

ISSN: 0067-2904

\boldsymbol{U} - \boldsymbol{S} Jordan Homomorphisim of Inverse Semirings

Rawnaq KH. Ibraheem*, Abdulrahman H. Majeed
Department of Math, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

Let S be an inverse semiring, and U be an ideal of S. In this paper, we introduce the concept of U-S Jordan homomorphism of inverse semirings, and extend the result of Herstein on Jordan homomorphisms in inverse semirings.

Keywords: Inverse semiring, Jordan homomorphism, prime ring.
تشاكلات جوردان U-S على اشباه الحلقات المعكوسة

> رونق خليل ابراهيم *،عبد الرحمن حميد مجيد

قسم الرياضيات ، كلية العلوم، جامعة بغداد، بغداد، العراق

$$
\begin{aligned}
& \text { ليكن S شبه حلقة معكوسة و U مثالي في S. في هذا البحث قدمنا مفهوم تشاكلات جوردان U-S } \\
& \text { لاشباه الحلقات المعكوسة ووسعنا نتيجة Herstein لتشاكلات جوردان في اشباه الحلقات المعكوسة. }
\end{aligned}
$$

1. Introduction

A nonempty set S with a binary operation $*$ is said to be semigroup iff for all $x, y, z \in S$ we have, $x *(y * z)=(x * y) * z$. The study of semiring dates back to H.S.Vandiver[1], a nonempty set S with two binary operations + and $*$ is said to be semiring iff $(S,+)$ semigroup, $(S,$.$) semigroup and,$ $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$ holds for all $x, y, z \in S$.

A semiring S is called inverse semiring, If for all $x \in S$ there exist $x^{\prime} \in S$ such that $x+\dot{x}+x=x$ and $\dot{x}+x+\dot{x}=\dot{x}$ and this element is unique. Also S is called an additively inverse semiring if $(S,+)$ is an inverse semigroup, that is for each $x \in S$ there exist $\dot{x} \in S$ such that $x+\dot{x}+x=x$ and $\dot{x}+x+\dot{x}=\dot{x}$, and this element is unique. We recall that an inverse semiring S is called semiprime if whenever $x S x=0$ implies $x=0$ for all $x \in S$, and S is called prime, if whenever, $x S y=0$ implies either $x=0$ or $y=0$ for all $x, y \in S$.
A semiring S is said to be n-torsion free iff whenever n. $x=0$ then $x=0$ for all $x \in S$, where $n \neq 0$.
If U is nonempty subset of S, U is called left ideal of S if $x+y \in S$ for all $x, y \in I, r, x \in S$ for all $x \in$ $U, r \in S$ and $U \neq S$ (Similarly right ideal).

Herstein in 1950 studied Jordan derivations [2] and Jordan homomorphisms [3, 4] in prime rings. Bresar [5-7], Baxter and Martindale [8] generalized Herstein's results on semiprime rings.

In this paper, we introduce the definition of U-S Jordan homomorphism in inverse semirings and extend the result of Herstein on Jordan homomorphisms in the setting of inverse semirings.

2. Priliminaries

Definition 2.1[9]:

A non empty set S with a binary operation (*), is called semigroup iff

$$
x *(y * z)=(x * y) * z \quad \text { for all } x, y, z \in S
$$

[^0]
Definition 2.2[9]:

A non empty set S with two binary operations $(+)$ and (\cdot), such that $(S,+)$ and ($\mathrm{S},$.$) are semigroups,$ where + is a commutative operation and $x \cdot(y+z)=x \cdot y+x \cdot z,(y+z) \cdot x=y \cdot x+z \cdot x$ holds for all $x, y, z \in S$, then, $(S,+, \cdot)$ is called semiring.

Definition 2.3[10]:

Let S be a semiring, S is called additively inverse if ($S,+$) is an inverse semigroup (i.e) for each $x \in S$ there exists a unique element $x^{\prime} \in S$ such that

$$
x=x+x^{\prime}+x \text { and } x^{\prime}=x^{\prime}+x+x^{\prime} .
$$

Definition 2.4[10]:
Let S be a semiring, S is called an inverse semiring, if for each $x \in S$, there exists a unique element x^{\prime} such that:

$$
x=x+x^{\prime}+x \text { and } x^{\prime}=x^{\prime}+x+x^{\prime} .
$$

Definition 2.5[9]:

Let S be a semiring and let U be a subset of S, U is called a left ideal of S if :
i) $x, y \in U$ then $x+y \in U$.
ii) $x \in U, r \in S$ then r. $x \in U$.

