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Abstract 

     Let S be an inverse semiring, and U be an ideal of S. In this paper, we introduce   

the concept of U-S Jordan homomorphism of inverse semirings, and extend the 

result  of  Herstein on Jordan homomorphisms in inverse semirings. 
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 عمى اشباه الحمقات المعكهسة U-Sتشاكلات جهردان 
 

مجيد حميد عبد الرحمن،*براهيمارونق خميل   
، بغداد، العراقجامعة بغداد، كمية العمهم، قسم الرياضيات   

 الخلاصة
 U-Sىذا البحث قدمنا مفيهم تشاكلات جهردان في  S.في مثالي  U شبو حمقة معكهسة  و  S  ليكن      

  اشباه الحمقات المعكهسة. لتشاكلات جهردان في      Hersteinووسعنا نتيجة لاشباه الحمقات المعكهسة
 

1. Introduction  

     A nonempty set S with a binary operation ∗ is said to be semigroup iff for all x, y, z ϵ S we have,    

 ∗    ∗          ∗     ∗   .  The study of semiring dates back to H.S.Vandiver[1], a nonempty set S 

with two binary operations  + and ∗ is said to be semiring iff (S, +) semigroup, (S, .) semigroup and,    

                       and                        holds for all x, y, z ϵ S. 

     A semiring S is called inverse semiring, If for all x ∈ S there exist x' ∈ S 

such that    ́       and  ́     ́    ́ and this element is unique. Also S is called an additively 

inverse semiring if (S, +) is an inverse semigroup, that is for each x ∈ S there exist  ́ ∈ S such that 

   ́       and  ́     ́   ́, and this element is unique. We recall that an inverse semiring S is 

called semiprime if whenever x S x = 0 implies x = 0 for all x ∈ S, and S is called prime, if whenever,  

x S y = 0 implies either x = 0 or y = 0 for all x, y ∈ S. 

  A semiring S is said to be n-torsion free iff whenever n. x = 0 then x = 0 for all x ∈ S, where n ≠ 0.   

If  U is nonempty subset of S, U is called left ideal of S if x + y ∈ S for all x, y ∈ I, r. x ∈ S for all x ∈ 

U, r ∈ S and U≠ S (Similarly right ideal). 

     Herstein in 1950 studied Jordan derivations [2] and Jordan homomorphisms [3, 4] in prime rings. 

Bresar [5- 7], Baxter and Martindale [8] generalized Herstein’s results on semiprime rings.  

     In this paper, we introduce the definition of U-S Jordan homomorphism in inverse semirings and 

extend the result of Herstein on Jordan homomorphisms  in the setting of inverse semirings. 

 

2. Priliminaries 

Definition 2.1[9]: 

     A non empty set S with a binary operation (∗),  is called semigroup iff   

                             x ∗ (y ∗ z) = (x ∗ y  ∗ z    for all  x ,y ,z  S. 
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Definition 2.2[9]:   

     A non empty set S with two binary operations (+) and ( ), such that (S,+) and (S, .) are semigroups, 

where + is a commutative operation  and    x . (y + z)= x . y + x . z ,                          holds 

for all x , y, z ∈        ,                               
Definition 2.3[10]:  
     Let S be a semiring , S is called additively inverse if  (S,+)  is an inverse semigroup (i.e) for each 

 x
 
 S there exists a unique element  x   S  such that  

                                         x = x+ x +x  and  x= x + x + x . 
Definition 2.4[10]:   

     Let S be a semiring, S is called an inverse semiring, if for each x S , there exists  a unique element 

x'  such that:  

                                       x = x+ x +x  and  x= x + x + x . 
Definition 2.5[9]:   

     Let S be a semiring and let U be a subset of  S , U is called a left ideal of S if :  

      i)  x , y  U  then     ∈U. 

     ii) x  U  , r  S then    ∈     
The right ideal is defined in the similar way, and an ideal of S is a subset which is both a left ideal and 

a right ideal of S. 

Examples 2.6 [11]:    
    1) If S is an inverse semiring, then clearly Mn(S) under usual addition and multiplication is an 

inverse semiring for every positive integer n, for example   

       {(
    
    

)            ∈  } 

(M2 (S) , + , .) is an inverse semiring .  

    2)     Let S be any semiring, consider the set S[x] of polynomials under usual addition and 

multiplication, for each x S then S[x] is an inverse semiring.   

