

ISSN: 0067-2904 GIF: 0.851

Totally ⊕Generalized *Co finitely Supplemented Modules

Wasan Khalid Hassan, Raid Hasb Allah Dnan*

Department of Mathematics, College of Science, University of Baghdad, Baghdad. Iraq.

Abstract

Let R be an associative ring with identity, and let M be a unital left R-module, M is called totally \bigoplus generalized *cofinitely supplemented module for short (T \bigoplus G*CS), if every submodule of M is a \bigoplus Generalized *cofinitely supplemented (\bigoplus G*CS). In this paper we prove among the results under certain condition the factor module of T \bigoplus G*CS is T \bigoplus G*CS and the finite sum of T \bigoplus G*CS is T \bigoplus G*CS.

Keywords: \oplus generalized *cofinitely supplemented, totally \oplus generalized *cofinitely supplemented modules.

المقاسات الكليه المكمله ضد المنتهيه

المعممه *

وسن خالد حسن, رائد حسب الله دنان * قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصه

لتكن R حلقه تجميعيه ذات عنصر محايد وليكن M مقاس احادي ايسري على R.يقال بان M مقاس كلي مكمل ضد منتهي⊕ معمم * اذا كان كل مقاس جزئي من M هو مقاس مكمل ضد منتهي⊕ معمم *. في هذا البحث سوف نقوم باثبات وتحت شروط معينه اي عامل قسمه من M واي مجموع منتهي من مقاسات كليه مكمله ضد منتهيه ⊕ معممه * يبقى مقاس كلي مكمل ضد منتهي ⊕ معمم *.

1. Introduction:

Let R be an associative ring with identity, and let M be a unital left R- module, N \leq M will mean submodule of M. E(M), Z*(M) will indicate the injective hull, co singular submodule of M, respectively. Where Z*(M) = {m \in M ; Rm is small in E(Rm) }. Let N and K be submodules of M. N is called a supplement of K in M if it is minimal with respect to M=N+K, equivalently M =N+K and N ∩K is small in N, for short (N ∩K \leq N). Following [1], M is supplemented (\oplus supplemented) if every submodule of M has a supplement (which is direct summand) in M, and M is called generalized * supplemented, for short (G*S), if for any submodule N of M , there is K \leq M such that M =N+K and N ∩K \leq Z*(K), K is called a generalized * supplement of N in M,[2]. A submodule N of M is called cofinitely submodule if $\frac{M}{N}$ is finitely generated. A module M is called \oplus generalized * cofinitely supplemented, for short (\oplus G*CS), if for any cofinite submodule N of M, there exist submodules L,T of M such that M = N+L with N ∩L \leq Z*(L) and M =L \oplus T,[2]. It is clear that every \oplus supplemented modules are \oplus G*CS modules.

^{*}Email: read_master99@yahoo.com

Following [3], a module M is called totally cofinitely supplemented, if every submodule of M is cofinitely supplemented. In this paper we introduce a totally $\bigoplus G^*CS$ (T $\bigoplus G^*CS$), we called M is totally $\oplus G^*CS$, if every submodule of M is $\oplus G^*CS$, it is clear that, not every submodule of $\oplus G^*CS$ is $\bigoplus G^*CS$, for example Q as Z- module is $\bigoplus G^*CS$ since the only cofinite submodule of Q is Q itself which is a direct summand, but Z not $\oplus G^*CS$. In this work we prove some properties of $T \oplus G^*CS$ modules.

2. The co singular sub modules:

Let M be an R- module, the radical $Z^*(M)$ were studied in [4], which is called the co singular submodule of M as a generalization of the Jacobson radical of M (Rad(M)), defined by

 $Z^{*}(M) = \{ m \in M ; Rm \text{ is small in } E(M) \}, \text{ where } E(M) \text{ is the injective hull of } M. equivalently:$ $Z^*(M) = M \cap Rad(E(M))[5].$

If $M \le E(M)$, then M is called small module, [6]. M is called co singular module if $M = Z^*(M)$, [5]. A ring R is called co singular if any R- module is co singular.

Every small module is co singular, but the converse is not true, for example Q as Z-module, Q is co singular but not small.

The following are some properties of $Z^*(M)$, which is appeared in [5], [7].

Proposition 2.1.[5] :- Let R be a ring and let M and L be two R -modules and let $g: M \to L$ be an Rhomomorphism, then $g(Z^*(M)) \leq Z^*(L)$.

