 

     In this work, the concept of s.p-semisimple module is introduced and studied. We also 

conclude the following: 
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1. Every semisimple module is s.p – semisimple. However, the converse is not true.  Let S = 

Second singularity. Consider module Z4 as Z- module. Since Z4 is singular, then every 

submodules of Z4 is singular, by [1]. Therefore,  Z2(N) =  Z(N) = N, ∀ N ≤ Z4. let  K = 0, 

hence Z2(N / 0) ≌ Z2(N) = Z(N) = N ≌ N / 0. So   N / 0 has S, ∀ N ≤ Z4. Thus Z4 is s.p - 

semisimple. Clearly, that Z4 is not semisimple. 

2. Let M = ⊕i ∈ I Mi be a duo module. Then M is s.p - semisimple modules if and only if Mi is 

s.p - semisimple module ∀ i ∊ I. 

3. Let S be a hereditary property. If M1 and M2 are s.p - semisimple modules such that M1 and 

M2 are relative projective. Then M = M1 ⊕ M2 is s.p - semisimple. 

4. Every s.p - semisimple module M is S-GS supplemented module. 

5. Let S be a hereditary property and a module M be a π-projective module. Then M is                 

s.p - semisimple if and only if M is S-GS module. 
 

References  

[1] R. Goodearl, Ring Theory, Nonsingular Rings and Modules, New York, Marcel Dekker,1976. 

[2]  N. V. Dungh, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending module, London, New York, 

Pitmen Research Notes in Mathematics Series 313, 1994. 

[3] A. Tercan and C. C. Yucel, Module Theory, Extending Modules and Generalizations, Basel, 

Switzerland, Birkhauser, 2016.   

[4] F. Kasch, Modules and Rings, London, Academic press,1982.  

[5] Sh. Asgari, A. Haghany and  Y. Tolooei, "T-semisimple modules and T-semisimple Rings," 

comm. Algebra, vol. 41, no. 5, pp. 1882-1902, 2013. 

[6] Y. Zhou, "Generalization of perfect, semiperfect, and semiregular Rings," Algebra colloquium.                

        vol. 7, no. 3, pp. 305-318, 2000. 

[7] Sh. Asgari, A. Haghany, "T-extending modules and t-Baer modules," Comm. Algebra, vol. 39,           

no. 5 pp. 1605- 1623,2011. 

[8] N. Hamad and B. AL-Hashimi, "Some Results on the Jacobson Radicals and the M- Radicals," 

Basic Sciences and Engineering, vol. 11, no. 2A, pp. 573-579, 2002. 

[9] M. S. Abbas, "On fully stable modules", Ph. D. dissertation, Univ. of Baghdad, Baghdad, Iraq, 

1990. 

[10] J. Than, S. Golan and T. head, Modules and Structure of Rings, Binghamton, New york, USA, 

Binghamton University, 1991. 

[11] N. Orhan, D. K. Tutuncu and R. Tribak, "On Hollow Modules," Taiwanese J. Math, vol. 11, no. 

2, pp. 545- 568., 2007. 

[12] A. C. Ozcan, A. Harmanci And P. F. Smith," Duo Modules," Glasgow Math. J. vol. 48, no. 3 pp. 

533–545, 2006. 

[13] S. H. Mohamad and B. J. Muller, Continuous and Discrete Modules, Cambridge, London. Math. 

Soc. LNS. 174, 1990. 

[14] D. Keskin, "Finite Direct Sums Of (D1) – Modules," Turkish J. Math, vol. 22, no. 1, pp.85-91, 

1998.  

[15] B. H. Abdelkader, "On Lifting Modules," M. S. thesis, Univ.of Baghdad, Baghdad, Iraq, 2001. 

[16] G. V. Wilson, "Modules with the Direct Summand Intersection Property," Comm. Algebra, 

vol.14, no.1, pp.21- 38, 1986. 

[17] B. hamad and A. J. Al-Rikabiy, "S- generalized supplemented modules," Baghdad science 

journal, vol. 7, no. 1, pp. 180-190,2010. 

[18] R.  Wisbauer,  Foundations of Module and Ring Theory, Publishers, Gordon and Breach Science, 

1991. 

 

 


