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Abstract  

     Streamlined peristaltic transport patterns, bifurcations of equilibrium points, and 

effects of an inclined magnetic field and channel are shown in this study. The 

incompressible fluid has been the subject of the model's investigation. The Reynolds 

values for evanescence and an infinite wavelength are used to constrain the flow 

while it is being studied in a slanted channel with a slanted magnetic field. The 

topologies over their domestic and cosmopolitan bifurcations are investigated for the 

outcomes, and notion of the dynamical system are employed. The Mathematica 

software is used to solve the nonlinear autonomous system. The flow is found to 

have three different flow distributions namely augmented, trapping and backward 

flow.  Outcomes are graphically represented along with a number of parameters that 

have an impact on how the fluid behaves when flowing with bifurcations. 

 

Keywords: Nonlinear Autonomous System, bifurcationsو Streamline, Peristaltic 

Transport, Inclined Channel, Inclined Magnetic. 

 

تحليل التشعب والاستقرار لنقطة الركود لتدفق السوائل في قناة مائلة مع مجال مغناطيسي مائل للنقل 
 التمعجي
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  الخلاصة 
تم عرض أنماط النقل التمعجية المبسطة , وتشعبات نقاط التوازن , وتأثيرات المجال المغناطيسي المائل      

والقناة في هذه الدراسة. كان السائل غير القابل للضغط موضوع تحقيق النموذج. يتم فحص التدفق في قناة 
ز للتلاشي وطول موجة لانهائي. مائلة ذات مجال مغناطيسي مائل بينما يتم تقييده بواسطة أرقام رينولد

باستخدام نظرية النظام الديناميكي , تمت دراسة الطوبولوجيا على طول التشعبات المحلية والعالمية للحصول 
لحل النظام المستقل غير الخطي. تم تحديد ثلاثة توزيعات  Mathematicaعلى النتائج. تم استخدام برنامج 
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عزز , وتدفق الملاءمة , والتدفق العكسي. يتم تمثيل النتائج بيانياً إلى جانب تدفق بديلة في التدفق: التدفق الم
 عدد من المعلمات التي لها تأثير على كيفية تصرف المائع عند التدفق مع التشعبات.

1. Introduction 

     One of the primary fluid-transporting mechanisms in the physiological systems of 

mammals, including humans, is the peristaltic. This system controls the flow of liquid lymph 

through lymphatic arteries, the transport of spermatozoa in the citation male reproductive 

tract, and the movement of pee from the kidney to the bladder through the ureter. With 

devices, such as heart-lung contrivances, peristaltic insufflation that works on the same 

principle, is also utilized to pump blood. In a tube or channel, this mechanism is produced by 

the movement of the walls. To understand peristaltic transfer in both mechanical and 

physiological states according to different assumptions, many empirical and theoretical 

research have been conducted. Shapiro AH. et al. [1] presented the peristaltic transfer under 

an infinite wavelength approximation in a range of motion for Newtonian fluids. Mohaisen 

H.N. et al. [2] presented the peristaltic flow of a two-dimensional Bingham plastic fluid under 

the influence of the heat transfer, rotation, and an induced magnetic field. Nadeem S. et al. [3] 

studied the peristaltic flows in an inclined asymmetric and symmetric channel is affected by 

the inclined magnetic field of the Williamson fluid model. Farah A. et al.  [4] investigated the 

effects of an inclined magnetic field on the peristaltic transport of incompressible Bingham 

plastic fluid with heat transfer and mass transfer in an inclined symmetric channel. The heat 

transfer and concentration slip conditions are used. Kaleem U.et al. [5] proposed a work to 

investigate the stability of critical to stagnation points, streamline topologies, and their 

domestic and cosmopolitan bifurcations for peristaltic flow of an incompressible power-law 

model. F. G URCAN.et al. [6] studied the streamline styles and their bifurcations in 2-

dimensional Navier-Stokes flow of an incompressible fluid close a non-simple degenerate 

critical point near a stationary which is examined from a topological point of view by 

accounting for a Taylor expansion of the velocity domain. Gürcan F. et al.  [7] examined the 

streamline styles and their bifurcations at straightforward, off-the-boundary degenerate 