The right ideal is defined in the similar way, and an ideal of S is a subset which is both a left ideal and a right ideal of S.

Examples 2.6 [11]:

1) If S is an inverse semiring, then clearly $M_{\mathrm{n}}(S)$ under usual addition and multiplication is an inverse semiring for every positive integer n , for example

$$
M_{2}(S)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in S\right\}
$$

$\left(M_{2}(\mathrm{~S}),+,.\right)$ is an inverse semiring .
2) Let S be any semiring, consider the set $S[x]$ of polynomials under usual addition and multiplication, for each $x \in S$ then $S[x]$ is an inverse semiring.
Definition 2.7 [10]:
Let S be a semiring then S is called
(i) Additively commutative iff for all $x, \mathrm{y} \in S$,

$$
x+y=y+x
$$

(ii) Multiplicatively commutative if and only if for all $x, y \in S$,

$$
x \cdot y=y \cdot x
$$

($\mathrm{S},+,$.) is called commutative semiring iff both (i) and (ii) hold.

Proposition 2.8 [10]:

Let S be an inverse semiring, then for each $x, y \in S$
(i) $x^{\prime \prime}=x$
(ii) $(x+y)^{\prime}=x^{\prime}+y^{\prime}$.
(iii) $(x y)^{\prime}=x^{\prime} y=x y^{\prime}$.
(iv) $x^{\prime} y^{\prime}=x y$.

In [5] Jordan homomorphism in inverse semirings is defined as follows:
Let S and T be inverse semirings then, an additive mapping $\psi: S \rightarrow T$ is called a Jordan homomorphism if:
$\psi(x y+y x)+\psi(x) \psi(y)^{\prime}+\psi(y) \psi(x)^{\prime}=0 \quad$ for all $x, y \in S$.
We need the following lemmas for our results.

Lemma 2.9[12]:

Let S be an inverse semiring and $x, y \in S$, if $x+y=0$ then $x=y^{\prime}$.

Lemma 2.10[12]:

Let S be a 2-torsion free semiprime inverse semiring if $\quad x, y \in S$ such that $x r y+y r x=0$ then $x r y=y r x^{\prime}=0$.

Lemma 2.11[13]:

Let S be a 2- torsion free prime inverse semiring, if $x, y \in S$ are such that $x r y+y r x=0 \quad$ for all $r \in S$.
Then either $x=0$ or $y=0$.
Throughtout this paper S and T are two inverse semirings and U be an ideal of S.

Now we introduce the definition of U-S Jordan homomorphism as follows:

Definition 2.12:

A map $\psi: S \rightarrow T$ is called $U-S$ Jordan homomorphism if :
i) $\quad \psi$ is additive
ii) $\quad \psi(x r+r x)+\psi(x) \psi(r)^{\prime}+\psi(r) \psi(x)^{\prime}=0 \quad$ for all $r \in S$ and for all $x \in U$.

3. Results

Lemma 3.1:

Let a map $\psi: S \rightarrow T U-S$ Jordan homomorphism, and T is 2-torsion free, for all $a, c \in U, b \in S$, then the following statement are true.
(i) $\psi\left(a^{2}\right)=\psi(a)^{2}$
(ii) $\psi(a b a)=\psi(a) \psi(b) \psi(a)$
(iii) $\psi(a b c+c b a)=\psi(a) \psi(b) \psi(c)+\psi(c) \psi(b) \psi(a)$.

Proof(i):

Let $a \in U, \quad b \in S$
Since ψ is U-S Jordan homomorphism of inverse semiring S into 2- torsion free inverse semiring. Then

$$
\begin{equation*}
\psi(a b+b a)+\psi(a) \psi(b)^{\prime}+\psi(b) \psi(a)^{\prime}=0 \tag{1}
\end{equation*}
$$

We replace a by b in (1), we get:

$$
\begin{gathered}
\psi\left(a^{2}+a^{2}\right)+\psi(a) \psi(a)^{\prime}+\psi(a) \psi(a)^{\prime}=0 \\
\psi\left(2 a^{2}\right)+2 \psi(a) \psi(a)^{\prime}=0 \\
2 \psi\left(a^{2}\right)+2 \psi(a) \psi(a)^{\prime}=0
\end{gathered}
$$

Since T is 2-torsion free, then

$$
\psi\left(a^{2}\right)+\psi(a) \psi(a)^{\prime}=0
$$

And by Lemma (2.9), we get

$$
\psi\left(a^{2}\right)=\left(\psi(a) \psi(a)^{\prime}\right)^{\prime}=\psi(a) \psi(a)^{\prime \prime}=\psi(a)^{2}
$$

Then, $\psi\left(a^{2}\right)=\psi(a)^{2} \quad$ for all $a \in S$.

