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Abstract  

      In this study, we present a modified analytical approximation method to find the 

time-fractional Sharma-Tasso-Olever issue solving. In order to tackle nonlinear 

fractional differential equations that arise in a variety of physical processes, we 

begin by providing an alternate foundation for the Laplace Residual Power Series 

Technique (LRPSM). Thus, the generalized Taylor series equation and residual 

functions serve as the foundation for this approach.  

More precisely, our approach and the suggested solution produce good results. 

Moreover, the reliability, effectiveness, and simplicity of this approach are 

demonstrated for all classes of fractional nonlinear issues that arise in technological 

and scientific fields. Two examples are provided to exemplify how the considered 

scheme works in calculating various types of fractional ordinary differential 

equations. Finally, the obtained results in this article are compared with other 

methods such as Residual Power Series (RPS), Variational Iteration Method (VIM), 

and Homotopy Perpetration Method (HPM). The consequences of our method are 

good and effective. 

 

Keywords: Fractional calculus; Formula of fractional Sharma-Tasso-Olever; 

Residual power series; Laplace residual power series; fractional derivative of 

Caputo.  
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  الخلاصة 
أوليفر الكسري -تاسو-شارما عادلةملفي هذه الدراسة، نقدم طريقة تقريب تحليلي معدلة لإيجاد حل      

الزمني. من أجل معالجة الصيغ التفاضلية الكسرية غير الخطية التي تنشأ في مجموعة متنوعة من العمليات 
تعمل معادلة سلسلة   .(LRPSM) الفيزيائية، نبدأ بتوفير أساس بديل لتقنية سلسلة الطاقة المتبقية لابلاس

اس لهذا النهج. نهجنا أو الحل المقترح يؤدي إلى نتائج جيدة. يتم تايلور المعممة والوظائف المتبقية كأس
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 مقارنة نتائج طريقتنا المقترحة مع طرق أخرى مثل فيهما تمتتم تقديم مثالين فاضلية العادية الكسرية، الت
RPS وVIM و HPM  وفعالةوكانت نتائج طريقتنا جيدة. 

 
1. Introduction 

     Fractional calculus is a branch of applied mathematics that deals with derivation and 

integration like any real or complex ordering. Non-Newtonian calculus and extended calculus 

are other names for fractional calculus. In a famous letter, Leibniz asked what might occur if 

the order of derivatives is changed to 
 

 
. His response in 1695 is recognized as that of the start 

of the field of fractional calculus [1,2]. In the disciplines of physics, biochemistry, biology, 

technology, viscoelasticity, operations research, optical fibers, communications, and finance, 

Fractional calculus is crucial [3,4,5]. While not all of these methods are regularly used, there 

are various techniques to define fractional differential equations.  

 

     There are various techniques to define fractional derivatives, however, not all of them are 

often used. The most frequently used fractional derivatives are those with fractional rank in 

terms of Conformable operators, Atangana-Baleanu, Riemann-Liouville and the Caputo 

fractional derivatives [6, 7, 8, 9, 10]. In some cases, fractional derivatives are preferable to 

integer-order derivatives when modelling because they can model and evaluate complicated 

systems with improved non-linear processes and higher-rank dynamics. This is caused by two 

main factors. Firstly, rather than being restricted to an integer order, we may select any order 

for derivative operators. Non-integer type derivatives depend on previous and local 

circumstances and are advantageous whenever the systems have such a long-term memory. 

 

     Differential equations are created when natural and biological processes are explained 

using mathematical methods in technology and research. The formula of movement, 

movement of simple harmonic, Beam deflecting, and other events are a few instances of 

phenomena that can be described by differential equations. Thus, the ideas of differential 

equations are important and helpful. Applications regularly come upon differential equations 

that are so complex. The close-form answers are sometimes not practical. The solution of the 

differential equations with given boundary conditions can be effectively replaced by 

numerical methods. 