Proposition 2.2.[7]:-For any ring. If $R = Z^*(R)$, then $M = Z^*(M)$, for any R -module M.

Proposition 2.3.[5]:- Every Z –module is co singular.

Proposition 2.4. [7]:- $Z^*(N) = N \cap Z^*(M)$, for any submodule N of an R –module M.

Corollary 2.5. [5]:- Every submodule of co singular module is co singular.

Proposition 2.6.[5]:- Let $\{M_i\}$ be a family of an R – modules, for any index set I; $i \in I$, if $M = \bigoplus_{i \in I} M_i$, then $Z^*(M) = \bigoplus_{i \in I} Z^*(M_i)$.

Proposition 2.7 [7]:- For any nonzero R –module M, Z*(M) =0 if and only if Rad (E(M)) =0.

The following definitions appeared in [2] as a generalization of generalized supplemented modules.

Definition 2.8 [2]:- Let N be a submodule of M, a submodule K of M is called generalized *supplement, for short (G*S) of N in M, if M = N+K and $N \cap K \leq Z^*(K)$. If every submodule of M has a generalized * supplement, then M is called generalized * supplemented module, clearly, every co singular is a G*S. A module M is called generalized *cofinitely supplemented module, for short (G^*CS) , if every cofinite submodule of M has generalized *supplement in M, [2].

As a generalization of \oplus cofinitely supplemented modules, [2] introduce \oplus generalized cofinitely supplemented modules.

Recall that an R- module M is called \bigoplus generalized supplemented module if for M = N+ L with

 $N \cap L \leq Rad(L)$, for N, $L \leq M$, L is called generalized supplement of N in M [8]. And M is called \bigoplus cofinitely supplemented module if every cofinite submodule of M has a supplement which is direct summand in M, [3].

Definition 2.9 [2]:- An R –module M is called \bigoplus generalized *cofinitely supplemented module,(for short ($\bigoplus G^*CS$)), if every cofinite submodule of M has generalized *supplement in M that is a direct summand.

Clearly every \oplus supplemented and \oplus generalized supplemented are $\oplus G^*CS$. Notice that Q as Zmodule is $\bigoplus G^*CS$ but not $\bigoplus Supplemented, [2]$.

Proposition 2.10:-Let M be a G*CS module, then $\frac{M}{Z*(M)}$ is \bigoplus G*CS module. Proof:- Let $\frac{N}{Z*(M)} \le \frac{M}{Z*(M)}$ with $\frac{N}{Z*(M)}$ is cofinite submodule of $\frac{M}{Z*(M)}$, then N is cofinite in M, but since

M is G*CS, then $\exists K \leq M$ such that M = N+K and $N \cap K \leq Z^*(K)$, then $\frac{M}{Z^*(M)} = \frac{N}{Z^*(M)} + \frac{K+Z^*(M)}{Z^*(M)}$ and $N \cap K \leq Z^*(K)$.

 $\frac{N}{Z^{*}(M)} \cap \frac{K + Z^{*}(M)}{Z^{*}(M)} = \frac{(N \cap K) + Z^{*}(M)}{Z^{*}(M)} \le \frac{Z^{*}(K) + Z^{*}(M)}{Z^{*}(M)} = \frac{Z^{*}(M)}{Z^{*}(M)}, \text{ then}\frac{M}{Z^{*}(M)} \text{ is } \bigoplus G^{*}CS \text{ module.}$

Proposition 2.11:- Let M be any R -module such that every maximal submodule of M is a direct summand, then M is $\bigoplus G^*CS$ module.

Proof:- Let N be a cofinite submodule of M, then N is a direct summand, by [8.lemma 2.7].

i.e. M =N \oplus K, for some K \leq M. i.e. N \cap K = 0 \leq Z*(K), then M is \oplus G*CS module.

Recall that a ring R is called a V-ring, if every ideal in R is an intersection of maximal ideals in R, equivalently, R is V-ring if and only if every simple R-module is injective if and only if Rad (M) = 0, for every R – module M, [9].

Proposition 2.12:- Let R be a V- ring, then M is G^*CS if and only if M is $\bigoplus G^*CS$.

Proof :- Let N be a cofinite submodule of M, but since M is G^*CS , then $\exists K \leq M$ such that M = N+Kand N \cap K $\leq Z^{*}(K)$, but R is V – ring (Rad (E(M)) =0) hence by [prop. 2.7] Z^{*}(M) =0, thus Z^{*}(K) =0, then M is $\bigoplus G^*CS$ module. Conversely, trivial by definition.