Proof (ii):

Let $a \in U, b \in S$
Since ψ is U-S Jordan homomorphism of an inverse semiring
Then,

$$
\psi(a b+b a)+\psi(a) \psi(b)^{\prime}+\psi(b) \psi(a)^{\prime}=0 \quad \text { for all } a \in U, b \in S
$$

Put $b=a b+b a$

$$
\begin{align*}
& \psi(a(a b+b a))+(a b+b a) a)+\psi(a) \psi(a b+b a)^{\prime}+\psi(a b+b a) \psi(a)^{\prime}=0 \\
& \psi\left(a^{2} b+a b a+a b a+b a^{2}\right)+\psi(a) \psi(a b+b a)^{\prime}+\psi(a b+b a) \psi(a)^{\prime}=0 \\
& \psi\left(a^{2} b+2 a b a+b a^{2}\right)+\psi(a) \psi(a b+b a)^{\prime}+\psi(a b+b a) \psi(a)^{\prime}=0 \tag{2}
\end{align*}
$$

In the view of Lemma 2.9 and by Definition(2.12)

$$
\begin{aligned}
\psi(a b+b a) & =\left(\psi(a) \psi(\mathrm{b})^{\prime}+\left(\psi(b) \psi(a)^{\prime}\right)\right)^{\prime} \\
& =\left(\psi(a) \psi(b)^{\prime}\right)^{\prime}+\left(\psi(b) \psi(a)^{\prime}\right)^{\prime} \\
& =\psi(a) \psi(b)+\psi(b) \psi(a) \\
\psi(a b+b a)^{\prime} & =(\psi(a) \psi(b)+\psi(b) \psi(a))^{\prime} \\
& \left.=(\psi(a) \psi(b))^{\prime}+\psi(b) \psi(a)\right)^{\prime} \\
& =\psi(a) \psi(b)^{\prime}+\psi(b) \psi(a)^{\prime}
\end{aligned}
$$

Then, we can replace $\psi(a b+b a)$ by $\psi(a) \psi(b)+\psi(b) \psi(a)$ and $\psi(a b+b a)$ by $\psi(a) \psi(b)+\psi(b) \psi(a)$ in (2).
Thus,

$$
\begin{gathered}
\begin{array}{r}
\psi\left(a^{2} b+b a^{2}+2 a b a\right)+\psi(a)\left(\psi(a) \psi(b)^{\prime}+\psi(b) \psi(a)^{\prime}\right)+ \\
\\
\quad(\psi(a) \psi(b)+\psi(b) \psi(a)) \psi(a)^{\prime}=0
\end{array} \\
\begin{array}{c}
\psi\left(a^{2} b+b a^{2}\right)+\psi(2 a b a)+\psi(a) \psi(a) \psi(b)^{\prime}+\psi(a) \psi(b) \psi(a)^{\prime} \\
\quad+\psi(a) \psi(b) \psi(a)^{\prime}+\psi(b) \psi(a) \psi(a)^{\prime}=0
\end{array} \\
\begin{array}{c}
\psi\left(a^{2} b+b a^{2}\right)+2 \psi(a b a)+\psi(a)^{2} \psi(b)^{\prime}+2 \psi(a) \psi(b) \psi(a)^{\prime}+\psi(b)(\psi(a) \psi(a))^{\prime}=0 \\
\psi\left(a^{2} b+b a^{2}\right)+2 \psi(a b a)+\psi(a)^{2} \psi(b)^{\prime}+2 \psi(a) \psi(b) \psi(a)^{\prime}+\psi(b)\left(\psi(a)^{2}\right)^{\prime}=0
\end{array}
\end{gathered}
$$

