Received: 10/11/2021 Accepted: 28/1/2022 Published: 30/11/2022

Abstract

In this paper, we introduce the concept of s.p-semisimple module. Let S be a semiradical property, we say that a module M is s.p - semisimple if for every submodule N of M , there exists a direct summand K of M such that $\mathrm{K} \leq \mathrm{N}$ and N / K has S . we prove that a module M is s.p - semisimple module if and only if for every submodule A of M, there exists a direct summand B of M such that $A=B+C$ and C has S. Also, we prove that for a module M is s.p - semisimple if and only if for every submodule A of M, there exists an idempotent $e \in \operatorname{End}(M)$ such that $e(M) \leq A$ and (1-e)(A) has S.

Keywords: Semiradical (radical) property, Semisimple modules, t- semisimple modules.

$$
\begin{gathered}
\text { المقاسات البسيطة نسبة الى خاصية شبه جذرية }
\end{gathered}
$$

الخلاصة

في هذا البحث نقدم مفهوم المقاسات شبه بسيطة نسبة لخاصية شبه جذرية. لنفترض أن S خاصية شبه
جذرية فنحن نتول أن المقاس M هو شبه بسيط نسبة لخاصية شبه جذرية إذا كان لكل مقاس جزئي N من
M
نسبة لخاصية شبه جذرية إذا وفقط إذا كان لكل مقاس جزئي A من M ، ، يوجد جمع مباشر B من M

$$
\text { .S تمتلك (e) (A -1) } \quad \text { A }
$$

1. Introduction

Throughout this paper, all rings are associative with identity and all modules are unitary left R-modules. Let A be a submodule of a module M . A is called an essential submodule of M (denoted by $\mathrm{A} \leq_{\mathrm{e}} \mathrm{M}$) if $\mathrm{A} \cap \mathrm{B} \neq 0, \forall 0 \neq \mathrm{B} \leq \mathrm{M}$. A submodule B of M is called a closed submodule of M if B has no proper essential extension. A module M is called an extending module if every submodule of M is essential in a direct summand. Equivalently, every closed submodule of M is a direct summand, see [1], [2], [3].

[^0]Let M be a module. Recall that the socle of M (denoted by $\operatorname{Soc}(\mathrm{M})$) is the sum of all simple submodules of M , a module M is called a semisimple if $\operatorname{Soc}(\mathrm{M})=\mathrm{M}$. Equivalently a module M is semisimple if and only if every submodule is a direct summand of M , see [1], [4]. Recall that the Jacobson radical of M (denoted by $\mathrm{J}(\mathrm{M})$) is the intersection of all maximal submodules of M. If M has no maximal submodule, we write $J(M)=M$, see [5].

Let $x \in M$. Recall that ann $(x)=\{r \in R$: $r x=0\}$. For a module M, the singular submodule is defined as follows $Z(M)=\left\{x \in M \mid\right.$ ann $\left.x \leq_{e} R\right\}$ or equivalently, $I x=0$ for some essential left ideal I of R. If $Z(M)=M$, then M is called a singular module. If $Z(M)=0$, then M is called a nonsingular module. The second singular (or Goldie torsion) submodule of a module $M\left(\right.$ denoted by $\left.Z_{2}(M)\right)$ is defined by $Z(M / Z(M))=Z_{2}(M) / Z(M)$, see [1],[6].

A submodule A of a module M is called t - essential submodule (denoted by $\mathrm{A} \leq{ }_{\text {tes }} \mathrm{M}$) if for any submodule B of $M, A \cap B \leq Z_{2}(M)$ implies $B \leq Z_{2}(M)$. A module M is called t -semisimple if for every submodule N of M there exists a direct summand K of M such that $\mathrm{K} \leq_{\text {tes }} \mathrm{N}$, see [5]. [7].

A property S is called a radical property if:
1- for every module M, there exists a submodule (denoted by $S(M)$) such that a- $\mathrm{S}(\mathrm{M})$ has S .
b- $\mathrm{A} \leq \mathrm{S}(\mathrm{M})$, for every submodule A of M such that A has S .
2- If $f: M \rightarrow N$ is an epimorphism and M has S, then N has S.
$3-\mathrm{S}(\mathrm{M} / \mathrm{S}(\mathrm{M}))=0$ for every R - module M , see [8].
A property S is called a semiradical property if it satisfies conditions 1 and 2 , see [8].
It's known that each of the following two properties is a radical property, see [8].
$1-\mathrm{S}=\mathrm{Z}_{2}$. For a module $\mathrm{M}, \mathrm{S}(\mathrm{M})=\mathrm{Z}_{2}(\mathrm{M})$, the second singular of M .
$2-\mathrm{S}=\mathrm{Snr}$. For a module $\mathrm{M}, \operatorname{Snr}(\mathrm{M})$ is a submodule of M such that
$a_{1-}-\mathrm{J}(\operatorname{Snr}(\mathrm{M}))=\operatorname{Snr}(\mathrm{M})$ \{i.e. $\operatorname{Snr}(\mathrm{M})$ has no maximal submodule \}.
$b_{2}-A \leq \operatorname{Snr}(M)$, for every submodule A of M such that $J(A)=A$, see [8].
While each of the following two properties is a semiradical property (but it is not radical property), see [8].
$1-S=Z$. For a module $M, S(M)=Z(M)$, the singular submodule of M.
$2-S=\operatorname{Soc}$. For a module $M, S(M)=\operatorname{Soc}(M)=\sum_{A \text { is simple }}^{A \leq M} A$.
Let S be a semiradical property. It is known that
$1-\mathrm{M}$ has S if and only if $\mathrm{S}(\mathrm{M})=\mathrm{M}$.
2- $\mathrm{S}(\mathrm{S}(\mathrm{M}))=\mathrm{S}(\mathrm{M})$.
3- If $M=\bigoplus_{i \in \mathrm{I}} \mathrm{M}_{\mathrm{i}}$, then $\mathrm{S}(\mathrm{M})=\bigoplus_{\mathrm{i} \in \mathrm{I}} \mathrm{S}\left(\mathrm{M}_{\mathrm{i}}\right)$, where I is any index set.
4- if $S(M)=0$, then $S(A)=0, \forall A \leq M$.
5- For any short exact sequence $0 \rightarrow \mathrm{M} \rightarrow \mathrm{N} \rightarrow \mathrm{K} \rightarrow 0$, if $\mathrm{S}(\mathrm{M})=0$ and $\mathrm{S}(\mathrm{K})=0$, then $\mathrm{S}(\mathrm{N})=0$, see [8].

