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Abstract 

Let R be an associative ring with identity, and let M be a unital left R-module, M 

is called totally  generalized *cofinitely supplemented module for short ( 

T G*CS), if every  submodule of M is a   Generalized *cofinitely supplemented  

(  G*CS ). In this paper we prove among the results under certain condition the 

factor module of T  G*CS is T G*CS and the finite sum of T G*CS is T 

 G*CS. 
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 المعممه *  المقاسات الكليه المكمله ضد المنتهيه 

 
 *رائد حسب الله دنان, الد حسنوسن خ

 قسم الرياضيات, كلية العلوم, جامعة بغداد, بغداد, العراق
  

  الخلاصه
مقاس كلي  M.يقال بان Rمقاس احادي ايسري على  Mحلقه تجميعيه ذات عنصر محايد وليكن  Rلتكن 

في  معمم *.   هو مقاس مكمل ضد منتهي Mمعمم * اذا كان كل مقاس جزئي من   مكمل ضد منتهي
واي مجموع منتهي من مقاسات  Mهذا البحث سوف نقوم باثبات وتحت شروط معينه اي عامل قسمه من 

 معمم *.  ي مكمل ضد منتهي معممه * يبقى مقاس كل  كليه مكمله ضد منتهيه 
 

1.  Introduction: 

Let R be an associative ring with identity, and let M be a unital left R- module, N M will mean 

submodule of M. E(M), Z*(M) will indicate the injective hull, co singular submodule of M, 

respectively. Where Z*(M) = {m M ; Rm is small in E(Rm) }. Let N and K  be submodules of M. N 

is called a supplement of K in M if it is minimal with respect to M=N+K, equivalently  M =N+K  and 

N  K is small in N, for short (N  K   N). Following [1], M is supplemented ( supplemented) if 

every submodule of M has a supplement (which is direct summand) in M, and M is called generalized 

* supplemented, for short (G*S), if for any submodule N of M , there is K   M such that M =N+K  

and  N  K  Z*(K), K is called a generalized * supplement of N in M,[2]. A submodule N of M is 

called cofinitely submodule if  
 

 
 is finitely generated. A module M is called   generalized * 

cofinitely supplemented, for short ( G*CS), if for any cofinite submodule N of M, there exist 

submodules  L,T of M such that M = N+L  with  N  L  Z*(L) and M =L T,[2]. It is clear that every 

 supplemented modules are  G*CS modules. 
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Following [3], a module M is called totally cofinitely supplemented, if every submodule of M is 

cofinitely supplemented. In this paper we introduce a totally  G*CS (T G*CS), we called M is 

totally  G*CS, if every submodule of M is  G*CS, it is clear that, not every submodule of  G*CS 

is  G*CS, for example Q as Z- module is  G*CS since the only cofinite submodule of Q is Q itself 

which is a direct summand, but Z not  G*CS. In this work we prove some properties of T G*CS 

modules. 
 

2. The co singular sub modules: 

Let M be an R- module, the radical Z*(M) were studied in [4], which is called the co singular 

submodule of M as a generalization of the Jacobson radical of M (Rad(M)),  defined by   

Z*(M) = { m  M ; Rm is small in E(M) }, where E(M) is the injective hull of M. equivalently:  

Z*(M) = M  Rad (E(M))[5]. 

If M    E(M), then M is called small module,[6]. M is called co singular module if M = Z*(M), [5]. 
A ring R is called co singular if any R- module is co singular.  

Every small module is co singular, but the converse is not true, for example Q as Z-module, Q is co 

singular but not small. 

The following are some properties of Z*(M), which is appeared in [5], [7]. 
Proposition 2.1.[5] :- Let R be a ring and let M and L be two R –modules and let g:M →L   be an R- 

homomorphism, then g(Z*(M)) ≤ Z*(L). 

Proposition 2.2.[7]:-For any ring. If R = Z*(R), then M = Z*(M), for any R –module M. 
Proposition 2.3.[5]:- Every Z –module is co singular. 

Proposition 2.4. [7]:- Z*(N) = N   Z*(M), for any submodule N of an R –module M. 

Corollary 2.5. [5]:- Every submodule of co singular module is co singular. 

Proposition 2.6.[5]:- Let {Mi}be a family of an R – modules, for any index set I; i I, if M =     Mi , 

then  Z*(M) =      Z*(Mi). 

Proposition 2.7 [7]:- For any nonzero R –module M, Z*(M) =0 if and only if Rad (E(M)) =0. 

The following definitions appeared in [2] as a generalization of generalized supplemented modules. 
Definition 2.8 [2]:- Let N be a submodule of M, a submodule K of M is called generalized 

*supplement, for short (G*S) of N in M, if M= N+K and N  K≤ Z*(K). If every submodule of   M has 

a generalized * supplement, then M is called generalized *supplemented module, clearly, every co 

singular is a G*S. A module M is called generalized *cofinitely supplemented module, for short 
(G*CS), if every cofinite submodule of M has generalized *supplement in M, [2].  

As a generalization of   cofinitely supplemented modules, [2] introduce  generalized cofinitely 

supplemented modules. 