Since $\psi\left(a^{2} b+b a^{2}\right)+\psi(a)^{2} \psi(b)^{\prime}+\psi(b)\left(\psi(a)^{2}\right)^{\prime}=0$
$2 \psi(a b a)+2 \psi(a) \psi(b) \psi(a)^{\prime}=0$
Since T is 2- torsion free, then

$$
\psi(a b a)+\psi(a) \psi(b) \psi(a)^{\prime}=0
$$

Then by Lemma (2.9) we get,
$\psi(a b a)=\left(\psi(a) \psi(b) \psi(a)^{\prime}\right)^{\prime}$
Since $\quad \psi(a) \psi(b) \psi(a)^{\prime \prime}=\psi(a) \psi(b) \psi(a)$
Therefore,

$$
\psi(a b a)=\psi(a) \psi(b) \psi(a)
$$

Proof (iii):

Let $a \in U, b \in S$
By linearizing the relation

$$
\psi(a b a)+\psi(a) \psi(b) \psi(a)^{\prime}=0
$$

(i.e) Let $a \equiv a+c \quad$ where $c \in U$ $\psi((a+c) b(a+c))+\psi(a+c) \psi(b) \psi(a+c)^{\prime}=0$
$\psi(a b a+a b c+c b a+c b c)+\left(\psi(a)+\psi(c) \psi(b)\left(\psi(a)^{\prime}+\psi(c)^{\prime}\right)=0\right.$
$\psi(\mathrm{aba})+\psi(a b c)+\psi(c b a)+\psi(c b c)+\psi(a) \psi(b) \psi(a)^{\prime}+\psi(a) \psi(b) \psi(c)^{\prime}+$ $\psi(c) \psi(b) \psi(a)^{\prime}+\psi(c) \psi(b) \psi(c)^{\prime}=0$.
By using (ii), we get,

$$
\psi(a b c)+\psi(c b a)+\psi(a) \psi(b) \psi(c)^{\prime}+\psi(c) \psi(b) \psi(a)^{\prime}=0
$$

Therefore,

$$
\psi(a b c+c b a)=\psi(a) \psi(b) \psi(c)^{\prime}+\psi(c) \psi(b) \psi(a)^{\prime}=0
$$

Now we put some notation

$a^{b}=\psi(a b)+\psi(a) \psi(b)^{\prime}$ where $a \in U, b \in S$
$a_{b}=\psi(a b)+\psi(b) \psi(a)^{\prime}$ where $a \in U, \quad b \in S$
It's clear that by equation (1) we can get

$$
a^{b}+b^{a}=0
$$

Lemma 3.2:

Let a map $\psi: S \rightarrow T$ be $U-S$ Jordan homomorphism such that T is 2-torsion free inverse semiring, then $a^{b} a_{b}=a_{b} a^{b}=0$ for all $a \in U, b \in S$

Proof:

$$
\text { Let } a \in U \quad b \in S
$$

$a^{b} a_{b}=\left(\psi(a b)+\psi(a) \psi(b)^{\prime}\right)\left(\psi(a b)+\psi(b) \psi(a)^{\prime}\right)$
$=\psi(a b) \psi(a b)+\psi(a b) \psi(b) \psi(a)^{\prime}+\psi(a) \psi(b)^{\prime} \psi(a b)+\psi(a)\left(\psi(b) \psi(b)^{\prime}\right) \psi(a)^{\prime}$
$=\psi(a b a b)+\psi(a b) \psi(b) \psi(a)^{\prime}+\psi(a) \psi(b)^{\prime} \psi(a b)+\psi(a) \psi\left(b^{2}\right) \psi(a)$
by Lemma 3.1 (ii) and(iii)

$$
\begin{aligned}
& \psi(a b a)=\psi(a) \psi(b) \psi(a) \text { and } \psi(c b a+a b c)+\psi(c) \psi(b) \psi(a)^{\prime}+\psi(a) \psi(b) \psi(c)^{\prime}=0 \\
& \psi(a) \psi\left(b^{2}\right) \psi(a)=\psi\left(a b^{2} a\right) \\
& a^{b} a_{b}=\psi(a b a b)+\psi(a b) \psi(b) \psi(a)^{\prime}+\psi(a) \psi(b) \psi(a b)^{\prime}+\psi(a) \psi\left(b^{2}\right) \psi(a) \\
& \quad=\psi(a b a b+a b b a)+\psi(a b) \psi(b) \psi(a)^{\prime}+\psi(b) \psi(a b)^{\prime}=0
\end{aligned}
$$