Definition 2.7 [10]:   

     Let S be a semiring then S is called  

(i) Additively commutative iff  for all x , y  S ,  

                                                      x + y = y + x  

(ii) Multiplicatively commutative if and only if  for all x ,yS,  

                                                       x. y = y. x  

(S , + , .) is called commutative semiring iff  both (i) and (ii) hold. 

Proposition 2.8 [10]:  

     Let S be an inverse semiring, then for each  x, y S 

(i)        

(ii)             . 
(iii)               . 
(iv)         . 

     In [5] Jordan homomorphism in inverse semirings  is defined  as follows:  

Let S and T be inverse semirings then, an additive mapping   : S  T is called a Jordan 

homomorphism if:  

                                    for all x , y ∈ S. 

We need the following lemmas for our results.             

Lemma 2.9[12]: 

      Let S be an inverse semiring and x , y S,  if  x + y= 0 then   x =y'.  

Lemma 2.10[12]:   

     Let S be a 2-torsion free semiprime inverse semiring if     x, y S such that           then 

            
Lemma 2.11[13]:   

     Let S be a 2- torsion free prime inverse semiring, if     ∈    are such that  

                          for all  r∈ S. 

Then either               
Throughtout this paper S and T are two inverse semirings and U be an ideal of S.  
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Now we introduce the definition of U-S Jordan homomorphism as follows: 

Definition 2.12:  

     A map : ST is called U -S Jordan homomorphism if : 

i)   is additive 

ii)  (xr + rx) +  (x)  (r)' +  (r) (x)' = 0          for all r  S and for all x  U. 

                                        

3. Results 

Lemma 3.1: 

     Let a map   : ST  U -S Jordan homomorphism, and T  is 2-torsion free, for all a , c U , b  S, 

then the following statement are true.  

 (i)  (a
2
) =  (a)

2
  

(ii)                                 

(iii)  (a b c + c b a) =  (a)  (b)  (c)+  (c)  (b)  (a). 

Proof(i): 

      Let  a U,    b S  

Since  is U-S Jordan homomorphism of inverse semiring S into 2- torsion free inverse semiring. 

Then       

                                   (ab+ba) +  (a)  (b)' +  (b)  (a)' =0                               (1) 

We replace   a by b in (1), we get: 

                                  (a
2
 + a

2
) +  (a)  (a)' +  (a)  (a)' =0  

                                          (2a
2
) +2   (a)  (a)' =0  

                                         2 (a
2
) + 2  (a)  (a)'=0 

Since T is 2-torsion free, then   

                                          (a
2
) +  (a)  (a)' =0.  

And by Lemma ( 2.9), we get 

                                   (a
2
) = ( (a)  (a)')' = (a)  (a)''=  (a)

2
. 

Then,  (a
2
) =  (a)

2
             for all a S                

 

Proof (ii):  

     Let   ∈    ∈   

Since   is U-S Jordan homomorphism of  an inverse semiring  

Then,   

            (ab +ba) +  (a)  (b)' +  (b)  (a)' = 0                   for all      ∈     
Put b= ab +ba  

 (a(ab +ba))+ (ab+ba)a) + (a)  (ab+ba)' +  (ab+ba)  (a)'=0 

 (a
2
b + aba+ aba+ba

2
) +  (a)  (ab+ba)' +  (ab+ba)  (a)'=0 

  (a
2
b + 2aba +ba

2
) +  (a)  (ab+ba)' +  (ab+ba)  (a)'=0                  (2)                   

In the view of Lemma 2.9 and by Definition( 2.12) 

 (ab + ba) = ( (a)  (b)' +(  (b)  (a)')'  

                   = (  (a)  (b)')' + ( (b)  (a)')' 

                              =   (a)  (b) +  (b)  (a)  

 (ab+ ba)' = ( (a)  (b) +  (b)  (a))'  

                  = ( (a)  (b))' +  (b)  (a))'  

                  =  (a)  (b)'+  (b)  (a)' 

Then,  we can replace   

 (ab + ba) by   (a)  (b) +  (b)  (a) and  (ab + ba) by  (a)  (b) +  (b)  (a) in (2). 