 

     In recent years,  the development of a number of techniques for dealing with fractional 

differential equations has been seen, this includes the Iterative Laplace transform technique 

[11], the adaptive approach of Shehu transform  [12], the homotopy analytical technique [13], 

the variational iteration technique [14, 15],  the  technique of Elzaki transform decomposition 

[16, 17], the Laplace decomposition technique [18] , the technique of homotopy perturbation 

transform [19, 20], and the residual power series technique [21].  There are two main causes 

of this. Firstly, we are no longer restricted to an integer rank when choosing the rank for the 

derivative operator. Non-integer rank derivatives that are advantageous in systems with long-

term memories are dependent on historical data and local circumstances. 

 

     The researcher Abu Arqub created the RPSM in 2013 [22]. The quasi technique is known 

as the RPSM is developed using Taylor's series and the residual error functions. All linear and 

non-linear differential equations convergence series are given. In 2013, RPSM was 

implemented to deal with fuzzy differential equations. Arqub et al. developed a novel 

collection of RPSM techniques to swiftly get series type solves for common differential 

equations [23]. Arqub et al. [24] also created a unique and interesting RPSM technique for 

solving of fractional nonlinear issues involving boundary values. In order to identify 
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approximations of results to fractional rank KdV-burgers formulas, El-Ajou et al. created a 

new iteration RPSM approach [25]. Zhang et al. [26] presented an effective numerical method 

that incorporates the RPSM and least squares techniques. By merging two efficient methods, 

scientists have created a new method for solving fractional-order differential formulas 

(FODFs). Some of the methods that are mixed to define a few of these groups include the 

transform of Sumudu and the homotopy perturbation approach, the transform of natural the 

homotopy analysis method, the transformation of Shehu and the Adomian decomposition 

method and the Laplace transform with RPSM [27, 28, 29]. 

 

      In this study, we employ the special combining method which is named the LRPSM to 

discover both approximation and precise results for the time-fractional Sharma-Tasso-Olver 

PDEs involving unknown parameters. The RPSM and Laplace transform technique are 

combined in this new technique. Moreover, graphical relevance is seen for various values of 

fractional-rank derivatives. As a consequence, the method is precise, quick, and impervious to 

computing iterations of errors. It also does not take up a lot of memory storage or processing 

time. 

 

      In order to explore the approximate solution of a nonlinear fractional Sharma-Tasso-

Olever formula which is crucial in defining the non-linear phenomenon, we start to apply 

LRPSM in this study. Below is the shape of a time-fractional non- linear fractional Sharma-

Tasso-Olever formula (FSTOF): 

                 
       

                                                          (1) 

where   is constant and         is a function with respect x in bounded domain   and time t, 

and can be any random constant and alpha can be any factor defining the order of the 

fractional time-derivative. 

 

     Using the variation iteration approach, Adomian decomposition, and homotopy 

perturbation method, Song et al. [30] have solved the (1). Moreover, by employing the 

Residual Power Series Technique [31]. However, we solve equation (1) employing LRPSM.  

 

     The structure of the research is detailed below. Secondly, Part 2 uses the foundational 

ideas and findings of fractional calculus. The basis for the creative approach in Part 2 has 

some original outcomes that are provided. The results of time-fractional non-linear Sharma-

Tasso-Olever are then discovered in Part 3 by using LRPSM. A few of the issues in Part 4 are 

overcome using LRPSM. A brief conclusion concludes Part 5. 

 

2 Preliminaries  

     In this section, we go through some key terms, notions, and principles associated with the 

fractional derivative operations and the Laplace transform utilized in the present study: 

Definition 2.1 [32]. The fractional derivative is the same in the Caputo as follows: 

                                                                                                (2) 

where the Riemann-Liouville  integral operator is represented by    as 

                                                  
 

    
∫  

 

 
                                                    (3) 

and     . 

Definition 2.2. [32] The Laplace transform  defined on function      is 

                                                           ∫  
 

 
               .                                   (4) 

The inverse of the Laplace transform is given as follows:  

                                 ∫  
    

    
                                                           (5) 
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Lemma 2.3.  [33] If we assume that         is a piece-wise continuous function with 

                , then the following characteristics are genuine: 

        (i)     
         

      

        

        (ii)     
                      

                          ; 

        (iii)     
                        

               
               . 