critical points in a two-dimensional, and incompressible fluid. Morten BRØNS [8], analyse 

the structures of vortices and separation in the streamlined patterns of fluid flows using 

dynamical systems theory. By using normal form simplifications, the bifurcation of patterns 

under variation in external parameters is examined. D E L A. et al. [9] presented the 

symmetric condition about a straight line is used to explore local flow patterns and their 

bifurcations associated with non-simple degenerate critical points that emerge distant from 

boundaries. Joel Jiménez.et al. [10] studied the streamline styles and their domestic and 

cosmopolitan bifurcations in a two-dimensional planar surface and axisymmetric peristaltic 

flow for an incompressible Newtonian fluid. Under the conditions of a long-wavelength and 

low-Reynolds number approximation, the stream-function has an analytical solution. Asghar 

Z. et al. [11] evaluated the streamline styles and their bifurcations for a Newtonian fluid 

flowing with heat transfer in an unsettled convective and peristaltic manner. The flow is 

analysed in a two-dimensional symmetric channel under the widely agreeable presumptions 

of an infinite wavelength and a depressed Reynolds number in a wave framework of 

reference. Ullah K. et al., [12] the stability of equilibrium points and their bifurcations for a 

peristaltic transfer of an incompressible viscous fluid through an inclined channel have been 

studied when the channel width is supposed to be very small in comparison to the peristaltic 

wave wavelength and inertial impacts are negligible. Sadia et al. [13] used the dynamical 

system approach in the investigations in order to explore the streamlined patterns along their 

bifurcations for peristaltic flow under mixed convection effects. Both an axisymmetric tube 

and a two-dimensional symmetric channel are taken into consideration for the flow. Nasir A. 

et al. [14] utilized a power-law model to test the bifurcations of equilibrium points and their 

streamlined styles for the peristaltic outflow of fluids that are shear-thinning and shear-
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thickening over an asymmetric canal. Under the presumptions of the vanishing Reynolds 

number and infinite wavelength approximations, a precise solution in the wave framework of 

reference is obtained. Ehsan T. et al. [15] studies the use of a novel method to identify 

distinctive peristaltic flow features like bolus and trapping. By employing dynamic system 

analysis, we link the incident of a bolus to the existence of a centre (an elliptic critical point) 

when centres are presented beneath the wave crests and a pair of saddles (hyperbolic 

equilibrium points) are located on the central line, trapping. Jagdeesh V. et al. [16] presented 

how an inclined non-uniform channel's inclined magnetic field, porous medium, and wall 

characteristics affect the peristaltic transport of the Jeffry fluid. Ullah K. et al. [17] studied the 

peristaltic transport of viscoelastic fluid through an axisymmetric tub. The bifurcation 

analysis is carried out to investigate the qualitative character of stagnation spots and different 

flow zones. 

 

     In this study, the way of the issue is handled mathematically, the precise location and 

behaviour of stagnation points, as well as their bifurcations, are described by a dynamical 

system. In addition, when the magnetic field and channel are inclined, we evaluate different 

flow zones and their ranges using global bifurcation diagrams. This is done by presenting a 

set of graphs for the many factors influencing the peristaltic transfer of a fluid.  

  

2. Mathematical formulation of issue 

     Imagine that an incompressible fluid flows along an inclined channel while being 

subjected to an inclined magnetic field. A two-dimensional symmetrical channel is filled with 

fluid. Along the channel's edges, sine waves propagate at a constant speed (c). We select a 

( ̅  ̅) rectangular coordinate system for the channel with  ̅ is along the centerline and  ̅ 

transverses to the spread way of waves. The geometry of the canal walls is described in 

Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

It is given by: 

H(  ̅  ̅ )     (      (
 

 
( ̅    ̅)))                                                                                (1) 

Where a, b, , ̅ and λ are the width of the wave, amplitude  wave, speed of wave, time and 

wavelength, respectively. The Cauchy stress tensor ( ̅) for viscous fluid is  

 ̅    ̅ ̅     ̅                                                                                                                         (2) 

Where    ̅       ̅ are the viscosity, pressure, identity tensor respectively. We define   ̅ as 

follows: 