Then,

$$
a^{b} a_{b}=0
$$

To show $\quad a_{b} a^{b}=0$
$a_{b} a^{b}=\left(\psi(a b)+\psi(b)\left(\psi(a)^{\prime}\right)\left(\psi(a b)+\psi(a) \psi(b)^{\prime}\right)\right.$
$=\left(\psi(a b) \psi(a b)+\psi(a b) \psi(a) \psi(b)^{\prime}+\psi(b)\left(\psi(a)^{\prime} \psi(a b)+\psi(b) \psi(a)^{\prime} \psi(a) \psi(b)^{\prime}\right.\right.$
$=\psi(a b)^{2}+\psi(a b)\left(\psi(a b)+\psi(a) \psi(b)^{\prime}+\psi(b) \psi(a)^{\prime} \psi(a b)+\psi(b) \psi(a)^{\prime} \psi(a) \psi(b)^{\prime}\right.$
By Lemma 3.1 $\psi(a)^{2}=\psi\left(a^{2}\right)$
$=\psi\left(a b^{2}\right)+\psi(a b) \psi(a) \psi(b)^{\prime}+\psi(b) \psi(a)^{\prime} \psi(a b)+\psi(b)(\psi(a) \psi(a))^{\prime} \psi(b)^{\prime}$
$=\psi(a b a b)+\psi(a b) \psi(a) \psi(b)^{\prime}+\psi(b) \psi(a)^{\prime} \psi(a b)+\psi(b)\left(\psi(a)^{2}\right)^{\prime} \psi(b)^{\prime}$
$=\psi(a b a b)+\psi(a b)+\psi(a) \psi(b)^{\prime}+\psi(b) \psi(a)^{\prime} \psi(a b)+\left(\psi(b) \psi\left(a^{2}\right)\right)^{\prime} \psi(b)^{\prime}$
$=\psi(a b a b)+\psi(a b) \psi(a) \psi(b)^{\prime}+\psi(b) \psi(a)^{\prime} \psi(a b)+\psi(b) \psi\left(a^{2}\right) \psi(b)$
By Lemma 3.1(ii)

```
\(\psi(a b a)=\psi(a) \psi(b) \psi(a)\)
\(\psi(c b a+a b c)+\psi(c) \psi(b) \psi(a)^{\prime}+\psi(a) \psi(b) \psi(c)^{\prime}=0\)
\(\psi(a b a b+b a a b)+\psi(a b) \psi(a) \psi(b)^{\prime}+\psi(b) \psi(a)^{\prime} \psi(a b)=0\)
\(\psi(a b a b+b a a b)+\psi(a b) \psi(a) \psi(b)^{\prime}+\psi(b) \psi(a) \psi(a b)^{\prime}=0\)
Then \(a_{b} a^{b}=0\)
```


Lemma 3.3:

Let a map $\psi: S \rightarrow T$ be $U-S$ Jordan homomorphism such that T is 2 - torsion free inverse semiring, then for any $r, a \in U \quad b \in S$
$a^{b} \psi(r) a^{b}=a^{b} \psi([a, b] r)$
$a_{b} \psi(r) a_{b}=\psi([a, b] r) a_{b}$

Proof:

$$
\begin{aligned}
\psi(r) a^{b} & =\psi(r)\left(\psi(a b)+\psi(a) \psi(b)^{\prime}\right) \\
& =\psi(r) \psi(a b)+\psi(r) \psi(a) \psi(b)^{\prime}
\end{aligned}
$$

By Lemma 3.1 (iii)

$$
\psi(c b a+a b c)+\psi(c) \varphi(b) \psi(a)^{\prime}+\psi(a) \psi(b) \psi(c)^{\prime}=0
$$

We get,

$$
\begin{aligned}
& \psi(r a b+b a r)+\psi(r) \psi(a) \psi(b)^{\prime}+\psi(b) \psi(a) \psi(r)^{\prime}=0 \\
& \psi(r) \psi(a) \psi(b)^{\prime}=\psi(r a b+b a r)^{\prime}+\psi(b) \psi(a) \psi(r)
\end{aligned}
$$

So,

$$
\psi(r) a^{b}=\psi(r) \psi(a b)+\psi(r a b+b a r)^{\prime}+\psi(b) \psi(a) \psi(r)
$$