3. Totally \bigoplus Generalized * Cofinitely Supplemented Modules.

An R –module M is called totally cofinitely supplemented if every submodule is a cofinitely supplemented module, [3]. As a generalization of totally cofinitely supplemented module, we introduce the following definition.

Definition 3.1: An R –module M is called totally \bigoplus generalized * cofinitely supplemented module, for short ($T \oplus G^*CS$), if every submodule of M is $\oplus G^*CS$.

Notice that Q as Z- module is $\bigoplus G^*CS$, since the only cofinite submodule of Q is Q itself which is direct summand, but Z not $\bigoplus G^*CS$ module, hence Q as Z –module is not $T \bigoplus G^*CS$.

Clearly, every (semi simple, small, hollow, local) module is $T \oplus G^*CS$ ($\oplus G^*CS$).

The following give some properties of $T \oplus G^*CS$.

Proposition 3.2: Let M be a T \bigoplus G*CS, then each finitely generated submodule N \leq M be written as $N = K \bigoplus L$, where $Z^*(L) = L$ and $K \le N$.

Proof:- Let N be a finitely generated submodule of M, then $\frac{N}{Z^*(N)}$ be a finitely generated module, hence $Z^*(N)$ is cofinite submodule of N, but M is $T \bigoplus G^*CS$ (N $\leq M$), then N is $\bigoplus G^*CS$, i.e. $\exists K$, L \leq N such that N = Z*(N) + K with Z*(N) \cap K = Z*(K) and N = K \oplus L, hence by [prop. 2.6] Z*(N) = $Z^*(K) \bigoplus Z^*(L), \text{ but } L \cong \frac{N}{K} = \frac{Z^*(N) + K}{K} \cong \frac{Z^*(N)}{K \cap Z^*(K)} = \frac{Z^*(N)}{Z^*(N)} \cong Z^*(L).$

Recall that a submodule N of an R – module M is called fully invariant if for every $f \in End(M)$, f(N) \leq N and M is called duo module if every submodule of M is fully invariant,[10].

Proposition 3.3:- Let M be a T \oplus G*CS module, then for every fully invariant submodule N of M, $\frac{M}{N}$ is T⊕G*CS.

Proof:- Let $\frac{K}{N} \leq \frac{M}{N}$, and let $\frac{L}{N}$ be a cofinite submodule of $\frac{K}{N}$, then L is cofinite in $K \leq M$, but M is $T \bigoplus G^*CS, \text{ hence } K \text{ is } \bigoplus G^*CS, \text{ then } \exists H, T \leq K \text{ such that } K = L + H \text{ with } L \cap H \leq Z^*(H) \text{ and } K = H \bigoplus T. \text{ Now, } \frac{K}{N} = \frac{L}{N} + \frac{H+N}{N} \text{ with } \frac{L}{N} \cap \frac{(H+N)}{N} = \frac{(L\cap H)+N}{N} \leq \frac{Z^*(H)+N}{N} \leq Z^*(\frac{H+N}{N}), \text{ hence } \frac{K}{N} = \frac{T+N}{N} \bigoplus \frac{H+N}{N},$ then $\frac{M}{N}$ is T \oplus G*CS.

Recall that an R –module M is called distributive module if for N, H and $L \le M$, N + (L \cap H) = (N+L) \cap (N+H) or N \cap (H+L) = (N \cap H) + (N \cap L) [1].

Proposition 3.4:-Let M be a distributive T \bigoplus G*CS module, then $\frac{M}{N}$ is T \bigoplus G*CS, for each N \leq M. Proof:- Let $\frac{K}{N} \leq \frac{M}{N}$, and let $\frac{L}{N}$ be a cofinite submodule of $\frac{K}{N}$, then L is cofinite in K \leq M, but M is T \bigoplus G*CS, hence K is \bigoplus G*CS, then \exists H, T \leq K such that K = L +H with L \cap H \leq Z*(H) and K = H \bigoplus T. Now, $\frac{K}{N} = \frac{L}{N} + \frac{H+N}{N}$ with $\frac{L}{N} \cap \frac{(H+N)}{N} = \frac{(L\cap H)+N}{N} \leq \frac{Z*(H)+N}{N} \leq Z*(\frac{H+N}{N})$, but $\frac{K}{N} = \frac{T+N}{N} + \frac{H+N}{N}$ and $\frac{T+N}{N} \cap \frac{H+N}{N} = \frac{(H+N) \cap (T+N)}{N} = \frac{T \cap (H+N)+H \cap (T+N)}{N} = \frac{(T\cap H)+N}{N} = \frac{N}{N}$, hence $\frac{K}{N} = \frac{T+N}{N} \oplus \frac{H+N}{N}$, then $\frac{M}{N}$ is T \bigoplus G*CS.