Thus, 

  (a
2
b + ba

2
 + 2aba) +  (a) ( (a)  (b)'+  (b)  (a)')+ 

                                       (  (a)  (b) +  (b)  (a))  (a)'=0   

 (a
2
b + ba

2
) +  (2aba) +  (a)  (a)  (b)'+  (a)  (b)  (a)' 

                               +  (a)  (b)  (a)'+  (b)  (a)  (a)'=0  

 (a
2
b + ba

2
) + 2 (aba)+  (a)

2 (b)'+2 (a)  (b)  (a)' +  (b)(  (a)  (a))'   

 (a
2
b+ba

2
)+2 (aba)+  (a)

2 (b)'+2 (a)  (b)  (a)'+  (b) ( (a)
2
)'   
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Since  (a
2
b + ba

2
) +  (a)

2
  (b)'+ (b)(  (a)

2
)'=0 

2 (aba)+2 (a)  (b)  (a)'=0 

Since T is 2- torsion free, then  

   (aba)+  (a)  (b)  (a)'=0  

Then by Lemma (2.9) we get, 

  (aba) =( (a)  (b)  (a)')'   

   Since         (a)  (b)  (a)''=  (a)  (b)  (a)  

Therefore,   

                       (aba) =  (a)  (b)  (a) .                                                        

Proof (iii):  

     Let  a∈U   , b S 

By linearizing the relation  

                                                  (aba) +  (a)  (b)  (a)'=0 

(i.e) Let a   a+c   where  c  U 

 ((a+c) b(a+c)) +  (a+c)  (b)  (a+c)' =0 

 (aba + abc + cba+ cbc) + ( (a) +  (c)  (b) ( (a)'+ (c)')=0 

 (aba) +  (abc) +  (cba) +  (cbc) +  (a)  (b)  (a)' +  (a)  (b)  (c)
'
+ 

                                                  (c)  (b)  (a)'+ (c)  (b)  (c)' =0. 

By using (ii), we get,  

                                          (abc) +  (cba) +  (a)  (b)  (c)'+ (c)  (b)  (a)'=0  

Therefore, 

                                          (a bc + cba) =  (a)  (b)  (c)'+  (c)  (b)  (a)'=0.                

Now we put some notation  

 a
b
 = (ab) +  (a)  (b)' where  aU   , b S  

 ab =  (ab)+  (b)  (a)' where  aU,   bS 

It
,
s clear that by equation  (1) we can get   

                                                                   a
b
 + b

a  . 

                                                   

Lemma 3.2:  

     Let a map  : ST be U -S Jordan homomorphism such that  T is  2- torsion free inverse semiring, 

then  a
b
 ab  = ab a

b
 = 0    for all    ∈       ∈      

Proof : 

      Let  aU      bS  

a
b
ab = ( (ab)+  (a)  (b)') ( (ab)+  (b)  (a)')  

       = (ab)  (ab) +  (ab)  (b)  (a)'+  (a)  (b)'  (ab)+  (a)(  (b)  (b)')  (a)'  

       = (ab ab) +  (ab)  (b)  (a)'+ (a)  (b)' (ab)+  (a)  (b
2
)  (a) 

by Lemma 3.1 (ii) and(iii)  

  (aba) = (a)  (b)  (a)  and  (cba+ abc) +  (c)  (b)  (a)'+  (a)  (b)  (c)'=0 

  (a)  (b
2
)  (a) =  (ab

2
a)  

a
b
ab= (ab ab) +  (ab)  (b)  (a)'+ (a)  (b)  (ab)'+  (a)  (b

2
)  (a)  

    =  (abab+ abba) +  (ab)  (b)  (a)'+  (b)  (ab)'=0 

Then, 

             a
b
ab = 0  

To show    ab a
b
 = 0  

aba
b
= ( (ab) +  (b) ( (a)')(  (ab)  +  (a)  (b)') 

= ( (ab)  (ab)  +  (ab)  (a)  (b)'  +  (b) ( (a)' (ab)  +  (b)  (a)' (a)  (b)' 

= (ab)
2
 +  (ab) ( (ab) +  (a)  (b)'+  (b)  (a)'  (ab)+  (b)  (a)' (a)  (b)' 

By Lemma 3.1 (a)
2
=  (a

2
) 

=  (ab
2
)+  (ab)  (a)  (b)'+ (b)  (a)' (ab)+  (b) ( (a)  (a))'  (b)' 

=  (ab ab)+  (ab)  (a)  (b)'+  (b)  (a)' (ab)+  (b)(  (a)
2
)' (b)' 

=  (ab ab)+  (ab)+  (a)  (b)'+  (b)  (a)' (ab)+(  (b)  (a
2
))' (b)' 

=  (ab ab)+  (ab)  (a)  (b)' +  (b)  (a)' (ab)+  (b)  (a
2
)  (b) 

By Lemma 3.1(ii) 
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 (aba)=  (a)  (b)  (a)  

