Hassan and Dnan Iragi Journal of Science, 2015, Vol 56, No.3A, pp: 2038-2042

Iraqi
Journal of

Science

ISSN: 0067-2904
GIF: 0.851

Totally @Generalized *Co finitely Supplemented Modules

Wasan Khalid Hassan, Raid Hasb Allah Dnan*
Department of Mathematics, College of Science, University of Baghdad, Baghdad. Iraqg.

Abstract

Let R be an associative ring with identity, and let M be a unital left R-module, M
is called totally @generalized *cofinitely supplemented module for short (
THG*CS), if every submodule of M is a @ Generalized *cofinitely supplemented
( @G*CS ). In this paper we prove among the results under certain condition the
factor module of T @G*CS is TG*CS and the finite sum of T@G*CS is T
PG*CS.
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1. Introduction:

Let R be an associative ring with identity, and let M be a unital left R- module, N<M will mean
submodule of M. E(M), Z*(M) will indicate the injective hull, co singular submodule of M,
respectively. Where Z*(M) = {meM ; Rm is small in E(Rm) }. Let N and K be submodules of M. N
is called a supplement of K in M if it is minimal with respect to M=N+K, equivalently M =N+K and
N NK is small in N, for short (N NK <« N). Following [1], M is supplemented (@supplemented) if
every submodule of M has a supplement (which is direct summand) in M, and M is called generalized
* supplemented, for short (G*S), if for any submodule N of M , there is K < M such that M =N+K
and N NK <zZ*(K), K is called a generalized * supplement of N in M,[2]. A submodule N of M is

called cofinitely submodule if % is finitely generated. A module M is called €@ generalized *

cofinitely supplemented, for short (G*CS), if for any cofinite submodule N of M, there exist
submodules L, T of M such that M = N+L with N NnL <Z*(L) and M =L&T,[2]. It is clear that every
@supplemented modules are @G*CS modules.
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Following [3], a module M is called totally cofinitely supplemented, if every submodule of M is
cofinitely supplemented. In this paper we introduce a totally @G*CS (TE@G*CS), we called M is
totally @G*CS, if every submodule of M is @G*CS, it is clear that, not every submodule of @G*CS
is @G*CS, for example Q as Z- module is @G*CS since the only cofinite submodule of Q is Q itself
which is a direct summand, but Z not @G*CS. In this work we prove some properties of T@G*CS
modules.

2. The co singular sub modules:

Let M be an R- module, the radical Z*(M) were studied in [4], which is called the co singular
submodule of M as a generalization of the Jacobson radical of M (Rad(M)), defined by
Z*(M) ={meM ; Rmis small in E(M) }, where E(M) is the injective hull of M. equivalently:
Z*(M) = M nRad (E(M))[5].
If M << E(M), then M is called small module,[6]. M is called co singular module if M = Z*(M), [5].
Aring R is called co singular if any R- module is co singular.
Every small module is co singular, but the converse is not true, for example Q as Z-module, Q is co
singular but not small.
The following are some properties of Z*(M), which is appeared in [5], [7].
Proposition 2.1.[5] :- Let R be a ring and let M and L be two R —modules and let gZM —L be an R-
homomorphism, then g(Z*(M)) < Z*(L).
Proposition 2.2.[7]:-For any ring. If R = Z*(R), then M = Z*(M), for any R —module M.
Proposition 2.3.[5]:- Every Z —module is co singular.
Proposition 2.4. [7]:- Z*(N) = N n Z*(M), for any submodule N of an R —module M.
Corollary 2.5. [5]:- Every submodule of co singular module is co singular.
Proposition 2.6.[5]:- Let {M;}be a family of an R — modules, for any index set I; i€l, if M =@; M,
then Z*(M) = ¢1 Z*(M)).
Proposition 2.7 [7]:- For any nonzero R —module M, Z*(M) =0 if and only if Rad (E(M)) =0.
The following definitions appeared in [2] as a generalization of generalized supplemented modules.
Definition 2.8 [2]:- Let N be a submodule of M, a submodule K of M is called generalized
*supplement, for short (G*S) of N in M, if M= N+K and N NnK< Z*(K). If every submodule of M has
a generalized * supplement, then M is called generalized *supplemented module, clearly, every co
singular is a G*S. A module M is called generalized *cofinitely supplemented module, for short
(G*CS), if every cofinite submodule of M has generalized *supplement in M, [2].
As a generalization of @ cofinitely supplemented modules, [2] introduce @generalized cofinitely
supplemented modules.
Recall that an R- module M is called @generalized supplemented module if for M = N+ L with
N NL <Rad (L), for N, L <M, L is called generalized supplement of N in M [8]. And M is called @
cofinitely supplemented module if every cofinite submodule of M has a supplement which is direct
summand in M, [3] .
Definition 2.9 [2]:- An R —module M is called @generalized *cofinitely supplemented module,(for
short (BG*CS)), if every cofinite submodule of M has generalized *supplement in M that is a direct
summand.
Clearly every @ supplemented and @generalized supplemented are @G*CS. Notice that Q as Z-
module is @G*CS but not @Supplemented,[2].