Proposition 3.5:-Let M be a T \oplus G*CS module, let N \leq M. If for any K \leq M, N \leq K such that K satisfies that for each direct summand L of K, $\frac{L+N}{N}$ is a direct summand of $\frac{K}{N}$, then $\frac{M}{N}$ is T \oplus G*CS. Proof:- Let $\frac{P}{N}$ be a cofinite submodule of $\frac{K}{N}$, then P is cofinite in K \leq M, but M is T \oplus G*CS, hence

K is $\bigoplus G^*CS$, then $\exists L, T \leq K$ such that K = P + L with $P \cap L \leq Z^*(L)$ and $K = L \bigoplus T$. Now, $\frac{K}{N} = \frac{P}{N}$ $+\frac{L+N}{N} \text{ with } \frac{P}{N} \cap \frac{(L+N)}{N} = \frac{(P \cap L) + N}{N} \leq \frac{Z*(L) + N}{N} \leq Z*(\frac{L+N}{N}), \text{ but by assumption}$ $\frac{L+N}{N} \text{ is direct summand of } \frac{K}{N}, \text{ then } \exists \frac{H}{N} \leq \frac{K}{N} \text{ such that } \frac{K}{N} = \frac{H}{N} \bigoplus \frac{L+N}{N}, \text{ then } \frac{M}{N} \text{ is } T \bigoplus G*CS.$

Note that the following two propositions are hold if the ring R is commutative ring.

Proposition 3.6: let R be noetherian ring and M is duo R- module such that $M = M_1 \bigoplus M_2$, where M_1 and M_2 are T \oplus G*CS, then M is T \oplus G*CS.

Proof:- Let $\frac{N}{L}$ be a finitely generated submodule ($L \le N \le M$), then $N = N \cap M = (N \cap M_1)$ $\bigoplus (N \cap M_2)$ and $L = (L \cap M_1) \bigoplus (L \cap M_2)$, but since $\frac{N \cap M_1}{L \cap M_1} \bigoplus \frac{N \cap M_2}{L \cap M_2} \cong \frac{N}{L}$ (f.g), then both of $\frac{N \cap M_1}{L \cap M_1}$ and $\frac{N \cap M_2}{L \cap M_2}$ are finitely generated, so, $\exists H, T \leq N \cap M_1$ such that $N \cap M_1 = L \cap M_1 + H = H \bigoplus T$ with $(L \cap M_2)$ M_1) $\cap H \leq Z^*(H)$. Similarly $\exists A, B \leq N \cap M_2$ such that $N \cap M_2 = (L \cap M_2) + A = A \bigoplus B$ with $(L \cap M_2)$ $\cap A \leq Z^{*}(A)$. hence N= $(L \cap M_{1}) + (L \cap M_{2}) + (A+H)$, with $((L \cap M_{1}) + (L \cap M_{2})) \cap (A+H) = (L \cap M_{2})$ M_1) $\cap H + (L \cap M_2) \cap A \le Z^*(H) + Z^*(A) = Z^*(H + A)$, then $N = (N \cap M_1) + (N \cap M_2) = (H \oplus T) + (M \cap M_2) = (H \oplus T) + (H \cap M_2) = (H \oplus T) = (H \oplus T) + (H \cap M_2) = (H \oplus T) = (H \oplus T) = (H \oplus T) = (H \oplus T) = (H \oplus T)$ $(A \bigoplus B) = (H + A) \bigoplus (T + B)$, then M is T $\bigoplus G^*CS$.

Proposition 3.7:- let R be noetherian ring and M is duo R- module such that $M = \bigoplus_{i=1}^{n} M_i$, then M is T \oplus G*CS if and only if M_i is T \oplus G*CS for each i =1,...,n.

Before the following results we need the following definition.

Recall that an R- module M is said to be have summand sum property (SSP), if the sum of two direct summand submodules of M is direct summand in M [1].