Since $r=r+r^{\prime}+r$, we have,

$$
\begin{aligned}
\psi(r a b+b a r)^{\prime} & =\psi\left(\left(r+r^{\prime}+r\right) a b+b a r\right)^{\prime} \\
& =\psi\left(r a b+\left(r^{\prime}+r\right) a b+b a r\right)^{\prime} \\
& =\psi\left(r a b+a b\left(r+r^{\prime}\right)+b a r\right)^{\prime} \\
& =\psi\left(r a b+a b r+a b r^{\prime}+b a r\right)^{\prime} \\
& =\psi(r a b+a b r)^{\prime}+\varphi\left(a b r^{\prime}+b a r\right)^{\prime}
\end{aligned}
$$

Since ψ is $U-S$ Jordan homomorphism, then

$$
\psi(r a b+b a r)^{\prime}=\psi(r) \psi(a b)^{\prime}+\psi(a b) \psi(r)^{\prime}+\psi\left(a b r^{\prime}+b a r\right)^{\prime}
$$

Thus,

$$
\begin{aligned}
\psi(r) a^{b} & =\psi(r) \psi(a b)+\psi(r) \psi(a b)^{\prime}+\psi(a b) \psi(r)^{\prime}+\psi\left(a b r+b a r^{\prime}\right)+\psi(b) \psi(a) \psi(r) \\
& =\psi(r)\left(\psi(a b)+\psi(a b)^{\prime}\right)+\psi(b) \psi(a) \psi(r)+\psi(a b) \psi(r)^{\prime}+\psi([a, b] r)
\end{aligned}
$$

Note that

$$
\left.\psi\left(a b r+b a r^{\prime}\right)=\psi\left(a b r+b a^{\prime} r\right)=\psi(a b+b a) r\right)=\psi([a, b] r)
$$

Thus $\psi(r) a^{b}=\psi(r)\left(\psi(a b)+\psi(a b)^{\prime}\right)+\psi(b) \psi(a) \psi(r)+\psi(a b) \psi(r)^{\prime}+\psi([a, b] r)$

$$
\begin{aligned}
& \left.=\left(\psi(a b)+\psi(a b)^{\prime}\right) \psi(r)+\psi(a b)^{\prime}\right) \psi(r)+\psi(b) \psi(a) \psi(r)+\psi([a, b] r) \\
& \left.=\psi(a b)^{\prime}+\psi(a b)+\psi(a b)^{\prime}\right) \psi(r)+\psi(b) \psi(a) \psi(r)+\psi([a, b] r) \\
& =\left(\psi(a b)^{\prime} \psi(r)+\psi(b) \psi(a) \psi(r)+\psi([a, b] r)\right. \\
& =\psi(a b) \psi(r)^{\prime}+\psi(b) \psi(a)^{\prime} \psi(r)^{\prime}+\psi([a, b] r) \\
& =\left(\psi(a b)+\psi(b) \psi(a)^{\prime}\right) \psi(r)^{\prime}+\psi([a, b] r)=a_{b} \psi(r)^{\prime}+\psi([a, b] r)
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\psi(r) a^{b}=a_{b} \psi(r)^{\prime}+\psi([a, b] r) \tag{3}
\end{equation*}
$$

$$
a^{b} \psi(r) a^{b}=a^{b} a_{b} \psi(r)^{\prime}+a^{b} \psi([a, b] r)=a^{b} \psi([a, b] r)
$$

Now to prove that $\quad a_{b} \psi(r) a_{b}=\psi([a, b] r) a_{b}$, multiply the equation (3) from the left by a_{b}, we get

$$
\begin{array}{cc}
& \psi(r) a^{b} a_{b}=a_{b} \psi(r)^{\prime} a_{b}+\psi([a, b] r) . a_{b} \\
\text { Then } & a_{b} \psi(r)^{\prime} a_{b}+\psi([a, b] r) a_{b}=0
\end{array}
$$

So, by Lemma (2.9) $a_{b} \psi(r) a_{b}=\psi([a, b] r) a_{b}$.