Proposition 2.4. [32] Take into account that        is piecewise continuous on         

with an exponential order of  . Consider that the fractional expansions of         
           is as follows: 

                                                  
   

     

                                                    (6) 

Hence,         
           

 

Remark 2.5.[34] Using the inverse of  the Laplace transform to the provided (6), we get: 

                                        
   

  
       

       
                                                   (7) 

It is comparable to the fractional Taylor's equation presented in [35]. 

 

3. The Time -Fractional Sharma-Tasso-Olever Formula Solutions Using LRPS 

Technique 
     Take the following time -fractional Sharma-Tasso-Olever formula to demonstrate how the 

LRPS technique may be used to create a series solution to the FSTOF: 

  
            

                                         

                                                                                                                (8) 

                                                                                                                                                                                                              

where   is constant and         is a function with respect x in bounded domain   and time t.   

The initial condition is as follows: 

                                  

                                                                                                                                                    (9) 

In the beginning, use the  Laplace transform to Eq. (8), we obtain 

      
            

                                                   ]  
   ]  
            ]                                                                                                                      (10)                                                                                                                   

with   is an open interval. 

We may construct  Eq. (10) as follows using Lemma 2.3: 

     

                        {(   (       )
 
)}  

   {(   (      )
 
)    (       )}    {(   (      ))    (        )}  

                                                                           (11) 

where                ] and                      ]   

The next form of Eq. (11) is produced by dividing it by    and applying the beginning 

circumstances from Eq. (11): 

          
    

 
 

  

   
( {(   (       )

 
)})  

  

   
( {(   (      )

 
)    (       )})  

                        
  

   
( {(   (      ))    (        )})  

 

   
                               (12) 

Consider that extension of Eq. (12) result is as follows: 

                                                           ∑
     

     

 

   
                                                 (13)  

According to (13), the kth-truncated series is 
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 ∑

     

     

 

   
                                                        (14) 

We can define the main LRPS techniques like the LRF of Eq. (12), in order to determine the 

unknown value of the parameter,        is presented as follows:                                    
            

          

         
    

 
 

  

   ( {(   (       )
 
)})  

  

   ( {(   (      )
 
)    (       )})  

   
  

   ( {(   (      ))    (        )})  
 

                                                    (15) 

thus, the kth-LRF is defined as:      

                    
    

 
 

  

   ( {(   (          )
 

)})  
  

   ( {(   (       )
 
)    (          )})  

      
  

   ( {(   (       ))    (           )})  
 

                                          (16) 

It is obvious that for     and            .                           , 

           . As a result,       (           )      Additionally, it was established 

[32, 35] and 

                      (             )        (              )                      (17) 

Given that         
    

 
 

     

      , Eq. (16) signifies: 

     (x    

     

     
  

  ( {(   (
    

 
 

     

    ))
 

})  
  

   ( {(   (
    

 
 

     

    ))
 

   (
     

 
 

 
  

    

    )})    
  

  ( {   (
    

 
 

     

    )    (
      

 
  

  
     

    )})  
 

   (
       

 
  

  
      

    )         (18) 

By running the operator in Eq. (18), we can obtain the following simplified form: 

     (x    
     

     
         

      
          

     

        
     

            

              
             

    + 
     

         

      

               
     

         
     

           
            

            
 

 
          

           

             
     

      
           

             

             

     
 

         
     

       
          

            

            

 
 

          
            

            
 

 
          

     
    

      

        

                                                                                                                                              (19) 

Next, multiplying      by two parts of Eq. (19) yields 

                                                
          

     

     
     

            

           

              
     

         

  
 

               
     

    
     

           
            

          
 

 

          
           

          
 

     
      

           

          
                

         
     

  
 

          
            

         

 
 

          
            

          
 

           
    

      

                                       (20) 

Next, utilizing the assumption in Eq. (17) and the limit as     from both parts of Eq. (20), 

we may quickly ascertain the value of       via resolving the formula given of      : 

                                                                                        (21)                    

It is simple to get the following by calculating       in the ensuing algebraic formula (21). 