 (cba+ abc)+  (c)  (b)  (a)' +  (a)  (b)  (c)'=0 

 (ab ab + ba ab) +  (ab)  (a)  (b)' +  (b)  (a)' (ab) =0 

 (ab ab + ba ab)+  (ab)  (a)  (b)' + (b)  (a)  (ab)'=0  

Then  ab a
b
=0                                                                                             

 Lemma 3.3:  

Let a map  : ST  be U -S Jordan homomorphism such that  T is  2- torsion free inverse semiring , 

then for any  r,aU   bS  

a
b
  (r) a

b
 = a

b
  ([a, b] r)  

ab  (r)  ab =  ([a, b] r) ab  

Proof : 

      (r) a
b
 =  (r) ( (ab)+  (a)  (b)' ) 

                  =  (r)  (ab) +  (r)  (a)  (b)'  

By Lemma 3.1 (iii)  

              (cba+ abc) +  (c)(b)  (a) '+  (a )  (b)  (c)'=0  

We get, 

                               (rab + bar)+  (r )  (a)  (b)'+  (b)  (a)  (r )'=0  

                              ( r)  (a)  (b)' =  (rab + bar)' + (b)  (a)  (r )  

So, 

                              (r ) a
b
 =  (r)  (ab) + (rab + bar)' +  (b)  (a)  (r )  

Since  r= r+r'+r, we have, 

                              (rab + bar)' =  ((r+r'+r) ab + bar)'  

                                                     =  (rab + (r'+r) ab + bar)' 

                                                     =  (rab+ ab(r+r')+bar)' 

                                                     =  (rab + abr +abr'+bar)'  

                                                     =  (rab + abr)' + (abr'+bar)'  

Since   is U-S  Jordan homomorphism , then 

                                (rab + bar)' =  (r )  (ab)' +  (ab)  (r )'+ (abr'+bar)'  

Thus,  

      (r) a
b
=  (r )  (ab) +  (r )  (ab)' +  (ab)  (r )'+  (abr+ bar')+  (b)  (a)  (r ) 

                 =  (r )(  ( ab) +  (ab)')+  (b)  (a)  ( r) +  (ab)  (r )' +  ([a ,b]r)  

Note that  

               ( abr + bar')   =  ( abr + ba'r)=  (ab + ba)r) = ([a,b]r) 

Thus  (r ) a
b
 =  (r ) ( (ab)+  (ab)')+  (b)  (a)  (r )+  (ab)  (r )'+  ([a,b]r) 

                       = ( (ab)+  (ab)')  (r)+  (ab)')  (r)+  (b)  (a)  (r )+  ([a,b]r)  

                       =  (ab)'+  (ab)+  (ab)')  (r )+  (b)  (a)  (r )+  ([a ,b]r) 

                       =( (ab)' (r) +  (b)  (a)  (r )+  ([a,b]r)  

                       =  (ab)  (r) ' + (b)  (a)'  (r )'+  ([a,b]r)  

                       = ( (ab)+  (b)  (a)' )  (r )'+   ([a,b]r) =ab  (r )' +  ([a ,b]r)   

 Thus,    

                            (r ) a
b
= ab  (r )' +  ([a ,b]r)                                                         (3) 

 

                          a
b (r ) a

b
 = a

b
 ab  (r )' + a

b ([a,b]r)  = a
b
  ([a, b]r) 

Now to prove that         ab  (r) ab           )ab , multiply the equation (3) from the left by ab , we 

get 

                       (r ) a
b 
ab =ab  (r )' ab +  ([a ,b]r). ab 

 Then                     ab  (r )' ab +  ([a ,b]r) ab = 0  

So,  by Lemma (2.9)  ab  (r )ab =  ([ a, b]r) ab.                               

Lemma 3.4: 

     Let a map         be U -S Jordan homomorphism such that  T is  2- torsion free inverse 

semiring, if  a,r  U , b S.Then  

                                          =  (r) a
b 
+ ab  (r) 
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And, 

                                        ]= a
b  (r) +  (r) ab 

Proof:  

Let a,r  U , bS 

To prove that 

                              (r [a,b])= a
b  (r) +  (r) ab  

Take rigtht hand  

a
b  (r) +  (r) ab =  (ab)  (r) +  (a)  (b)  (r) +  (r)  (ab)

 
+  (r)  (b)  (a) 

                                                                            
                                                             
By Lemma 3,1(iii), we get, 

                           =                           

                                                    

                                                     

                           =                     

                                         

                                        ) 

                                                                  

Now,  

 (r) a
b
 + ab  (                                                          

                                                                                   

                                                                           

                                                     

                                                  

                            =                         

                                                

                                          

                                        ) 

                                       

                                                          
 

Theorem 3.5 : 

Let a map  : ST  be U -S Jordan homomorphism such that  T is  2- torsion free inverse semiring, 

then for all  a,r ∈ U,  b ∈ S. 