Proposition 3.8:-Let M be a $T \oplus G^*CS$ module such that, if every submodule of M has SSP, then every direct summand of M is a $T \oplus G^*CS$.

Proof:- Let $N \le M$ such that N is a direct summand of M, then there is $K \le M$ such that $M = N \bigoplus K$. It is enough to prove that $\frac{M}{K}$ is T \bigoplus G*CS. Let $\frac{L}{K}$ be a cofinite submodule of $\frac{H}{K}$ in $\frac{M}{K}$, then L is a cofinite in H, but since M is $T \oplus G^*CS$, hence H is $\oplus G^*CS$, then $\exists A, B \leq H$, such that $H = A + L = A \oplus B$ with $A \cap L \leq Z^*(A)$. Since K is a direct summand in M, then K is a direct summand in H, and

[H has SSP], hence A + K is a direct summand of H, [i.e. $H = (A+K) \oplus T$, for some $T \le H$]. Now : $\frac{H}{K} = \frac{L}{K} + \frac{A+K}{K}$ and $\frac{L}{K} \cap \frac{A+K}{K} \le Z^*(\frac{A+K}{K})$, then : $\frac{H}{K} = \frac{A+K}{K} + \frac{B+K}{K}$ with $\frac{(B+K)\cap(A+K)}{K} = \frac{K}{K}$, hence $\frac{H}{K} = \frac{A+K}{K} \oplus \frac{B+K}{K}$, then $\frac{M}{K}$ is $T \oplus G^*CS$.

Theorem 3.9:- Let R be a V- ring, and let M be an R – module, then the following are equivalent 1. M is $T \oplus G^*CS$.

2. M is G*CS.

3. Every finitely generated factor module is a direct summand.

4. M is semi simple module.

Proof:- $(1 \Rightarrow 2)$ trivial by definition.

 $(2 \Rightarrow 3)$. Let N be a cofinite submodule of M, then by (2), M = N + K, for some K \le M with N \cap K \le N $Z^*(K) = 0$, (since R is V –ring, then $Z^*(K) = 0$), hence $M = N \bigoplus K$.

 $(3 \Rightarrow 4)$ by [3. Theorem. 10].

 $(4 \Rightarrow 1)$. Let K \leq M, to show that K is \oplus G*CS. Let L be a cofinite submodule of K \leq M, then L is a direct summand of M, [i.e. $M = L \oplus T$, for some $T \leq M$]. Then $K = K \cap M = (K \cap L) \oplus (K \cap T) = L$ $+(K \cap T)$ with $L \cap (K \cap T) = (L \cap T) \cap K = 0 \le Z^*(T+K)$, then M is $T \bigoplus G^*CS$.

References

- 1. Wisbauer.R. 1991. Foundation of module and Ring theory. Gordon and Breach, Philadelphia.
- 2. Hassan.A.A. 2014. Generalized* $\oplus Z^*$ Supplemented Modules and Generalized * \oplus Cofinitely Supplemented Modules. MSC. Thesis. Department of mathematics, College of Science, University of Baghdad, Baghdad, Iraq.
- 3. Bilhan.G. 2007. Totally Cofinitely Supplemented Modules. International Electronic Journal of *algebra*. 2, pp. 106 – 113.
- 4. Wang.Y and Ding. N. 2006. Generalized Supplemented Modules. Taiwanese Journal of Math. 10(6), pp. 1589 – 1601.
- 5. Ozcan A.C. 2000. Modules having *- Radical. American Mathematical Society, 259, pp.439 -449.
- 6. Harade.M. 1978. Non- small and non-co small Modules. In the ring theory Antwerp Conference, F. Van Oystaeyened. New-York, Marcel Dekker.

- 7. Ozcan A.C.2002. Modules with small cyclic submodules in their injective hull, *Commutative Algebra*, 30(4), pp. 1575 1589.
- **8.** Alizade.R, Bilhan.G and Smith.P.F. **2001**. Modules whose maximal submodules have Supplements, *Communication in algebra*, 29(6), pp. 2389 2405.
- 9. Carl Faith. 1967. Lecture on injective Modules and quotient Rings. Lecture notes in Math, 49, Springer Velar, Berlin, Heidelberg, New-York.
- **10.** Tamer. K.M. **2009**. Generalized Semiperfect Modules, *Communication in algebra*, 5, pp. 58 69.