 ̅  (      ̅)  ((      ̅)                                                                                                   (3) 

     Where T is the creation of the transposition and  ̅  is the vector of velocity. In 

experimenter form ( ̅  ̅)  the prevailing equations can be expressed as follows: 
  ̅

  ̅
 

  ̅

  ̅
                                                                                                                                (4) 

X 

𝐵0 𝛽 
 

Y λ 

a 
b 

Figure 1: Geometry of the issue 
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     Where  ̅      ̅ represent the velocity compounds in  ̅      ̅ orientations, respectively,   

is the density of the fluid,  ̅ is the time,   is electrical conductivity,  0 is the strength of the 

magnetic field,  ̅ is the pressure,    is the viscosity, the gravitational acceleration is g, 

                                                                           The following 

conversions can be employed to come in a wave framework of reference ( ̅  ̅) that concerns 

to the fixed framework of the reference and get about with the speed of c for steady flow: 

 ̅   ̅     ̅  ̅   ̅  ̅   ̅     ̅   ̅  ̅    ̅                                                                          (7) 

The terms  ̅  ̅      ̅  stand for the velocity compounds and pressure in wave framework. 

Now, the dimensionless variables and parameters are described as follows: 

  
 ̅

 
    ̅    ̅       

 

 
  ̅       ̅  

  

 
   

 

 
    

   
   

 
      

   
   

 
   ̅  

    

  
   

    

  
   

 ̅

 
                                                                                    (8) 

Where    is the Reynold number, M is the Hartman number,   is the wave rate and    is the 

amplitude ratio. Substituting equation (8) with help equation (7) in equation 1, 4, 5 and 6. The 

equation (4) is identically satisfied and simplify the result and. When the values of (   
         ) we obtain the following: 

h=1- (      ( )                                                                                                                (9) 
  

  
 

   

   
       ( )      ( )                                                                                   (10) 

  

  
                                                                                                                                      (11)                                                                                                                                                                                                                                         

We specify the stream function as follows: 

  
  

  
        

  

  
                                                                                                           (12) 

Following the cross differentiation for the pressure gradient of equations 10, and 11 to be 

eliminated, we obtain: 
   

   
       ( )

   

   
                                                                                                      (13)   

The wave frame of volume flow rate and boundary cases without dimensional are as follows: 

  =0,
   

   
                      when y=0,                                                                                   (14a) 

  =q,  
  

  
                     when y=h,                                                                                  (14b) 

  ∫
  

  

 

0
    ( )   ( )                                                                                               (15) 

 

3. Solution to the issue 

     Equation (13) satisfies the boundary requirements in equations (14a) and (14b): 

 (   )  
√       [√  ]      [√  ] (   )    [√  ]

√      [√  ]     [√  ]
                                                          (16) 

Where      (      )   

Backward flow, trapping, and augmented flow are three different flow situations that might 

occur [1, 18]. When a flow is said to be flowing backward, the entire flow is moves in the 

opposite direction. Trapping is the phenomenon in which a closed streamline splinter to 

enclose a bolus of fluid particles. The augment occurs when the constrained bolus is divided 

into multiple streams of flow and moves ahead. Figure 2 illustrates these flow conditions. 
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4. The Non-linear Dynamical System of the Flow Field 

     This portion, examine variations in flow demean and ideas from the specific theory of 

dynamical systems will be used. Individual particle instantaneous motion (say    0 ), 
movement along lines are indicated by   ̇   (   0). The system of non-linear autonomous 

differential equations can be employed to describe the current issue as follows. 

   ̇  ∂ψ/∂y      ̇   
  

  
.  From equation (16), we have 

 ̇  
√ (      √    (   )     √   )      √   

√       √         √   
  (     )                                                      (17) 

 ̇  
(       √     [√  ]     [√  ]  (    (   ))    [√  ]    [√  ]         [√  ]

 
 √      [ √  ])  

 ( √     [√  ]      [√  ])
  

 (     )                                                                                                                               (18) 

Where       (         )        
  

  
  . 