                       (                     )                                                            (22) 
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The 2
nd

-truncated series of Eq. (14),         
    

 
 

     

     
     

     , is substituted into in the 

2
nd

 -LRF to calculate the value of the next undetermined parameter       as follows: 

                         

         
     

    
 

  

  
( {(   (

    

 
 

     

    
 

     

     
))

 

})  
  

  
 ( {(   (

    

 
 

     

    
 

     

     ))
 

   (
     

 
  

  
    

     
  

    

     )})   
  

  ( {   (
    

 
 

     

     
     

     )    (
      

 
  

  
     

     

  
     

     )})   
 

   (
       

 
  

  
      

     
  

      

     )                                                                          (23) 

By running the operator in Eq (18) we can obtain the following simplified form: 

     (x    
     

      
     

            

             
    

            

              
         

     

         
         

    

      

 
    

      
           

                    
          

           

             
          

           

              
             

     

       

             
           

              
         

      
           

                    
    

         

       
    

      
           

             

    
      

           

                    
    

           
            

            
 

 
    

          
           

                   

    
      

      
           

                    
         

    

       
    

      
           

                    
     

      
           

              

         
      

            

                    
         

      
            

             
 

 
    

      
      

            

                   
  

  
        

     

      

        
     

      
         

      

      
 

 
          

            

            
 

 
         

            

                    
              

      

 
          

            

                   
           

 
          

              
    

      

      
    

      

      

                                                                                                                                     (24) 

Next, multiplying       by two parts of equation (24) yields 

                                         
     

            

          
    

            

                     
      

 
         

    

      
    

      
           

                  
          

           

           
          

           

             

             
      

             
           

            
         

      
           

                      
           

    
      

           

            
    

      
           

                   
    

           
            

         
 

  
    

          
           

                  

    
      

      
           

                   
         

    

     
    

      
           

                   
     

      
           

             

         
      

            

                   
         

      
            

           
 

  
    

      
      

            

                 
  

  

         
       

        
     

             
       

          
            

         
 

  
         

            

                  

              

    
          

            

                  
           

 
          

                 
        

    
      

           (25) 

To get the below formula, calculate the limit as     with both parts of Eq. (25) and then 

employ Eq. (17). 

                                           
                

           
                         (26)                                                                         

By resolving the algebraic equation that results for      , we obtain 

                                  
                

           
                        (27)                                                                   
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Similar to a previous stages, replace the 3
rd

 -truncated series of Eq. (17),         
    

 
 

     

     
     

      
     

      is substituted into in the 3
rd

 -LRF , we get the value of the next 

undetermined parameter       as follows: 

                      
                

     

                
         

                  (28) 

As a result, we may write the results of Eq. (14)  in an infinite series so they are described in 

the following: 

                   
    

   
(                     )

     
(                      

         
      )

      

               
                

     

                
         

       

                                                              (29) 

The LRPS solution to Eqs. (8) and (9) is obtained by using the inverse of the Laplace 

transform of Eq. (29) in the given simple form: 

               

             
(                     )

      
   

(                      
         

      )

       
    

               
                

     

                
         

       

       
                                             (30) 

4. Numerical Issues 

       In this part, we look at the importance of the LRPSM in obtaining the solution to the CT. 

  Problem 4.1: Take into account the following fractional equation:                       
  

           
                                       

                                                                                                               (31)                                                       

  with the initial condition  

                                                                                                                                    (32) 

  Using Eq.(32), the Laplace transform is taken to Eq.(31) which gives  

          

        
    

 
 

 

   ( {(   (       )
 
)})  

        
 

   ( {(   (      )
 
)    (       )})   

 

   ( {(   (      ))    (        )}) 

 
 

                                                                                                                         (33) 

  It is claimed that the kth-truncated series is 

                                         
    

 
 ∑

     

     

 

   
                                                      (34) 

  Consequently, the kth LRFs are 

                  

         
    

 
 

 

   
( {(   (          )

 

)})  
 

   
( {(   (       )

 
)    (          )})  

                          
 

   ( {(   (       ))    (           )})  
 

                         (35) 

The kth-truncated series (34) is now placed into the kth LRF (35) to give      . After 

multiplying the resultant formula by      , we may calculate the relationship. 