In this paper, S is a semiradical property, unless otherwise stated.

2- s.p - semisimple modules

In this section, we introduce the concept of s.p-semisimple modules and give the basic properties of this module. Also, we illustrate it with some examples.

Definition2.1. Let S be a semiradical property. We say that a module M is s.p-smisimple module if for each submodule N of M , there exists a direct summand K of M such that $\mathrm{K} \leq \mathrm{N}$ and N / K has S .

Remarks and Examples2.2.

1 - Every semisimple module is s.p - semisimple. The converse is not true in general.
Proof. Let N be a submodule of a semisimple module M , then N is a direct summand of M , by [4]. Let $K=N$, hence $S(N / K)=S(N / N)=S(0)=0 \cong N / K$. Thus M is s.p - semisimple. For example Z_{6} as Z_{6} - module is s.p - semisimple module.

For the converse, Let $S=$ Second singularity. Consider module Z_{4} as Z - module. Since Z_{4} is singular, then every submodules of Z_{4} is singular, by [1]. Therefore, $Z_{2}(N)=Z(N)=N, \forall N$ $\leq Z_{4}$. Let $K=0$, hence $Z_{2}(N / 0) \cong Z_{2}(N)=Z(N)=N \cong N / 0$. So $N / 0$ has $S, \forall N \leq Z_{4}$. Thus Z_{4} is s.p - semisimple. Cleary that Z_{4} is not semisimple.

Recall that a semiradical property S is called hereditary if S is closed under submodules, see [8].
2- Let S be a hereditary property and M be a module. If M has S, then M is s.p-semisimple.
Proof. Let N be a submodule of M and $S(M)=M$. Since S is hereditary, then $S(N)=N$. Let $K=0$, then $S(N / 0) \cong S(N)=N \cong N / 0$. Thus M is s.p - semisimple.

3- Let $\mathrm{S}=$ singularity. Consider module Q as Z -module. Clearly, that Q is nonsingular. Hence, $Z(Q)=0$. Let $N=3 Z$. Since Q is indecomposable, then 0 is the only direct summand contained in $3 Z$. $S o S(3 Z / 0) \cong S(3 Z)=Z(3 Z)=0$. Thus Q is not s.p - semisimple module.

Proposition2.3. Every submodule of s.p - semisimple module M is s.p - semisimple, For every property S .
Proof. Let N be a submodule of M and $\mathrm{A} \leq \mathrm{N}$. Since M is s.p-semisimple, then there exists a direct summand K of M such that $K \leq A$ and A / K has S. By modular law, K is a direct summand of N . Thus N is s.p-semisimple.

Proposition2.4. Let M be an indecomposable module and S be an assumed. Then M is s.p semisimple if and only if every proper submodule of M has S .
Proof. \Rightarrow) Let N be a proper submodule of M . Since M is s.p-semisimple, then there exists a direct summand K of M such that $K \leq N$ and N / K has S. But M is an indecomposable. Therefore, $K=0$. Hence $S(N) \cong S(N / 0)=S(N / K)=N / K=N / 0 \cong N$. Thus N has S.
$\Leftarrow)$ Clear.
Let S be a semiradical property. Recall that S is called a cohereditary property, if $S(M)=0$ is closed under homomorphic images of M for every module M , see [8].

Proposition2.5. Let S be a cohereditary property and let M be a module. If $S(M)=0$. Then M is semisimple if and only if M is s.p - semisimple.

Proof. \Rightarrow) Clear.
$\Leftrightarrow)$ Let N be a submodule of M . Since M is s.p - semisimple, then there exists a direct summand K of M such that $K \leq N$ and N / K has S. But $S(M)=0$, therefore $S(N)=0$, by [8]. Since S is cohereditary property, then $S(N / K)=0$. Hence $N=K$ is a direct summand of M. Thus M is semisimple.

Remark2.6. Let S be a hereditary property and M be a module. If $\mathrm{S}(\mathrm{M})=\mathrm{M}$, then M / N is s.p - semisimple module, for each submodule N of M .

Proof. Let N be a submodule of M and $\mathrm{S}(\mathrm{M})=\mathrm{M}$, then M / N has S , by [8]. Thus by. 2.2-2, M / N is s.p-semisimple module.

Proposition2.7. Let M be s.p - semisimple module. Then every submodule N of M such that $S(N)=0$ is a direct summand of M. The converse is true if $S(M)=0$.

Proof. Assume that N is a submodule of M such that $\mathrm{S}(\mathrm{N})=0$. Then there exists a direct summand K of M such that $\mathrm{K} \leq \mathrm{N}$ and N / K has S . Let $\mathrm{M}=\mathrm{K} \oplus \mathrm{K}_{1}$, for some submodule K_{1} of M. By modular law, $N=K \oplus\left(N \cap K_{1}\right)$. Since $N \cap K_{1} \leq N$ and $S(N)=0$, then $S\left(N \cap K_{1}\right)=0$, by [8]. Since $N / K=\left(K \oplus\left(N \cap K_{1}\right)\right) / K \cong\left(N \cap K_{1}\right) / 0 \cong N \cap K_{1}$, by the second isomorphism theorem, then $\mathrm{S}(\mathrm{N} / \mathrm{K})=0$. But $\mathrm{S}(\mathrm{N} / \mathrm{K})=\mathrm{N} / \mathrm{K}$, therefore $\mathrm{N} / \mathrm{K}=0$. Thus $\mathrm{N}=\mathrm{K}$ is a direct summand of M .

Conversely, let $S(M)=0$ and N be a submodule of M. Then $S(N)=0$, by [8]. By our assumption N , is a direct summand of M . Therefore M is semisimple. Thus by $2.2-1, \mathrm{M}$ is s.p - semisimple module.