Proposition 2.10:-Let M be a G*CS module, then Z*A:M) is @G*CS module.
Proof:- Let < Y with —— is cofinite submodule of —=— , then N is cofinite in M, but since
Zx(M) — Zx(M) Zx(M) Zx(M)

M is G*CS, then 3 K <M such that M = N+K and N nK < Z*(K), then M ___N K+Zx(M)
Zx(M) Z*(M) Zx(M)

M H x|
o P 20 S =Z0n  —z (M),thenZ* o is @G*CS module.

Proposition 2.11:- Let M be any R —module such that every maximal submodule of M is a direct
summand, then M is @G*CS module.

Proof:- Let N be a cofinite submodule of M, then N is a direct summand, by [8.lemma 2.7].

i.e. M =N@K, for some K <M. i.e. N NK = 0< Z*(K), then M is @G*CS module.

and

N K+Zx(M) _ (NNK)+Z3(M) _ Z+(K)+Z*(M) _ Z+(M)
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Recall that a ring R is called a V- ring, if every ideal in R is an intersection of maximal ideals in R,
equivalently, R is V-ring if and only if every simple R-module is injective if and only if Rad (M) =0,
for every R — module M, [9].

Proposition 2.12:- Let R be a V- ring, then M is G*CS if and only if M is @G*CS.

Proof :- Let N be a cofinite submodule of M, but since M is G*CS, then 3 K <M such that M = N+K
and N NK < Z*(K),but R is V —ring (Rad (E(M)) =0) hence by [prop. 2.7] Z*(M) =0, thus Z*(K') =0,
then M is @G*CS module. Conversely, trivial by definition.

3. Totally @ Generalized * Cofinitely Supplemented Modules.

An R —module M is called totally cofinitely supplemented if every submodule is a cofinitely
supplemented module, [3]. As a generalization of totally cofinitely supplemented module, we
introduce the following definition.

Definition 3.1: An R —module M is called totally @generalized * cofinitely supplemented module, for
short (T@G*CS), if every submodule of M is §G*CS.

Notice that Q as Z- module is @G*CS, since the only cofinite submodule of Q is Q itself which is
direct summand, but Z not @G*CS module, hence Q as Z —module is not TG*CS.

Clearly, every (semi simple, small, hollow, local) module is T@@G*CS (G*CS).

The following give some properties of TG*CS.

Proposition 3.2:- Let M be a T@G*CS, then each finitely generated submodule N <M be written as
N =K @L, where Z*(L) =L and K <N.

Proof:- Let N be a finitely generated submodule of M, then % be a finitely generated module,

hence Z*(N) is cofinite submodule of N, but M is T@G*CS (N < M), then N is PG*CS, i.e. 3 K ,L

<N such that N = Z*(N) + K with Z*(N) n K = Z*(K) and N = K@L, hence by [prop. 2.6] Z*(N) =
~ N _ ZxMWN+K Zx(N)  _ Zx(N) o

ZXK) @ Z¥(L ), but L= = === = == = =0 = ZX(L).

Recall that a submodule N of an R — module M is called fully invariant if for every f eEnd(M), f(N)

<N and M is called duo module if every submodule of M is fully invariant,[10].

Proposition 3.3:- Let M be a T@G*CS module, then for every fully invariant submodule N of M, % is

THG*CS.

Proof:- Let% S% , and let % be a cofinite submodule of % , then L is cofinite in K <M, but M is

THG*CS, hence K is G*CS, then 3 H,T< K suchthat K=L +H With LNH<Z*H)and K =

H @T . Now =L -+ N with & SN (H+N) = (LNAAN  Zo(H)+N < Z*( ) hence == MGBM
” ) "N N N - N N N N '

then 5 is TEBG*CS.

Recall that an R —module M is called distributive module if for N, Hand L <M, N + (Ln H) = (N+L)

N (N+H) or N n(H+L) = (Nn H) + (Nn L) [1].