Recall that an R- module M is called  generalized supplemented module if for M = N+ L with  

N  L ≤ Rad (L), for N, L ≤ M, L is called generalized supplement of N in M [8]. And M is called    

cofinitely supplemented module if every cofinite submodule of M has a supplement which is direct 

summand in M, [3] . 

Definition 2.9 [2]:- An R –module M is called  generalized *cofinitely supplemented module,(for 

short ( G*CS)), if every cofinite submodule of M has generalized *supplement in M that is a direct 

summand.  

Clearly every   supplemented and  generalized supplemented are  G*CS. Notice that Q as Z- 

module is  G*CS but not  Supplemented,[2]. 

Proposition 2.10:-Let M be a G*CS module, then 
 

     
 is  G*CS module. 

Proof:- Let  
 

     
 ≤ 

 

     
  with 

 

     
 is cofinite submodule of  

 

     
 , then N is cofinite in M, but since 

M is G*CS, then   K ≤ M  such that M = N+K and N  K ≤  Z*(K), then 
 

     
 = 

 

     
 + 

       

     
  and 

 

     
 

       

     
 =

            

     
  ≤ 

           

     
 = 

     

     
, then

 

     
  is  G*CS module. 

Proposition 2.11:- Let M be any R –module such that every maximal submodule of M is a direct 

summand, then M is  G*CS module. 

Proof:- Let N be a cofinite submodule of M, then N is a direct summand, by [8.lemma 2.7]. 

i.e. M =N K, for some K ≤ M. i.e. N  K = 0≤  Z*(K), then M is  G*CS module. 
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Recall that a ring R is called a V- ring,  if every ideal in R is an intersection of  maximal ideals in R, 

equivalently, R is V-ring if and only if every simple R-module is injective if and only if Rad (M) =0, 

for every R – module M, [9]. 

Proposition 2.12:- Let R be a V- ring, then M is G*CS if and only if M is  G*CS. 

Proof :- Let N be a cofinite submodule of M, but since M is G*CS, then   K ≤ M  such that M = N+K 

and N  K ≤  Z*(K),but R is V – ring (Rad (E(M)) =0) hence by [prop. 2.7] Z*(M) =0, thus Z*(K ) =0, 

then M is   G*CS module. Conversely, trivial by definition. 
 

3. Totally   Generalized * Cofinitely Supplemented Modules. 

An R –module M is called totally cofinitely supplemented if every submodule is a cofinitely 

supplemented module, [3]. As a generalization of totally cofinitely supplemented module, we 
introduce the following definition. 

Definition 3.1: An R –module M is called totally  generalized * cofinitely supplemented module, for 

short (T G*CS), if every submodule of M is  G*CS.  

Notice that Q as Z- module is  G*CS, since the only cofinite submodule of Q is Q itself which is 

direct summand, but Z not  G*CS module, hence Q as Z –module is not T G*CS.  

Clearly, every (semi simple, small, hollow, local) module is T G*CS ( G*CS). 

The following give some properties of T G*CS.  

Proposition 3.2:- Let M be a T G*CS, then each finitely generated submodule N ≤ M be written as 

N = K  L, where Z*(L) = L and K ≤ N. 

Proof:- Let N be a finitely generated submodule of M, then  
 

     
  be a finitely generated module, 

hence Z*(N) is cofinite submodule of N , but M is T G*CS (N  ≤ M), then N is  G*CS, i.e.   K ,L 

≤ N such that N = Z*(N) + K with Z*(N)   K = Z*(K) and N = K L, hence by [prop. 2.6] Z*(N) = 

Z*(K)   Z*(L ), but L  
 

 
  =  

       

 
   

     

       
  =  

     

     
   Z*(L). 

Recall that a submodule N of  an R – module M is called fully invariant if for every  f  End(M), f(N) 

≤ N and M is called duo module if every submodule of M is fully invariant,[10]. 

Proposition 3.3:- Let M be a T G*CS module, then for every fully invariant submodule N of M, 
 

 
 is 

T G*CS. 

Proof:- Let 
 

 
  ≤ 

 

 
 , and let 

 

 
  be a cofinite submodule of  

 

 
 , then L is cofinite in K ≤ M, but  M is 

T G*CS,  hence K is  G*CS,  then   H ,T ≤  K  such that  K = L +H  with L  H ≤ Z*(H ) and K = 

H  T . Now, 
 

 
= 

 

 
 + 

   

 
 with 

 

 
 

     

 
 = 

       

 
  ≤ 

        

 
 ≤ Z*(

   

 
), hence  

 

 
= 

   

 
 

   

 
 , 

then 
 

 
 is T G*CS. 

Recall that an R –module M is called distributive module if for N, H and L ≤ M, N + (L  H) = (N+L) 

  (N+H) or N  (H+L) = (N  H) + (N  L) [1]. 

Proposition 3.4:-Let M be a distributive T G*CS module, then  
 

 
 is T G*CS, for each N ≤ M. 