Lemma 3.4:

Let a map $\psi: S \rightarrow T$ be $U-S$ Jordan homomorphism such that T is 2 - torsion free inverse semiring, if $a, r \in \mathrm{U}, \mathrm{b} \in \mathrm{S}$.Then

$$
\psi([a, b] r)=\psi(r) a^{b}+a_{b} \psi(r)
$$

And,

$$
\psi(r)[a, b]=a^{b} \psi(r)+\psi(r) a_{b}
$$

Proof:

Let $a, r \in U, b \in S$
To prove that

$$
\psi(r[a, b])=a^{b} \psi(r)+\psi(r) a_{b}
$$

Take rigtht hand

$$
\begin{aligned}
a^{b} \psi(r)+\psi(r) a_{b} & =\psi(a b) \psi(r)+\psi(a) \psi(b)^{\prime} \psi(r)+\psi(r) \psi(a b)+\psi(r) \psi(b) \psi(a)^{\prime} \\
& =\psi(a b r+r a b)+\psi(a)^{\prime}+\psi(b) \psi(r)+\psi(r) \psi(b) \psi(a)^{\prime} \\
& =\psi(a b r+r a b)+\psi\left(a^{\prime} b r+r b a^{\prime}\right)
\end{aligned}
$$

By Lemma 3,1(iii), we get,

$$
\begin{aligned}
& =\psi\left(a b r+r a b+a b r^{\prime}+r b a\right) \\
& =\psi(a b(r+r)+r a b+r b a) \\
& =\psi((r+r) a b+r a b+r b a) \\
& =\psi\left(\left(r+r^{\prime}+r\right) a b+r b a\right) \\
& =\psi(r a b+r b a) \\
& =\psi(r(a b+b a)) \\
& =\psi(r[a, b])
\end{aligned}
$$

Now,

$$
\begin{aligned}
\psi(r) a^{b}+a_{b} \psi(r) & =\psi(r)(\psi(a b)+\psi(a) \psi(b))+\psi(a b) \psi(r)+\psi(b) \psi(a)^{\prime} \psi(r) \\
= & \psi(r) \psi(a b)+\psi(r) \psi(a) \psi(b)^{\prime}+\psi(a b) \psi(r)+\psi(b) \psi(a)^{\prime} \psi(r) \\
& =\psi(r a b+a b r)+\psi(r) \psi(a) \psi(b)^{\prime}+\psi(b)^{\prime} \psi(a) \psi(r) \\
& =\psi(r a b+a b r)+\psi\left(r a b^{\prime}+b^{\prime} a r\right) \\
& =\psi\left(r a b+a b r+r a b^{\prime}+b^{\prime} a r\right) \\
& =\psi\left((r+r) a b+a b r+b^{\prime} a r\right) \\
& =\psi\left(a b\left(r+r^{\prime}+r\right)+b^{\prime} a r\right) \\
& =\psi\left(a b r+b^{\prime} a r\right) \\
& =\psi\left(\left(a b+b^{\prime} a\right) r\right) \\
& =\psi(a b+b a) r \\
& =\psi([a, b] r)
\end{aligned}
$$

Theorem 3.5 :

Let a map $\psi: S \rightarrow T$ be $U-S$ Jordan homomorphism such that T is 2 - torsion free inverse semiring, then for all $a, r \in U, b \in S$.

$$
a_{b} \psi(r) a^{b}+a^{b} \psi(r) a_{b}=0
$$

Proof:

By Lemma 3.4 we have

$$
\begin{equation*}
\psi(r[a, b])=a^{b} \psi(r)+\psi(r) a_{b} \tag{4}
\end{equation*}
$$

Replacing r by $[a, b] r$ in equation (4)

$$
\left.\psi([a, b] r[a, b])=a^{b} \psi([a, b] r)+\psi([a, b]) r\right) a_{b}
$$

By Lemma (3.1) (ii) and Lemma (3.4) we get,

$$
\psi([a, b] r)=\psi(r) a^{b}+a_{b} \psi(r)
$$

Then $\quad \psi[a, b] \psi(r) \psi[a, b]=a^{b} \psi(r) a^{b}+a^{b} a_{b} \psi(r)+\left(\psi(r) a^{b}+a_{b} \psi(r)\right) a_{b}$ $=a^{b} \psi(r) a^{b}+a^{b} a_{b} \psi(r)+\psi(r) a^{b} a_{b}+a_{b} \psi(r) a_{b}$ $\psi[a, b] \psi(r) \psi[a, b]=a^{b} \psi(r) a^{b}+a_{b} \psi(r) a_{b}$
Now

$$
\begin{equation*}
\psi[a, b]=\psi\left(a b+b^{\prime} a\right)=\psi\left(a b+a b+a b^{\prime}+b^{\prime} a\right)=\psi(2 a b)+\psi\left(a b^{\prime}+b^{\prime} a\right) \tag{5}
\end{equation*}
$$