      (            )               

So, several values include: 

           ]        ]         ]   
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        ]         ]           ]         ]        ]         ]  
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                   ]             ]            ]            ]
          ]           ]            ]            ]            ]            ]
         ]    

      
 

  
           ]  

         ]      ]       ]         ]   

     ]            ]      ]  

      ]         ]          ]       ]          ]         ]         ]  
       ]              ]       ]       ]      ]  
           ]     ]      ]        ]         ]          ]       ]    
      ]         ]         ]         ]              ]       ]       ]    
  ]          ]          ]            ]             ]             ]  
           ]            ]          ]             ]            ]  
           ]            ]             ]       ]             ]  
           ]              ]              ]              ]             ]  
           ]              ]              ]              ]             ]  

      ]          ]  
      ]         ]           ]        ]       ]        ]  

     ]          

          ]             ]            ]            ]           ]  
         ]            ]            ]            ]            ]  
        ]         ]           ]  
        ]         ]           ]        ]       ]        ]  

     ]                    ]  

           ]            ]            ]           ]           ]  
          ]            ]            ]            ]          ]                      (36) 

and so on.    

As a result, we may write the results of Eq. (34) in an infinite series so they are described in 

the following: 

                   

       
    

 
 

(     ]       ]         ] )

     

(
 

  
          ]  

        ]         ]           ]        ]       ]        ]  

     ] 
         

          ]             ]            ]            ]           ]  
         ]            ]            ]            ]            ]  

        ]  )        (
 

  
           ]  

         ]      ]       ]         ]   
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          ]      ]        ]         ]          ]       ]          ]  
       ]         ]         ]              ]       ]       ]      ]  
           ]     ]      ]        ]         ]          ]       ]    
      ]         ]         ]         ]              ]       ]       ]    
  ]          ]          ]            ]             ]             ]  
           ]            ]          ]             ]            ]  
           ]            ]             ]       ]             ]  
           ]              ]              ]              ]             ]  
           ]              ]              ]              ]             ]  
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      ]          ]  
            ]         ]           ]        ]       ]        ]  

     ]  

                  ]             ]            ]            ]  
         ]           ]            ]            ]            ]            ]  
        ]         ]           ]  
        ]         ]           ]        ]       ]        ]  

     ]                    ]  

           ]            ]            ]           ]           ]  

          ]            ]            ]            ]          ]   )                                                  

                                                                                                                                              (37) 

If we calculate LT's inverse, we obtain 

     
(     ]       ]         ] )
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(
 

  
          ]  

        ]         ]           ]        ]       ]        ]  

     ]          

          ]             ]            ]            ]           ]  
         ]            ]            ]            ]            ]  

        ]  )           ]  (
 

  
           ]  

         ]      ]       ]         ]   
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          ]      ]        ]         ]          ]       ]          ]  
       ]         ]         ]              ]       ]       ]      ]  
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           ]            ]          ]             ]            ]  
           ]            ]             ]       ]             ]  
           ]              ]              ]              ]             ]  
           ]              ]              ]              ]             ]  

      ]          ]  
            ]         ]           ]        ]       ]        ]  

     ]  

                  ]             ]            ]            ]  
         ]           ]            ]            ]            ]            ]  
        ]         ]           ]  
        ]         ]           ]        ]       ]        ]  

     ] 
                   ]  

           ]            ]            ]           ]           ]  

          ]            ]            ]            ]          ]   )         

  ]                                                                                                                                       (38) 

Since we cannot predict the pattern in the coefficients of the series solution in Eq. (38), we 

cannot reach the exact solution. Therefore, we test the results using the residual and relative 

errors which are defined as follows, respectively: 

               |  
           

                                       
         |                                                                                                                             (39) 

                                                   Rel.           |
              

      
|.                                         (40) 

The graphs of the 5th approximation to Eqs. (31) and (32) in the range           ] is 

shown in Figure 4.1 a, b, c, d and e. The graph shows that the  solutions to the initial value 

problems Eqs. (31) and (32) are strictly decreasing throughout the region. 

Tables 4.1, 4.2 and 4.3 present the numerical solutions to this issue. In additional to a residual 

and relative error at various values of   inside the range           ], it also shows the fifth 
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approximate result. The outcomes show that the LRPS approach is a successful numerical 

technique for finding solutions to a non-linear FSTOF. 