Proof:- Let 
 

 
  ≤ 

 

 
 , and let 

 

 
  be a cofinite submodule of  

 

 
 , then L is cofinite in K ≤ M, but  M is 

T G*CS, hence K is  G*CS, then   H ,T ≤  K  such that  K = L +H  with 

L  H ≤ Z*(H) and K = H  T. Now , 
 

 
= 

 

 
 + 

   

 
 with 

 

 
 

     

 
 = 

       

 
  ≤ 

        

 
 ≤ Z*(

   

 
), 

but  
 

 
 = 

   

 
 + 

   

 
 and 

   

 
 

   

 
 = 

             

 
 =  

                   

 
 = 

       

 
 = 

 

 
, hence  

 

 
= 

   

 
 

   

 
, then 

 

 
is  T G*CS. 

Proposition 3.5:-Let M be a T G*CS module, let N ≤ M. If for any K ≤ M, N ≤ K such that K 

satisfies that for each direct summand L of K , 
   

 
 is a direct summand of  

 

 
 , then 

 

 
is  T G*CS. 

Proof:- Let 
 

 
  be a cofinite submodule of  

 

 
 , then P is cofinite in K ≤ M, but  M is T G*CS, hence  

K is  G*CS,  then   L ,T ≤  K  such that  K = P +L  with   L ≤ Z*(L ) and K = L  T . Now, 
 

 
= 

 

 
 

+ 
   

 
 with 

 

 
 

     

 
 = 

       

 
  ≤ 

        

 
 ≤ Z*(

   

 
), but by assumption  

   

 
is direct summand of  

 

 
, then  

 

 
 ≤ 

 

 
 such that

 

 
= 

 

 
 

   

 
, then  

 

 
is  T G*CS. 
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Note that the following two propositions are hold if the ring R is commutative ring. 

Proposition 3.6:- let R be noetherian ring and M is duo R- module such that M = M1 M2, where M1 

and M2  are T G*CS, then M is T G*CS. 

Proof:- Let  
 

 
  be a finitely generated submodule ( L ≤ N ≤ M), then N =       =     M1) 

    M2 ) and L =    M1)     M2 ), but since 
    

    
 

    

    
 

 

 
 (f.g), then both of  

    

    
  and  

    

    
 are finitely generated, so,   H, T ≤    M1 such that    M1 =    M1 + H = H  T with     

M1)    ≤ Z*(H ). Similarly   A, B ≤   M2 such that   M2 =    M2) + A = A   B with (  M2) 

   ≤ Z*(A). hence N=     M1) +    M2 ) + (A+H), with      M1) +    M2 ))   (A+H) =     

M1)    + (  M2)    ≤ Z*(H ) + Z*(A) = Z*(H +A), then N =     M1) +    M2 ) = (H  T) + 

(A   B) = (H +A)  (T +B), then M is T G*CS. 

Proposition 3.7:- let R be noetherian ring and M is duo R- module such that M =     
 Mi, then M is 

T G*CS if and only if Mi is T G*CS for each i =1,...,n. 
Before the following results we need the following definition. 

Recall that an R- module M is said to be have summand sum property (SSP), if the sum of two direct 

summand submodules of M is direct summand in M [1]. 

Proposition 3.8:-Let M be a T G*CS module such that, if every submodule of M has SSP, then 

every direct summand of M is a T G*CS. 

Proof:-  Let N ≤ M such that N is a direct summand of M, then there is K ≤ M such that M = N K . It 

is enough to prove that 
 

 
 is T G*CS. Let 

 

 
 be a cofinite submodule of 

 

 
 in 

 

 
, then L is a cofinite in 

H, but since M is T G*CS, hence H  is  G*CS, then    A, B ≤ H, such that H =A +L = A  B with 

   L ≤ Z*(A ). Since K is a direct summand in M, then K is a direct summand in H, and  

[ H has SSP], hence A + K is a direct summand of H, [ i.e. H = (A+K)  T, for some T ≤ H]. 

Now :  
 

 
 = 

 

 
 + 

   

 
 and 

 

 
 

   

 
 ≤ Z*(

   

 
), then :  

 

 
 = 

   

 
 + 

   

 
 with 

            

 
 =  

 

 
, hence   

 

 
 = 

   

 
 

   

 
 , then 

 

 
 is T G*CS. 

Theorem 3.9:- Let R be a V- ring, and let M be an R – module, then the following are equivalent  

1.  M is T G*CS.  

2. M is G*CS.     

3. Every finitely generated factor module is a direct summand. 

4. M is semi simple module. 

Proof:- (1  2) trivial by definition. 

(2  3). Let N be a cofinite submodule of M, then by (2), M = N +K, for some K ≤ M with    K ≤ 

Z*(K) = 0, (since R is V –ring, then Z*(K) = 0), hence M = N K. 

(3   4) by [3. Theorem. 10] . 

(4   1). Let K ≤M, to show that K is  G*CS. Let L be a cofinite submodule of K ≤ M, then L is a 

direct summand of M, [ i.e. M= L  T, for some T ≤ M]. Then K =    M =     L)   (   T) = L 

+(   T)  with L   (   T)= (   T)  K = 0 ≤ Z*( T+K  ), then M is T G*CS. 
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