                                                ab      ab
 + a

b      ab =0 

Proof: 

 By Lemma 3.4 we have  

                                                     = a
b             ab                                                                     (4)          

Replacing r by [a,b] r  in equation (4) 

                                                 = a
b                        ab                   

By Lemma (3.1) (ii) and Lemma ( 3.4 ) we get,  

                               ([a,b]r) =  (r) a
b 
+ ab  (r)  

Then      [a,b]  (r)  [a,b] = a
b
  (r) a

b
 + a

b
 ab  (r) + ( (r) a

b
 + ab  (r))  ab  

                                                                            = a
b
  (r) a

b
 + a

b
 ab  (r) +  (r) a

b
 ab + ab  (r) ab  

             [a,b]  (r)  [a,b] = a
b
  (r) a

b
 + ab  (r) ab                                            (5)   

Now   

                                                        
And since,     is  U-S Joradan homomorphism ,then   

               (ab'+ba) =  (a)  (b) ' +  (b)  (a) ' 

          (ab) +  (ab)=  (a)  (b)+  (b)  (a) 
So                       

                                                a
b 
+ ab                                

Then the equation(5) will be  
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                           (ab+a
b
)  (r)(ab+a

b
) = a

b
  (r) a

b
 + ab  (r) ab  

              ab  (r) ab + ab  (r) a
b
 + a

b
  (r) ab + a

b
  (r) a

b
 = a

b (r) a
b
+ab  (r)ab. 

Adding  ba  (r) ab + b
a
  (r) a

b
   on both sides of the equation above and take the left hand 

               ba  (r) ab + b
a
  (r) a

b
 +  ab  (r) ab + ab  (r) a

b
+ a

b
  (r) ab + a

b
  (r) a

b
 

               = (ba +ab)  (r) ab + (b
a
+a

b
)  (r) a

b
 + ab  (r) a

b
 + a

b
  (r) ab 

               = ab  (r) a
b
 + a

b
  (r) ab  

And when take the right hand 

               a
b
  (r) a

b
 + ab  (r) ab + ba  (r) ab +b

a
  (r) a

b
 

               = (a
b
+ b

a
)  (r) a

b
 + (ab+ ba)  (r) ab= 0.                         

 

Lemma 3.6:  

    Let S be an inverse semiring , and U be an ideal in S. if  S is 2-torsion free semiprime ,and a , b U, 

such that   axb + bxa=0 for all xU. Then  axb=bxa=0. 

Proof:  

Since,             thus                   
Thus        
                                                                                                               ….. (1) 

This  satisfies for all  x ∈ U 

Then,                                                                      
                                                                        

                                               
Since S is 2- torsion free then,       . 

Since U is an ideal in S 

 (b xa) U (bxa) = 0  (USS) 

US(bxa) US(b xa)=0 

(bxa)US(bxa)  (b xa)U(bxa)= 0 

US  bxa SUS bxa =0 and by semiprimness  

US bxa=0                                    
 by the same way will get        .                                                                         

Lemma 3.7: 

      Let S be an inverse semiring , and U be an ideal in S. if  S is 2-torsion free semiprime, and  a,b∈U 

are such that  axb + bxa =0  for all x U, then either a=0 or  b=0  

Proof: 

 by Lemma (2.10) 

              

Then either              .                                 

Theorem 3.8: 

    Let a map  : ST  be U -S Jordan homomorphism such that  T is  2- torsion free semiprime 

inverse semiring, then either  is a homomorphism or an anti homomorphism on U. 

Proof : 

     By Theorem (3.5)  For all a,b,r  U 

ab  (r) a
b
 + a

b
  (r) ab= 0 

and by Lemma ( 2.11) 

                      ab  (r) a
b
 + a

b
  (r) ab= 0 

 then either         ab=0    or      a
b
=0  

                                           

and by Lemma  (2.9 ) 

                     (ab) =  (a)  (b)  

Or  ab=0  

                                         
and by Lemma (2.9)  

                                 .  

 Then,   is either homomorphism or anti-hommorphism..                           
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