@article{Jasem_Elewi_2022, title={2-prime submodules of modules}, volume={63}, url={https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/6409}, DOI={10.24996/ijs.2022.63.8.34}, abstractNote={<p> Let R be a commutative ring with unity. And let E be a unitary R-module. This paper introduces the notion of 2-prime submodules as a generalized concept of 2-prime ideal, where proper submodule H of module F over a ring R is said to be 2-prime if , for r R and x F implies that or . we prove many properties for this kind of submodules, Let H is a submodule of module F over a ring R then H is a 2-prime submodule if and only if [N ] is a 2-prime submodule of E, where r R. Also, we prove that if F is a non-zero multiplication module, then [K: F] [H: F] for every submodule k of F such that H K. Furthermore, we will study the basic properties of this kind of submodules.</p>}, number={8}, journal={Iraqi Journal of Science}, author={Jasem, Fatima Dhiyaa and Elewi, Alaa A.}, year={2022}, month={Aug.}, pages={3605–3611} }