Proposition 2.8. Let $\mathrm{M}=\mathrm{A}+\mathrm{S}(\mathrm{M})$ be s.p - semisimple module. Then there exists a direct summand B of M such that $\mathrm{B} \leq \mathrm{A}, \mathrm{M}=\mathrm{B}+\mathrm{S}(\mathrm{M})$ and A / B has S .

Proof. Assume that M is s.p - semisimple module. Then there exists a direct summand B of M such that $\mathrm{B} \leq \mathrm{A}$ and A / B has S . Let $\mathrm{M}=\mathrm{B} \oplus \mathrm{C}$, for some submodule C of M . Then $\mathrm{A}=\mathrm{B} \oplus(\mathrm{C} \cap \mathrm{A})$, by modular law. But $\mathrm{A} / \mathrm{B} \cong(\mathrm{C} \cap \mathrm{A})$, by the second isomorphism theorem, therefore $(C \cap A)$ has S. Since $(C \cap A)$ has S, then $(C \cap A) \leq S(M)$. Thus $M=A+S(M)=B+(C \cap A)+S(M)$ and hence $M=B+S(M)$.

Proposition2.9. Let S be a hereditary property and $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ be a module such that M_{1} has S and M_{2} is semisimple. Then M is s.p-semisimple module.

Proof. Let N be a submodule of M . Since M_{2} is semisimple, then $\mathrm{N} \cap \mathrm{M}_{2}$ is a direct summand of M_{2}. But, M_{2} is a direct summand of M , therefore $\mathrm{N} \cap \mathrm{M}_{2}$ is a direct summand of M . By the second isomorphism theorem, $M / M_{2}=\left(M_{1} \oplus M_{2}\right) / M_{2} \cong M_{1}$. Since M_{1} has S, then M / M_{2} has S. But $N /\left(N \cap M_{2}\right) \cong\left(N+M_{2}\right) / M_{2} \leq M / M_{2}$ and S hereditary property. So $N /(N \cap$ M_{2}) has S . Thus M is s.p - semisimple module.

Corollary 2.10. Let S be a hereditary property and M be a module. If $M=S(M) \oplus M_{1}$, where M_{1} is a semisimple module, then M is s.p - semisimple module.

Proof. Clear.

Proposition 2.11. Let $M=M_{1} \oplus M_{2}$ be a module such that $R=\operatorname{Ann}\left(M_{1}\right)+\operatorname{Ann}\left(M_{2}\right)$. If M_{1} and M_{2} are s.p - semisimple modules, then M is s.p - semisimple module.

Proof. Let N be a submodule of $M=M_{1} \oplus M_{2}$. Since $R=A n n\left(M_{1}\right)+A n n\left(M_{2}\right)$, then by the same argument of the proof [9, prop.4.2, CH.1], $\mathrm{N}=\mathrm{N}_{1} \oplus \mathrm{~N}_{2}$, where $\mathrm{N}_{1} \leq \mathrm{M}_{1}$ and $\mathrm{N}_{2} \leq \mathrm{M}_{2}$. Since M_{i} is s.p - semisimple for $i=1,2$, then there exist direct summands K_{i} of M_{i} such that K_{i} is a submodule of N_{i} and N_{i} / K_{i} has $S(i=1,2)$. Let $M_{i}=K_{i} \oplus L_{i}$, for some submodule L_{i} of M_{i}. Therefore $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}=\left(\mathrm{K}_{1} \oplus \mathrm{~L}_{1}\right) \oplus\left(\mathrm{K}_{2} \oplus \mathrm{~L}_{2}\right)=\left(\mathrm{K}_{1} \oplus \mathrm{~K}_{2}\right) \oplus\left(\mathrm{L}_{1} \oplus \mathrm{~L}_{2}\right)$. Hence $\left(K_{1} \oplus K_{2}\right)$ is a direct summand of M and $\left(K_{1} \oplus K_{2}\right) \leq N_{1} \oplus N_{2}=N$. Now since N_{i} / K_{i} has S ($\mathrm{i}=1,2$), then by [8], $\left(\mathrm{N}_{1} / \mathrm{K}_{1}\right) \oplus\left(\mathrm{N}_{2} / \mathrm{K}_{2}\right)$ has S. But $\left(\mathrm{N}_{1} / \mathrm{K}_{1}\right) \oplus\left(\mathrm{N}_{2} / \mathrm{K}_{2}\right) \cong$ $\left(\left(N_{1} \oplus N_{2}\right) /\left(K_{1} \oplus K_{2}\right)\right)$, by [10, p. 33], hence $\left(N_{1} \oplus N_{2}\right) /\left(K_{1} \oplus K_{2}\right)=N /\left(K_{1} \oplus K_{2}\right)$ has S. Thus M is s.p-semisimple module.

Let M be an R - module. Recall that M is called a duo-module if every submodule of M is fully invariant, see [11].

Proposition 2.12. Let $\mathrm{M}=\bigoplus_{\mathrm{i}} \in_{\mathrm{I}} \mathrm{M}_{\mathrm{i}}$ be a duo module. Then M is s.p - semisimple modules if and only if M_{i} is s.p-semisimple module $\forall \mathrm{i} \in \mathrm{I}$.

Proof. Since M is s.p - semisimple, then by prop.2.3, M_{i} is s.p-semisimple, $\forall \mathrm{i} \in \mathrm{I}$.
Conversely, let $\mathrm{M}=\bigoplus_{\mathrm{i} \in \mathrm{I}} \mathrm{M}_{\mathrm{i}}$ be a module such that M_{i} is s.p-semisimple, $\forall \mathrm{i} \in \mathrm{I}$. Let $\mathrm{N} \leq \mathrm{M}$, then $\mathrm{N}=\mathrm{N} \cap \mathrm{M}=\mathrm{N} \cap\left(\oplus_{\mathrm{i} \in \mathrm{I}} \mathrm{M}_{\mathrm{i}}\right)=\bigoplus_{\mathrm{i} \in \mathrm{I}}\left(\mathrm{N} \cap \mathrm{M}_{\mathrm{i}}\right)$, by [12,lem.2.1]. Let $\mathrm{N}_{\mathrm{i}}=\mathrm{N} \cap \mathrm{M}_{\mathrm{i}}$, $\forall i \in I$, then $N_{i} \leq M_{i} \forall i \in I$. Since M_{i} is s.p - semisimple, then there exists K_{i} is a direct summand of M_{i} such that K_{i} is a submodule of N_{i} and N_{i} / K_{i} has $S \forall i \in I$. Hence $\left(\left(\oplus_{i} \in I N_{i}\right)\right.$ / $\left.\left(\oplus_{i \in I} K_{i}\right)\right) \cong \bigoplus_{i \in I}\left(N_{i} / K_{i}\right)$ has S, by [10]. Thus $M=\bigoplus_{i \in I} M_{i}$ is s.p-semisimple.