Where x={x, y,  } is the coordinates in space and     = {ϕ, q, M, β} are the parameters. The 

value of the amplitude ratio spans from 0 to 1, moreover, the area of interest is -∞<x<∞ and      

-h<y<h.  

By applying the Hartman-Grobman theorem, which claims that equilibrium points of the 

Jacobian may be utilized to identify its characteristics, first, we set  (     )   (     )  
  by doing as stated in [10]. If the determinant of the Jacobian at a given location is zero, the 

point is degenerate. Simple and non-simple degeneracies are two of their subclasses. A simple 

degeneracy exists when the eigenvalues of the Jacobian matrix are equal to zero. For a non-

simple degeneracy, the Jacobian matrix is equal to zero. To categorize the important points, 

we will use the same notations that are used in [19]. Where the trace           and the 

Jacobain           , which are based on the eigenvalues           . To classify them, we 

use the phase pictures, classify. 

A bifurcation point with respect to the parameter, claims [20] is the solution(     ), and 

when passes through     with     as critical value, the quantity of periodic, quasi-periodic, or 

equilibrium solutions varies. 

The critical points are given by: 

1. {         }  {     
        

      √   
     √  

√ 
   

 

√ 
}       

2. {         }    
√√ (           √  )      √  

√√  (        √  )         √  

   , 

Figure 2: Streamline for various q values with 

M=1.0, 𝜙  .6 𝛽  
𝜋

6
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3.  

4. {   6    6}  {
(    ) 

 
  

        
      √ (    )  

     √ (   ) 

√ 
     

 

√ 
}       

 

5. Critical points classification and bifurcation 

    A. The point critical: 

{         }  {     
        

      √   
     √  

√ 
   

 

√ 
}  

      Where    , the equilibrium point lies under the wave crests. At these equilibrium 

points, the Jacobian matrix is: 

 

    √
 √ (   ) √      [√ ]      √  
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     The eigenvalues change with flow rate q at fixed values of ϕ, β and M. The flow rate is 

specified to be between -1 and 1. As a result, the temperament and stability of the equilibrium 

points alter with flow rate q. 

 For critical value   
  

     √  

√ 

        √  
, there is an isolated critical point that is neither a 

simple degeneracy nor a point of hyperbolic degeneration, since           0. See Figure (3.a2). 

 It is referred to the stagnation point as a stable centre for   
  

     √  

√ 

        √  
, and 

                 , see Figure (3.a3). 

 

B. The critical point: 

{         }    
√√ (           √  )      √  

√√  (        √  )         √  

   ; 

On the channel's centreline, this critical point is located. At this critical point, the Jacobian is 

given as follows: 

    
 √ √ (   ) √       √        √  

√√  (        √   √       √  )

   

    
√√ (           √  )      √  

√√  (        √  )         √  

   

     √               
 

 
√ (             ) (√       

 

 
√ (    

         )       
 

 
√ (             ) )   

   (√ (              )     √ (              )       √ (    
          ) )   

              (              )             √ (              )    

   (√ (                        √ (              ) )  

     √ (              ) )   

   ( √ (              )     √ (              )       √ (    
          ) )    

      (              )    (              )     √ (    
          )    

    √ (   (              )(                ))     √ (    
          )    

           √ (              )   √       √ (              )    

    √ (              )     √ (              )       √ (    
          )    

 (         )  [
(           )   ⁄  

  ((                 (        )) (  ) ⁄ )
] ; 

With the eigenvalues: 

     
         

  
 ;       ( 

( 6      )                 

   
)   
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Since, the critical points, {         }, change their behavior in the range 
  

     √  

√ 

        √  
   

           
    

 
            

    

 
       √   

      √  

√ 

        √   √         
    

 
       √  

, In this range, their temperament and 

stability are examined. These are two critical event       
  

     √  

√ 

        √  
 and       

           
    

 
            

    

 
       √   

      √  

√ 

        √   √         
    

 
       √  

  occur. 

 

The following qualitative alters can be seen:  

 When       
  

     √  

√ 

        √  
        

           
    

 
            

    

 
       √   

      √  

√ 

        √   √         
    

 
       √  

, the                 For equilibrium 

points, which are non-hyperbolic decadent sites with non-simple decadent, the Jacobian 

matrix and the eigenvalues are 0; see Figures (4.a, 4c). 