             
                                                    (a)                                                                                        (b)   

 
                                                    (c)                                                                                        (d)   

 

 
                                                                         (e)                                                                                         

FIGURE 4.1. The graphs of Eqs. (31) at various values 0f    (a)      , (b)    
                 (d)         (e)           
 

Table 4.1 Numerical comparisons between the 5th-approximation of         and the residual 

error of  
                  at      

x t                                     Rel.           

 

0.1 

 

 

0.001                    0.10080241227202406              

0.002 0.10178477710131464 0.1017848127673913              

0.003                     0.10278009556134066              

0.004                     0.10378773808228293              
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0.3 

0.001                     0.296136682585044              

0.002                    0.29675362378039              

0.003                    0.29737004426989455              

0.004                    0.29798495807607495              

 

 

0.5 

0.001 0.4792771112073483 0.47927711005871126             

0.002 0.479116299676806 0.4791162802561786              

0.003 0.478942185938138 0.4789420823438775              

0.004 0.47875389355708264 0.4787535494690805              

 

Table 4.2: Numerical comparisons between the 5th-approximation of         and the 

residual error of        at         
x t                                     Rel.           

 

0.01 

 

 

0.0001 0.010261580011503615 0.010261580025246643              

0.0002 0.010489340778599154 0.010489340946149237              

0.0003 0.01070637813888263 0.010706378863811426            

0.0004 0.010917001167313953 0.010917003219477226              

 

 

0.03 

0.0001 0.03025646884584323 0.030256468860201054               

0.0002 0.030483512084002906 0.030483512258949064              

0.0003 0.030699830191552552 0.030699830948077888              

0.0004 0.030909721730315337 0.030909723870830325              

 

 

0.05 

0.0001 0.05023857058835623 0.05023857060322205               

0.0002 0.05046420794288065 0.05046420812391567              

0.0003 0.05067914951951529 0.0506791503019603              

0.0004 0.05088767047890543 0.0508876726916448              

 

Table 4.3: Numerical comparisons between the 5th-approximation of         and the 

residual error of        at         
x t                                     Rel.           

0.01 

0.0001 0.0021014848886265034 0.0021014926116914505              

0.0002 0.011866180914045356 0.011866245507276036              

0.0003 0.01254695107844321 0.012547173428538533              

0.0004 0.013179935736770773 0.01318047225373584              

0.03 

0.0001 0.0310926946658592 0.031092702886594357              

0.0002 0.03185497519483403 0.03185504233527371              

0.0003 0.03253244993321143 0.032532680599232776              

0.0004 0.033161968083111136 0.0331625237004097              

0.05 

0.0001 0.05106934683585255 0.05106935532468415              

0.0002 0.051826095485863886 0.0518261646564987              

0.0003 0.05249817780277047 0.052498414981692325              

0.0004 0.053122267642921946 0.053122837960231775              

 

Problem 4.2: Take into account the fractional equation below:                       
  

           
                                                   

                                                                                                                                (41) 
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  The initial condition is as follows: 

                                                                                                                                    (42) 

  Using (42), the Laplace transform is taken to (41) which gives  
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                                                                                                                        (43) 

  It is claimed that the kth-truncated series is 

                                   
  

 
 ∑

     

     

 

   
                                                                (44) 

  Consequently, the kth LRFs are 
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( {(   (       ))    (           )})  

 

   
                      (45) 

     The kth-truncated series (44) is now placed into the kth LRF (45) to give      . After 

multiplying the resultant formula by      , we may calculate the relationship. 

      (            )               

So, several values include: 

                      
                                    

                                                        
                              ]

     ]                                                                                                            

(46) 

and so on.  

As a result, we may write the results of Eq. (44)  in an infinite series, so they are described in 

the following: 

                    

       
  

 
 

(              )

    
 

(              )

     
 

(                                                  
                                  ]

         ] )

          (47)                                                                                    

                                             

If we calculate LT's inverse, we obtain 

   
(              )

     ]
   

(              )

      ]
    

(                                                  
                                  ]

         ] )

      ]
                     

                                                                                                                                                (48) 

Since we cannot predict the pattern in the coefficients of the series solution in Eq. (48), we 

cannot reach the exact solution. Therefore, we test the results using the residual and relative 

errors which are defined as follows, respectively:  

              |              ]|  |  
           

                       
                                                    |                                                                    (49) 
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                                                                 Rel.          |
               

       
|.                             (50) 

     The graphs of the 5th approximation to the (41) and (42) in the range           ] is 

shown in Figure 4.2 a, b, c, d and e. The graph shows that the IVP solutions (41) and (42) are 

strictly decreasing throughout the region. 