Let M_{1} and M_{2} be R - modules. M_{1} is called $\mathrm{M}_{2^{-}}$projective if for every submodule N of M_{2} and any homomorphism $f: \mathrm{M}_{1} \rightarrow \mathrm{M}_{2} / \mathrm{N}$, there is a homomorphism $\mathrm{g}: \mathrm{M}_{1} \rightarrow \mathrm{M}_{2}$ such that $\pi o g=f$. where $\pi: \mathrm{M}_{2} \rightarrow \mathrm{M}_{2} / \mathrm{N}$ is the natural epimorphism, see [13].
M_{1}

M_{1} and M_{2} are called relatively projective if M_{1} is M_{2} - projective and M_{2} is M_{1-} projective.
We know that for a module $\mathrm{M}=\mathrm{A} \oplus \mathrm{B}$. A is B -projective if and only if for every submodule C of M such that $\mathrm{M}=\mathrm{B}+\mathrm{C}$, there exists a submodule D of C such that $M=B \oplus D$, see [14].

Proposition2.13. Let S be a hereditary property. Let M_{1} and M_{2} be s.p-semisimple modules such that M_{1} and M_{2} are relative projective. Then $M=M_{1} \oplus M_{2}$ is s.p - semisimple.

Proof. Let N be a submodule of M. Since $\left(N+M_{2}\right) \cap M_{1} \leq M_{1}$ and M_{1} is s.p - semisimple, then there exists a direct summand A_{1} of M such that $A_{1} \leq\left(N+M_{2}\right) \cap M_{1}$ and $\left(\left(N+M_{2}\right) \cap M_{1}\right) / A_{1}$ has S. Let $M_{1}=A_{1} \oplus B_{1}$, for some submodule B_{1} of M_{1}. Hence $\left(N+M_{2}\right) \cap M_{1}=A_{1} \oplus\left(\left(N+M_{2}\right) \cap M_{1}\right) \cap B_{1}$, by modular law. Since by the second isomorphism theorem, $\left.\left(\left(N+M_{2}\right) \cap M_{1}\right) / A_{1} \cong\left(N+M_{2}\right) \cap M_{1} \cap B_{1}\right)$, then $\left(N+M_{2}\right) \cap B_{1}$ has S, by [8]. Therefore $M=M_{1} \oplus M_{2}=A_{1} \oplus B_{1} \oplus M_{2}=\left(N+M_{2}\right) \cap M_{1}+B_{1}+M_{2}=$ $N+M_{2}+B_{1}+M_{2}=N+\left(M_{2} \oplus B_{1}\right)$. Since $\left(N+B_{1}\right) \cap M_{2} \leq M_{2}$ and M_{2} is s.p - semisimple, then there exists a direct summand A_{2} of M_{2} such that $A_{2} \leq\left(N+B_{1}\right) \cap M_{2}$ and $\left(\left(N+B_{1}\right) \cap M_{2}\right) / A_{2}$ has S. Let $M_{2}=A_{2} \oplus B_{2}$, for some submodule B_{2} of M_{2} then $\left(N+B_{1}\right) \cap M_{2}=A_{2} \oplus\left(\left(N+B_{1}\right) \cap M_{2}\right) \cap B_{2}$, by modular law. By the second isomorphism theorem, $\left(\left(N+B_{1}\right) \cap M_{2}\right) / A_{2} \cong\left(\left(N+B_{1}\right) \cap M_{2}\right) \cap B_{2}$, then $\left(N+B_{1}\right) \cap M_{2} \cap B_{2}=$ $\left(N+B_{1}\right) \cap B_{2}$ has S, by [8]. Thus $M=N+\left(M_{2} \oplus B_{1}\right)=N+A_{2}+B_{2}+B_{1}=N+\left(B_{1} \oplus B_{2}\right)$. Since $M=\left(A_{1} \oplus A_{2}\right) \oplus\left(B_{1} \oplus B_{2}\right)$ and M_{1} and M_{2} are relative projective, then A_{1} is B_{j} - projective and A_{2} is B_{j} - projective for $j=1,2$, by [9, prop. 2.1.6]. So by [15, prop.2.1.7], A_{1} is $B_{1} \oplus B_{2}$-projective and A_{2} is $B_{1} \oplus B_{2}$ - projective. Hence $A_{1} \oplus A_{2}$ is $\mathrm{B}_{1} \oplus \mathrm{~B}_{2}$-projective, by [15, prop.2.1.6]. Hence, there exists $\mathrm{X} \leq \mathrm{N}$ such that $\mathrm{M}=\mathrm{X} \oplus \mathrm{B}_{1} \oplus$ B_{2}, by [14, lem. 5].
Now, we want to show that $N \cap\left(B_{1} \oplus B_{2}\right)$ has S. Since $\left(N+M_{2}\right) \cap B_{1}=\left(\left(N+\left(A_{2} \oplus B_{2}\right)\right) \cap B_{1}\right.$ has S and $\left(N+B_{2}\right) \cap B_{1} \leq\left(\left(N+\left(A_{2} \oplus B_{2}\right)\right) \cap B_{1}\right.$, then $\left(N \oplus B_{2}\right) \cap B_{1}$ has S. Since $\left(N+B_{1}\right) \cap B_{2}$ has S, then $\left(N \oplus B_{2}\right) \cap B_{1} \oplus\left(N \oplus B_{1}\right) \cap B_{2}$ has S, by [8]. But by [15,lem.3.2], $N \cap\left(B_{1} \oplus B_{2}\right) \leq\left(N \oplus B_{2}\right) \cap B_{1} \oplus\left(N \oplus B_{1}\right) \cap B_{2}$. Therefore, $N \cap\left(B_{1} \oplus B_{2}\right)$ has S. Thus M is s.p - semisimple module.