 

 When           , the stagnation points are referred as saddle nodes, because 

that                . See Figure (4.b). 

 

 

 

 

 

 

 

 
 

Figure 4: Bifurcation diagrams for critical points lie on centreline of channel, and the 

topology changes:  (a) 

 

C. The critical point: 

{   6    6}  {
(    ) 

 
  

        
      √ (    )  

     √ (   ) 

√ 
     

 

√ 
}        

This critical point is located below the wave troughs on the vertical. The Jacobian presented 

by: 

Aq=(√ (     )   √  
 √ (   )

   
) ((   )(√ (    )     √ (    )       √ (   ) ))⁄  

Aq1= 

(a) (b) (c) 
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( ( √ (    )             
 (    )     √ (    )       

   
 

 

   
 (   (    )(     

 ))   (          √   
     √  

√ 
)     √ (   )   √                   √ (   )   

                  √ (   ) )) , 

Aq2=(√ (    )     √ (    )       √ (   ) )   

Aq3=Aq1/Aq2 

 

           [
   

    
] ; 

The eigenvalues are: 

Aq4=(√(  √  
 √ (   )

   
   (     ) (√ (    )     √ (    )  

     √ (    ) )(    (√    (    )     √ (    )  (    (    

 )(    ))(√ (          √  )       √  )     √ (    ) )  √ (  

 )            (√ (              √ (    ) )        √ (    ) )))) ; 

Aq5=(√ (   )(√ (    )     √ (    )       √ (   ) ) ) ; 

  6   (
   

   
) ; 

Since, the equilibrium is qualitative changes in their behavior between the            

where,          and      
  

     √  

√ 

       √  
  .    

 When, q=        then     6    6   . Therefore, the Jacobian matrix has zeroed 

out, creating a non-hyperbolic decadent point at the slump point that correlates to non-simple 

decadence; see Figure (5.b). 

  Also, the value of            and    6      6   , unstable saddle nodes are the 

slump point, see Figure (5.c). 

Bifurcation schemes in the (y-q) level for different values of the phase differences of (ratios of 

amplitude, magnetic field and inclined angle) in Figure 5(ia, iib, iiic). 

 

 
                       (ia)                                                   (iib)                                                    (iiic) 

 

 

 

 

 

 

 

 

 

 

Figure 5: Diagrams of bifurcations (ia, iib, iiic) at 𝑥  𝑥  6 and topological 

variations (a1) 𝑞  𝑞𝑐   (b1) 𝑞  𝑞𝑐  𝑞𝑐  , (c1)  𝑞𝑐  𝑞  𝑞𝑐  

(a1) (b1) 
(c1) 
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6. Stream styles and global bifurcation 

     The vector field that is limited to this branch when y=0 

is   ̇  ̇   
√ (          [√  ])     [√  ]

√      [√  ]     [√  ]
   , from which 

Ƹ=
√ (          [√  ])     [√  ]

√      [√  ]     [√  ]
. During the crests and troughs of waves, critical conditions 

develop. Since Ƹ =0 determines the global bifurcation curves, we obtain 

  (    )  
√ (           √  )      √  

√      √        √  
  , 

  
(  

(    ) 

 
)
 

√ (             √ (   ) )      √ (   ) 

√ (   )     √ (   )       √ (   ) 
  . 

The parameters' global bifurcation diagram     comprises the following set curves with a 

variation of A: 

   (   )         
  

     √  

√ 

        √  
 , 

   (   )          
     

     √ (   ) 

√ 

        √ (    ) 
 . 

Along the bifurcation curve M, there exist isolated non-hyperbolic decadent points below the 

wave crests that are also non-simple. Whereas along bifurcation curve N, the related critical 

points connect in non-simple degenerate point connections underneath the wave troughs. Six 

heteroclinic pathways exist at critical locations that merge on a deteriorated saddle based on 

the N product. Curves that bifurcate are shown in Figure (6). These are the divisions of the 

peristaltic flow region: 

Region I: backward flow, in which all of the flow is going the other way. 