Proposition 3. 4'—Let M be a distributive THG*CS module, then % is TG*CS, for each N <M.

Proof:- Let — < —, and Iet = be a cofinite submodule of — , then L is cofinite in K <M, but M is

TEHG*CS, hence K is @G*CS then 3 H T< K such that K L +H with

Lﬂ H < Z*(H) and K H @T NOW f_z + % th n (H+N) (LﬂH)+N S Zx(H)+N < Z*(H+N)
K _T+N _ H+N M (H+N) n (T+N) T n(H+N)+H n(T+N) (TnH)+N _N 5_
but St and n2 - > > S —N, hence e

T+N H+N

—EB— then —|s T@G*CS
Proposmon 3.5: Let M be a TG*CS module let N < M. If for any K <M, N < K such that K
satisfies that for each direct summand L of K LN is a direct summand of — , then —|s TEHG*CS.
Proof:- Let & 5 be a cofinite submodule of ﬁ , then P is cofinite in K < M, but M is T@G*CS, hence
K is @G*Cs then3 L.T < K such that K =P +L with P NL <Z*(L)and K =L @T . Now, ~=—
= with =0 (“N) = ”If])“’ _Z*(EV)J'N < Z*(*%), but by assumptlon
L+N

TIS direct summand of % then EI% %such tha t— —EB— then —|s TPHG*CS.
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Note that the following two propositions are hold if the ring R is commutative ring.
Proposition 3.6:- let R be noetherian ring and M is duo R- module such that M = M;@M,, where M;
and M, are T@G*CS, then M is TG*CS.

Proof:- Let % be a finitely generated submodule ( L < N < M), then N= NNnM=({NnM,)

EB(N M ) and L =(L 0 M) @(L Mg ), but since 7o @70 = 7 (f.g), then both of 77
1

LNM,

W are finitely generated, so, 3 H, T <N N My such that NnM;=LnM;+H=HT with (L n
2

M) N H <Z*(H ). Similarly 3 A, B <N NnM; such that N nM; = (L NnMy) + A=A @ B with (L NM,)
N A <Z*(A). hence N= (L n My) + (L NMy ) + (A+H), with ((L n M) + (L NnM,)) n (A+H) = (L n
M) NH+(LNMy) NA<Z*H) + Z*(A) = Z*(H +A), then N = (N n M) + (NNM, ) = (H @T) +
(A & B)=(H+A) &(T +B), then M is TPG*CS.

Proposition 3.7:- let R be noetherian ring and M is duo R- module such that M = @=; M, then M is
T@G*CS if and only if M; is T@G*CS for each i =1,

Before the following results we need the following definition.

Recall that an R- module M is said to be have summand sum property (SSP), if the sum of two direct
summand submodules of M is direct summand in M [1].

Proposition 3.8:-Let M be a T@G*CS module such that, if every submodule of M has SSP, then
every direct summand of M is a T@@G*CS.

Proof:- Let N <M such that N is a direct summand of M, then there is K <M such that M = NK . It

is enough to prove that % is TG*CS. Let % be a cofinite submodule of % in % then L is a cofinite in
H, but since M is T@G*CS, hence H is @G*CS, then 3 A, B < H, such that H=A +L = A @B with
ANL<Z*A). Since K is a direct summand in M, then K is a direct summand in H, and

[ H has SSP] hence A + K is a direct summand of H, [i.e. H = (A+K) @T, for some T < H]

and

H A+K A+K A+K H _ A+K B+K B+K)N(A+K H
NOW'———+— d N=——<Z*=7) then: - ==——+——w with EHONEHO hence —=

K K K K K
A+K B+K

—EB— then —=1is T@G*CS

Theorem 3.9:- Let R be a V- ring, and let M be an R —module, then the following are equivalent

1. Mis T@G*CS.

2. M is G*CS.

3. Every finitely generated factor module is a direct summand.

4. M is semi simple module.

Proof:- (1 =2) trivial by definition.

(2= 3). Let N be a cofinite submodule of M, then by (2), M = N +K, for some K <M with N N K <
Z*(K) =0, (since R is V —ring, then Z*(K) = 0), hence M = NHK.

(3= 4) by [3. Theorem. 10] .

(4 = 1). Let K <M, to show that K is @G*CS. Let L be a cofinite submodule of K <M, then L is a
direct summand of M, [i.e. M= L @T, for some T<M]. ThenK=KnNM=(KNL) (KNT)=L
+KNT)withLNn(KNT)=(LNT)NK=0<Z*T+K ), then M is TG*CS.
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