Let M be an R-module. M is said to have the summand intersection property (briefly SIP) if the intersection of any two direct summands of M is a direct summand of M , see [16].

Proposition 2.14. Let M be s.p - semisimple module. If for any two direct summand A and B of $M, S(A \cap B)=0$, then M has SIP.

Proof. Let A and B be direct summands of M. Since M is s.p - semisimple, then there exists a direct summand N of M such that $N \leq A \cap B$ and $(A \cap B) / N$ has S. Let $M=N \oplus N_{1}$, for some submodule N_{1} of M, then $A \cap B=N \oplus\left(N_{1} \cap(A \cap B)\right)$. Hence by the second isomorphism theorem, $(A \cap B) / N=\left[N \oplus\left(N_{1} \cap(A \cap B)\right)\right] / N \cong N_{1} \cap(A \cap B) \leq A \cap B$. Since $S(A \cap B)=0$, then $S\left(N_{1} \cap(A \cap B)\right)=0$, by [8]. So $S((A \cap B) / N)=0$. But $(A \cap B) / N$ has S, therefore $A \cap B=N$. Hence $A \cap B$ is a direct summand of M. Thus M has SIP.

Let R be an integral domain. Recall that an R - module M is called a torsion free module if ann $(x)=0$, for all $0 \neq x \in M$, see [1].

Theorem 2.15. Let R be an integral domain and M be a torsion free module and $\mathrm{s} . \mathrm{p}$ - semisimple module. Then for every $\mathrm{m} \in \mathrm{M}$, either Rm is a direct summand of M or Rm has S.

Proof. Let $0 \neq \mathrm{m} \in \mathrm{M}$. Then there exists a direct summand K of M such that $\mathrm{K} \leq \mathrm{Rm}$ and $R m / K$ has S. Let $M=K \oplus H$, for some submodule H of M. Then $R m=K \oplus(R m \cap H)$, by modular law. But $\mathrm{Rm} / \mathrm{K} \cong \mathrm{Rm} \cap \mathrm{H}$, by the second isomorphism theorem. Therefore $\mathrm{Rm} \cap$ H has S .
Let $: \mathrm{R} \rightarrow \mathrm{Rm}$ be a map defined by $f(\mathrm{r})=\mathrm{rm}$, for each $\mathrm{r} \in$ R.It is easy to see that f is an epimorphism and $\operatorname{Ker}(f)=$ ann (m). By the first isomorphism theorem, $\mathrm{R} /$ ann $(\mathrm{m}) \cong \mathrm{Rm}$. Since M is torsion free module, then $\operatorname{ann}(\mathrm{m})=0$. Thus $\mathrm{R} \cong \mathrm{Rm}$. But R is indecomposable.

Therefore, Rm is indecomposable. Implies that either $\mathrm{Rm}=\mathrm{K}$ or $\mathrm{Rm}=\mathrm{Rm} \cap \mathrm{H}$. Thus either Rm is a direct summand of M or Rm has S .

Proposition2.16. Let R be an indecomposable ring and M be a projective module. If M is s.p - semisimple module, then for every $m \in M$, either $R m$ is a direct summand of M or $R m$ has S .

Proof. Assume that M is a projective and s.p - semisimple module and let $\mathrm{m} \in \mathrm{M}$. Then there exists a direct summand K of M such that $K \leq R m$ and $R m / K$ has S. Let $M=K \oplus H$ for some submodule H of M , then $\mathrm{Rm}=\mathrm{K} \oplus(\mathrm{H} \cap \mathrm{Rm})$, by modular law. But $\mathrm{Rm} / \mathrm{K} \cong \mathrm{H} \cap \mathrm{Rm}$, by the second isomorphism theorem. Therefore, $\mathrm{H} \cap \mathrm{Rm}$ has S .

Now, let $f: \mathrm{R} \rightarrow \mathrm{Rm}$ be a map defined by $f(\mathrm{r})=\mathrm{rm}$, for all $\mathrm{r} \in \mathrm{R}$. It is clear that f is an epimorphism map. Let $\mathrm{P}: \mathrm{Rm} \rightarrow \mathrm{K}$ be the projection map. Clearly, Pof: $\mathrm{R} \rightarrow \mathrm{K}$ is an epimorphism. Since M is projective, then K is projective by [4]. Therefore, Ker (Pof) is a direct summand of R . Since R is indecomposable, then either $\operatorname{Ker} \operatorname{Pof}=0$ or $\operatorname{Ker} \operatorname{Pof}=\mathrm{R}$. $\operatorname{Ker}(\operatorname{Pof})=f^{-1}(\mathrm{Rm} \cap \mathrm{H})=f^{-1}(\mathrm{Rm} \cap \mathrm{H})$. So either $\mathrm{Rm} \cap \mathrm{H}=0$ or $\mathrm{Rm} \cap \mathrm{H}=\mathrm{R}$. Thus $\mathrm{Rm}=\mathrm{K}$ or $\mathrm{Rm} \cap \mathrm{H}=\mathrm{Rm}$ has S .

3- Characterization of s.p-semisimple Modules

In this section, we give various characterizations of s.p-semisimple modules.
We start with the following theorem.
Theorem 3.1. Let M be a module. Then the following statements are equivalent
$1-\mathrm{M}$ is s.p-semisimple module.
2- For every submodule A of M , there exists a decomposition $\mathrm{M}=\mathrm{B} \oplus \mathrm{C}$ such that $\mathrm{B} \leq \mathrm{A}$ and $\mathrm{A} \cap \mathrm{C}$ has S .
3- For every submodule A of $M, A=A_{1} \oplus A_{2}$, where A_{1} is a direct summand of M and A_{2} has S.