Region II: trapping occurs when two vortices with opposing rotations interact and the saddle 

are connected by heteroclinic connections. 

Region III: Augment flow, in which some of the fluid is able to pass through the centreline in 

the flow direction and eddies below wave crests combine to establish heteroclinic linkages 

with their neighbours. 

 

 

 

 

 

 

 

 

 

 

 

 

7. Discussion of the findings 

      It is crucial to clarify the importance of the current work for practical applications. 

Peristalsis allows for the construction of pumps without any moving components, such as 

valves, plungers, or rotors, coming into contact with the fluid being transported. In Figure (2) 

we notes that the three move of the flow, when give different values of q (backward, trapping 

and augmented). The stability of the equilibrium points and streamline topologies of different 

flow scenarios, as well as their bifurcations, are investigated in Figures (3, 4, 5, 6). Notes that 

in Figure (3), we explore the first flow field bifurcation and demonstrates the stability case of 

stagnation sites which are located on a vertical line between the upper and lower walls of the 

I 

II 

II

M 

N A=0.5 

M 

N 

I 

II 

IIA=8 A=24.5 
N 

M 

I 

II 

II

Figure 6: Global bifurcation for a planar change of A with distinct regions I for 

backward flow, II for trapping, and III for augmented flow. 
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channel, expressing the kind and stability of equilibrium points as {         } are expressed, 

see Figures 3(a1,a2,a3). Once q crosses through the critical values with a transverse 

orientation, an unstable saddle on the centerline separates into two stable centers. By 

increasing the amplitude ratio, magnetic field, and inclination angle, the bifurcation point 

changes from positive to negative transverse flow directions by widening the phase 

differences, see Figure (3).  

 

      Figure (4) illustrates the characteristics and stability of the crucial points{         } and 

explains how the saddle splits into saddle nods, which straighten the center in the longitudinal 

direction. It submits that by reducing the amplitude ratios and magnetic field. Both 

longitudinally and transversely, the eddying zone expands, while the opposite for inclined 

angles.  It should be noticed that for high phase differences, the saddle nodes migrate swiftly 

in the direction of their nearby stagnation points. When q approaches the second critical 

value    , these saddle nodes merge between the wave trough of the upper and lower walls of 

the channel to produce non-simple decadents points on the centerline bind with six 

heteroclinic connections, see Figures (4a, 4b, 4c). 

 

      Figure (5) illustrates the bifurcation of decadent points into saddle nodes in an episodic 

direction is shown by the type and stability of equilibrium point {   6    6}   Figure (5) 

illustrates how this bifurcation manifests at low flow rate for big ratios of amplitude. The 

vertical direction of the distance between saddle nodes shows an increase by a reduction in 

amplitude ratios, inclined angle and magnetic field, see Figure 5(a, b, c). 

In Figure (6), we display diagrams of global bifurcation for various values of A, it is observed 

that as the value of A rises, so it does the range of q where trapping occurs. We also see that 

trapping and argument enhance the curvature of the curve as the value of A rises, and they 

start to stay together before separating.  

 

8. Conclusion  

     In this research, we investigated at how magnetic field and inclined angle affected 

streamline styles and their bifurcations in two-dimensional, symmetric canal Newtonian fluid 

flowhence the most likely equilibrium points are in the saddle or in the middle. By looking at 

the eigenvalues of the Jacobian matrix, the critical locations were identified. This approach 

was used until it was determined for several flow conditions the local bifurcation  of the 

obverse equilibrium points took place. There are three different flow instances that can 

express themselves:( backward, trapping, and augmented flow). Key conclusions from the 

research include the following: 

A- The manifestation of the following three flow cases,  namely the Agumented, backward, 

and trapping flows have all been identified. 

B- The backward region retracts when the q is raised to its highest value, and the opposite 

behaviour is observed. 

C- A higher amplitude value suggests that there are more blouses, less trapping, additionally, 

that they are nearer the centerline. 

D- The arrival amplitude ratio's mention of the best value suggests that there are more 

blouses along the channel walls. 

E- Saddle, Saddle or center nodes are positioned on the center line, below the wave peaks, 

and through the channel walls. 
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