 

Tables 4.4, 4.5 and 4.6 present the numerical solutions to this issue. In addition to a residual 

and relative error at various values of   inside the range           ], it also shows the 5th 

approximate result. The outcomes show that the LRPS approach is a successful numerical 

technique for finding solutions to a non-linear FSTOF. 

             
                                                    (a)                                                                       (b)   

             
                                                    (c)                                                             (d)   

 
(e) 

FIGURE 4.2. The graphs of Eqs. (31) at various values 0f    (a)      , (b)    
                 (d)         (e)           
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Table 4.4 Numerical comparisons between the 5th-approximation of         and the 

residual error of  
                  at      

x t                                     Rel.           

 

0.1 

 

 

0.001 1.086842304479863 1.0868421947511182              

0.002 1.0494942738181958 1.04949259346972              

0.003 0.993128225923869 0.9931201004238852              

0.004 0.917747177415517 0.9177227018060459              

 

 

0.3 

0.001 1.3125404394313007 1.312540111435795              

0.002 1.2289749781897146 1.2289700021668297              

0.003 1.099166189465696 1.099142374869939              

0.004 0.9231220400455659 0.9230511246459557              

 

 

0.5 

0.001 1.5668897614429629 1.5668887259810784`              

0.002 1.3678910212054012 1.3678755041761785`              

0.003 1.0517355594207647 1.0516623219125292`              

0.004 0.6184445567350575 0.6182298958172303`              

 

Table 4.5: Numerical comparisons between the 5th-approximation of         and the 

residual error of        at        

x t                                     Rel.           

 

0.001 

 

 

0.0001 0.9840124910097807 0.9840122508549133              

0.0002 0.9617048780535125 0.9617030485695418              

0.0003 0.9349957869258534 0.9349898839016328              

0.0004 0.9045817749066819 0.9045683735376931              

 

 

0.003 

0.0001 0.985901761671138 0.9859015190316439              

0.0002 0.9634244945608885 0.9634226463122161              

0.0003 0.936506999907474 0.9364997369267588             

0.0004 0.905849351659414 0.9058353986447544              

 

 

0.005 

0.0001 0.9877941515233464 0.9877939063723574             

0.0002 0.965147990402824 0.9651439318259996              

0.0003 0.938014978240953 0.9380094740838009              

0.0004 0.90711872893738 0.9071001998019198              

 

Table 4.6: Numerical comparisons between the 5th-approximation of         and the 

residual error of        at         
x T                                     Rel.           

 

0.001 

 

 

0.0001 0.9987001061955921 0.9987001057291748               

0.0002                                                   

0.0003 0.992691270743497 0.9926941032240939              

0.0004 0.988949248482837 0.9889448583192284              

 

 

0.0001 1.0006917215912132 1.0006917211199005               

0.0002 0.9979259091911034 0.9979259035357918              
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0.003 0.0003 0.994647318273654 0.9946467077276158              

0.0004 0.990873047683787 0.990871237544524              

 

 

0.005 

0.0001 1.002672709957022 1.0026872705194398               

0.0002 0.999901558040727 0.9999041500894743              

0.0003 0.996609760930344 0.9966029517410601             

0.0004 0.9928011148451746 0.9928010469189296              

 

5. CONCLUSION 
     In this paper, LRPSM has been effectively used to obtain the result of the fractional 

Sharma-Tasso-Olever equation. From the results obtained from the tables and graphs, we 

have discovered that LRPSM is very efficient and also more accurate in solving fractional-

order differential equations, such as the Sharma-Tasso-Oliver equation. Thus, we can 

conclude that the LRPS approach is a very effective and sophisticated method for determining 

the approximate as well as analytical solution to many partial mathematical models that arise 

in various scientific fields [36-39].  
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