Proof. $1 \Rightarrow 2$) Let A be a submodule of M. Since M is s.p - semisimple, then there exists a direct summand B of M such that $B \leq A$ and A / B has S. Let $M=B \oplus C$, where C is a submodule of M . Then $\mathrm{A}=\mathrm{B} \oplus(\mathrm{C} \cap \mathrm{A})$, by modular law. By the second isomorphism theorem, $\mathrm{A} / \mathrm{B} \cong(\mathrm{C} \cap \mathrm{A})$. Thus $\mathrm{A} / \mathrm{B} \cong \mathrm{C} \cap \mathrm{A}$.
$2 \Rightarrow 3$) Let A be a submodule of M. By (2), there exists a decomposition $M=B \oplus C$ such that $\mathrm{B} \leq \mathrm{A}$ and $\mathrm{A} \cap \mathrm{C}$ has S . By modular law, $\mathrm{A}=\mathrm{B} \oplus(\mathrm{C} \cap \mathrm{A})$. Let $\mathrm{A}_{2}=\mathrm{A} \cap \mathrm{C}$ has S .
$3 \Rightarrow 1)$ Let A be a submodule of M. $B y(3), A=A_{1} \oplus A_{2}$, where A_{1} is direct summand of M and A_{2} has S. By the second isomorphism theorem, $A / A_{1} \cong A_{2}$. So A / A has S. Thus M is s.p - semisimple.

Proposition 3.2. A module M is s.p - semisimple if and only if for every submodule A of M there exists a direct summand B of M such that $\mathrm{A}=\mathrm{B}+\mathrm{C}$, where C is a submodule of M has S.

Proof. \Rightarrow) It is clear by Theorem3.1.
$\Leftrightarrow)$ Let A be a submodule of M . By our assumption, there exists a direct summand B of M such that $A=B+C$ and C has S. Let $M=B \oplus D$, for some submodule D of M, then $A=B \oplus(A \cap D)$, by modular law. Hence, $(A / B)=(B+C) / B \cong C /(B \cap C)$, by the second isomorphism theorem. But C has S, then $C /(B \cap C)$ has S. This implies that A / B has S . Thus M is s.p - semisimple.

Proposition3.3. A module M is s.p - semisimple if and only if for each submodule A of M, there exists an idempotent $\mathrm{e} \in \operatorname{End}(\mathrm{M})$ such that $\mathrm{e}(\mathrm{M}) \leq \mathrm{A}$ and (1-e)(A) has S.

Proof. \Rightarrow) Let A be a submodule of M. Since M is s.p - semisimple, then there exists a decomposition $\mathrm{M}=\mathrm{B} \oplus \mathrm{C}$ such that $\mathrm{B} \leq \mathrm{A}$ and $\mathrm{A} \cap \mathrm{C}$ has S , by th.3.1, 1-2. Let e : $\mathrm{M} \rightarrow \mathrm{B}$ be the projection map. Clearly that $\mathrm{e}^{2}=\mathrm{e}$ and $\mathrm{C}=(1-\mathrm{e})(\mathrm{M})$. Claim that $(1-e)(A)=(1-e) M) \cap A$. To show that, let $m \in(1-e)(A)$, then there is a $\in A$ such that $\mathrm{m}=(1-\mathrm{e})(\mathrm{a})=\mathrm{a}-\mathrm{e}(\mathrm{a})$. Therefore $\mathrm{m} \in \mathrm{A}$ and hence $\mathrm{m} \in(1-\mathrm{e})(\mathrm{M}) \cap \mathrm{A}$. Thus (1-e) (A) $\leq(1-e)(M) \cap A$. Now, let $n \in(1-e)(M) \cap A$, then $n \in(1-e)(M)$ and $n \in A$. Hence, there is $k \in M$ such that $n=(1-e)(k)=k-e(k)$. So $n+e(k)=k \in A$. then $n \in(1-e)$ (A). Thus $\mathrm{A} \cap \mathrm{C}=\mathrm{A} \cap(1-\mathrm{e})(\mathrm{M})=(1-\mathrm{e})(\mathrm{A})$. Thus ($1-\mathrm{e}$) A has S .
$\Leftrightarrow)$ Let A be a submodule of M and $\mathrm{e} \in \operatorname{End}(\mathrm{M})$ be an idempotent such that $\mathrm{e}(\mathrm{M}) \leq \mathrm{A}$ and (1-e)A has S. Claim that $M=e(M) \oplus(1-e)(M)$. To show that, let $x \in M$, then $x=x+e(x)-e(x)$ $=e(x)+x-e(x)=e(x)+(1-e)(x)$. Thus $M=e(M)+(1-e)(M)$.
Now, let $y \in e(M) \cap(1-e)(M)$, then $y=e\left(m_{1}\right)$ and $y=(1-e)\left(m_{2}\right)$, for some $m_{1}, m_{2} \in M$. So $\mathrm{y}=\mathrm{e}(\mathrm{m})=\mathrm{e}\left(\mathrm{e}\left(\mathrm{m}_{1}\right)\right)=\mathrm{e}\left((1-\mathrm{e})\left(\mathrm{m}_{2}\right)\right)=\mathrm{e}\left(\mathrm{m}_{2}\right)-\mathrm{e}\left(\mathrm{m}_{2}\right)=0$, then $\mathrm{y}=\mathrm{e}\left(\mathrm{m}_{1}\right)=0$. Thus $\mathrm{M}=\mathrm{e}(\mathrm{M}) \oplus(1-\mathrm{e})(\mathrm{M})$. Let $\mathrm{B}=\mathrm{e}(\mathrm{M}) \leq \mathrm{A}$ and $\mathrm{C}=(1-\mathrm{e})(\mathrm{M})$. Therefore $\mathrm{M}=\mathrm{B} \oplus \mathrm{C}$ and $\mathrm{A} \cap \mathrm{C}=\mathrm{A} \cap(1-\mathrm{e}) \mathrm{M}=(1-\mathrm{e}) \mathrm{A}$ has S . Thus M is s.p - semisimple, by Theorem 3.1.

Let M be a module and N be a submodule of M . Recall that a submodule K of M is called an S-generalized supplement of N in M, if $M=N+K$ and $N \cap K \leq S(K)$, see [17].

Let M be a module. Recall that M is called an S -generalized supplemented module (or briefly S-GS module), if every submodule of M has S-generalized supplement in M, where S is semiradical property on modules, see [17].

Proposition3.4. Every s.p - semisimple module M is S-GS supplemented module.
Proof. Let M is s.p - semisimple module and N be a submodule of M , then there exists a direct summand K of M such that $K \leq N$ and N / K has S. Hence, $M=K \oplus K_{1}$, for some submodule K_{1} of M . But $\mathrm{K} \leq \mathrm{N}$, therefore $\mathrm{M}=\mathrm{N}+\mathrm{K}_{1}$. So by modular law, $\mathrm{N}=\mathrm{K} \oplus\left(\mathrm{N} \cap \mathrm{K}_{1}\right)$, then by the second isomorphism theorem, $\mathrm{N} / \mathrm{K} \cong \mathrm{N} \cap \mathrm{K}_{1}$ has S . Thus $\mathrm{N} \cap \mathrm{K}_{1} \leq \mathrm{S}(\mathrm{K})$ by [8].

Proposition3.5. Let M be $\mathrm{s} . \mathrm{p}$-semisimple module. If $\mathrm{M}=\mathrm{N}+\mathrm{K}$, where N is a direct summand of M , then N contains an S -generalized supplement submodule of K in M .

Proof. Since M is an s.p - semisimple, then by Theorem 3.1.1-3, $\mathrm{N} \cap \mathrm{K}=\mathrm{A} \oplus \mathrm{B}$, where A is a direct summand of M and B has S . Let $\mathrm{M}=\mathrm{A} \oplus \mathrm{C}$, for some submodule C of M . Hence, $\mathrm{N}=\mathrm{A} \oplus(\mathrm{N} \cap \mathrm{C})$, by modular law. Let $\mathrm{A}_{1}=\mathrm{N} \cap \mathrm{C}$, then $\mathrm{M}=\mathrm{N}+\mathrm{K}=\left(\mathrm{A}+\mathrm{A}_{1}\right)+\mathrm{K}$. But $\mathrm{A} \leq \mathrm{K}$. Therefore, $M=K+A_{1}$. Now we want to show $K \cap A_{1} \leq S\left(A_{1}\right)$. Since $N \cap K=\left(A \oplus A_{1}\right) \cap$ $\mathrm{K}=\mathrm{A} \oplus\left(\mathrm{K}_{\mathrm{A}} \mathrm{A}_{1}\right)$, by modular law. Let $: \mathrm{N}=\mathrm{A} \oplus \mathrm{A}_{1} \rightarrow \mathrm{~A}_{1}$ be the projection map. So we have $\mathrm{K} \cap \mathrm{A}_{1}=\left(\mathrm{A} \oplus\left(\mathrm{K} \cap \mathrm{A}_{1}\right)=(\mathrm{N} \cap \mathrm{K})=(\mathrm{A} \oplus \mathrm{B})=(\mathrm{B})\right.$. But B has S . Therefore, $\quad \mathrm{K} \cap$ A_{1} has S, by [8]. Hence, $K \cap A_{1} \leq S\left(A_{1}\right)$. Thus A_{1} is an S-generalized supplement submodule of K in M and A_{1} is contained in N .

Proposition3.6. Let S be a hereditary property and M be a module. Then the following statements are equivalent
$1-\mathrm{M}$ is s.p - semisimple module.
2- Every submodule N of M has S-generalized supplement K in M such that $N \cap K$ is a direct summand of N .

Proof. $1 \Rightarrow 2$) Let N be a submodule of M . Then by the same argument of proof of Proposition 3.4. N has an S -generalized supplement.
$2 \Rightarrow 1$) Let N be a submodule of M . Then by our assumption N has an S -generalized supplement K in M such that $N \cap K$ is a direct summand of N. Hence $M=N+K$ and $N \cap K \leq$ $S(K)$. Let $N=(N \cap K) \oplus L$, for some submodule L of N. Then $M=(N \cap K)+L+K=L+K$. But, $\mathrm{L} \cap \mathrm{K}=\mathrm{N} \cap \mathrm{K} \cap \mathrm{L}=0$. Therefore, $\mathrm{M}=\mathrm{L} \oplus \mathrm{K}$. By the second isomorphism theorem, $N / L \cong N \cap K$. Since $N \cap K \leq S(K)$ and S is hereditary property, then $N \cap K$ has S by [8] and hence N / L has S . Thus M is s.p-semisimple.

Proposition3.7. Let M be a module. If M is $\mathrm{S}-\mathrm{GS}$ supplemented module, then $\mathrm{M} / \mathrm{S}(\mathrm{M})$ is a semisimple module.

Proof. Let N / S(M) be a submodule of M / S(M). Since M is S-GS supplemented, then there exists a submodule K of M such that $\mathrm{M}=\mathrm{N}+\mathrm{K}$ and $\mathrm{N} \cap \mathrm{K} \leq \mathrm{S}(\mathrm{K})$. Then $M / S(M)=(N+K) / S(M)=N / S(M))+(K+S(M)) / S(M))$. Since $(N / S(M)) \cap((K+S(M)) / S(M))$ $=[(N \cap K)+S(M)] / S(M))$, by modular law and $N \cap K \leq S(K) \leq S(M)$, by [17]. Then $(N \cap K)+S(M)=S(M)$. Therefore $M / S(M)=(N / S(M)) \oplus((K+S(M) / S(M))$. Thus $\mathrm{M} / \mathrm{S}(\mathrm{M})$ is semisimple.

Corollary3.8. Let M be a module. If M is $S-G S$ supplemented module, then $M / S(M)$ is s.p - semisimple module.

Proof. It is clear by Proposition. 3.7 and 2.2-1.
Proposition3.9. Let M be s.p-semisimple module. Then every submodule N of M has an S -generalized supplement which is a direct summand of M .

Proof. Let N be a submodule of M , then there exists a decomposition $\mathrm{M}=\mathrm{A} \oplus \mathrm{B}$ such that $\mathrm{A} \leq \mathrm{N}$ and $\mathrm{N} \cap \mathrm{B}$ has S , by Theorem 3.1, 1-2. Clearly $\mathrm{M}=\mathrm{N}+\mathrm{B}$ and $\mathrm{N} \cap \mathrm{B} \leq \mathrm{S}(\mathrm{B})$. Thus B is an S -generalized supplement of N which is a direct summand of M .

Let M be an R-module. Recall that M is called π-projective (or co-continuous) if for every two submodules U, V of M with $\mathrm{U}+\mathrm{V}=\mathrm{M}$ there exists $f \in \operatorname{End}(\mathrm{M})$ with $\operatorname{Im}(f) \leq \mathrm{U}$ and $\operatorname{Im}(1-f) \leq V$, see [18].

Proposition3.10. Let S be a hereditary property and a module M be a π-projective module. Then M is s.p - semisimple if and only if M is S-GS module.

Proof. \Rightarrow) It is clear by Proposition 3.4.
$\Leftrightarrow)$ Let N be a submodule of M . Since M is S-GS module, then there exists a submodule K of M such that $M=N+K$ and $N \cap K \leq S(K)$. Since M is π - projective, then there exists an idempotent $e \in$ End (M) such that $\operatorname{Im}(e) \leq N$ and $\operatorname{Im}(1-e) \leq K$. But by the same proof of Proposition 3.3 we have $\mathrm{N}(1-\mathrm{e})=\mathrm{N} \cap(1-\mathrm{e}) \mathrm{M} \leq \mathrm{N} \cap \mathrm{K} \leq \mathrm{S}(\mathrm{K})$ and S is hereditary property, therefore $\mathrm{N}(1-\mathrm{e})$ has S . Thus by Proposition 3.3 M is $\mathrm{s} . \mathrm{p}$ - semisimple.

Conclusion

In this work, the concept of s.p-semisimple module is introduced and studied. We also conclude the following:

1. Every semisimple module is s.p - semisimple. However, the converse is not true. Let $\mathrm{S}=$ Second singularity. Consider module Z_{4} as Z - module. Since Z_{4} is singular, then every submodules of Z_{4} is singular, by [1]. Therefore, $Z_{2}(N)=Z(N)=N, \forall N \leq Z_{4}$. let $K=0$, hence $Z 2(N / 0) \cong Z_{2}(N)=Z(N)=N \cong N / 0$. So $N / 0$ has $S, \forall N \leq Z_{4}$. Thus Z_{4} is s.p semisimple. Clearly, that Z_{4} is not semisimple.
2. Let $\mathrm{M}=\bigoplus_{\mathrm{i} \in \mathrm{I}} \mathrm{M}_{\mathrm{i}}$ be a duo module. Then M is s.p-semisimple modules if and only if M_{i} is s.p - semisimple module $\forall \mathrm{i} \in \mathrm{I}$.
3. Let S be a hereditary property. If M_{1} and M_{2} are s.p - semisimple modules such that M_{1} and M_{2} are relative projective. Then $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ is s.p - semisimple.
4. Every s.p - semisimple module M is S-GS supplemented module.
5. Let S be a hereditary property and a module M be a π-projective module. Then M is s.p - semisimple if and only if M is S-GS module.

References

[1] R. Goodearl, Ring Theory, Nonsingular Rings and Modules, New York, Marcel Dekker,1976.
[2] N. V. Dungh, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending module, London, New York, Pitmen Research Notes in Mathematics Series 313, 1994.
[3] A. Tercan and C. C. Yucel, Module Theory, Extending Modules and Generalizations, Basel, Switzerland, Birkhauser, 2016.
[4] F. Kasch, Modules and Rings, London, Academic press, 1982.
[5] Sh. Asgari, A. Haghany and Y. Tolooei, "T-semisimple modules and T-semisimple Rings," comm. Algebra, vol. 41, no. 5, pp. 1882-1902, 2013.
[6] Y. Zhou, "Generalization of perfect, semiperfect, and semiregular Rings," Algebra colloquium. vol. 7, no. 3, pp. 305-318, 2000.
[7] Sh. Asgari, A. Haghany, "T-extending modules and t-Baer modules," Comm. Algebra, vol. 39, no. 5 pp. 1605-1623,2011.
[8] N. Hamad and B. AL-Hashimi, "Some Results on the Jacobson Radicals and the M- Radicals," Basic Sciences and Engineering, vol. 11, no. 2A, pp. 573-579, 2002.
[9] M. S. Abbas, "On fully stable modules", Ph. D. dissertation, Univ. of Baghdad, Baghdad, Iraq, 1990.
[10] J. Than, S. Golan and T. head, Modules and Structure of Rings, Binghamton, New york, USA, Binghamton University, 1991.
[11] N. Orhan, D. K. Tutuncu and R. Tribak, "On Hollow Modules," Taiwanese J. Math, vol. 11, no. 2, pp. 545-568., 2007.
[12] A. C. Ozcan, A. Harmanci And P. F. Smith," Duo Modules," Glasgow Math. J. vol. 48, no. 3 pp. 533-545, 2006.
[13] S. H. Mohamad and B. J. Muller, Continuous and Discrete Modules, Cambridge, London. Math. Soc. LNS. 174, 1990.
[14] D. Keskin, "Finite Direct Sums Of (D1) - Modules," Turkish J. Math, vol. 22, no. 1, pp.85-91, 1998.
[15] B. H. Abdelkader, "On Lifting Modules," M. S. thesis, Univ.of Baghdad, Baghdad, Iraq, 2001.
[16] G. V. Wilson, "Modules with the Direct Summand Intersection Property," Comm. Algebra, vol.14, no.1, pp.21-38, 1986.
[17] B. hamad and A. J. Al-Rikabiy, "S- generalized supplemented modules," Baghdad science journal, vol. 7, no. 1, pp. 180-190,2010.
[18] R. Wisbauer, Foundations of Module and Ring Theory, Publishers, Gordon and Breach Science, 1991.

[^0]: *Email: eahmed.math@gmail.com