And since, ψ is $U-S$ Joradan homomorphism ,then

$$
\begin{gathered}
\psi\left(a b^{\prime}+b^{\prime} a\right)=\psi(a) \psi(b)^{\prime}+\psi(b) \psi(a)^{\prime} \\
\psi(a b)+\psi(a b)=\psi(a) \psi(b)^{\prime}+\psi(b) \psi(a)^{\prime}
\end{gathered}
$$

So

$$
\psi[a, b]=a^{b}+a_{b}
$$

Then the equation(5) will be

$$
\begin{gathered}
\left(a_{b}+a^{b}\right) \psi(r)\left(a_{b}+a^{b}\right)=a^{b} \psi(r) a^{b}+a_{b} \psi(r) a_{b} \\
a_{b} \psi(r) a_{b}+a_{b} \psi(r) a^{b}+a^{b} \psi(r) a_{b}+a^{b} \psi(r) a^{b}=a^{b} \psi(r) a^{b}+a_{b} \psi(r) a_{b} .
\end{gathered}
$$

Adding $b_{a} \psi(r) a_{b}+b^{a} \psi(r) a^{b}$ on both sides of the equation above and take the left hand

$$
\begin{aligned}
& b_{a} \psi(r) a_{b}+b^{a} \psi(r) a^{b}+a_{b} \psi(r) a_{b}+a_{b} \psi(r) a^{b}+a^{b} \psi(r) a_{b}+a^{b} \psi(r) a^{b} \\
& =\left(b_{a}+a_{b}\right) \psi(r) a_{b}+\left(b^{a}+a^{b}\right) \psi(r) a^{b}+a_{b} \psi(r) a^{b}+a^{b} \psi(r) a_{b} \\
& =a_{b} \psi(r) a^{b}+a^{b} \psi(r) a_{b}
\end{aligned}
$$

And when take the right hand

$$
\begin{aligned}
& a^{b} \psi(r) a^{b}+a_{b} \psi(r) a_{b}+b_{a} \psi(r) a_{b}+b^{a} \psi(r) a^{b} \\
& =\left(a^{b}+b^{a}\right) \psi(r) a^{b}+\left(a_{b}+b_{a}\right) \psi(r) a_{b}=0
\end{aligned}
$$

Lemma 3.6:

Let S be an inverse semiring, and U be an ideal in S. if S is 2-torsion free semiprime , and $a, b \in U$, such that $a x b+b x a=0$ for all $x \in U$. Then $a x b=b x a=0$.

Proof:

Since, $a x b+b x a=0$ thus, $a x b=(b x a)^{\prime}=b x a^{\prime}$
Thus,

$$
\begin{equation*}
a x b=b x a \tag{1}
\end{equation*}
$$

This satisfies for all $x \in U$
Then, $(b x a) y(b x a)=b x(a y b) x a=b x(b y a) x a=a((x b y) b x a \quad b y$ (1)

$$
\begin{aligned}
2(b x a) y(b x a)=(b x a) y(b x a) & +(b x a) y(b x a)=a(x b y) b x a+(b x a) y(b x a) \\
& =(a x b+b x a) y(b x a)=0
\end{aligned}
$$

Since S is 2- torsion free then, $b x a=0$.
Since U is an ideal in S
$(b x a) U(b x a)=0(U S \subseteq S)$
$U S(b x a) U S(b x a)=0$
$(b x a) U S(b x a) \subseteq(b x a) U(b x a)=0$
US bxa SUS $b x a=0$ and by semiprimness
$U S$ bxa=0bxa S bxa $=0$ then $b x a=0$
by the same way will get $a x b=0$.

Lemma 3.7:

Let S be an inverse semiring, and U be an ideal in S. if S is 2-torsion free semiprime, and $a, b \in U$ are such that $a x b+b x a=0$ for all $x \in U$, then either $a=0$ or $b=0$

Proof:

by Lemma (2.10)
$a x b=b x a=0$
Then either $a=0$ or $b=0$.

Theorem 3.8:

Let a map $\psi: S \rightarrow T$ be $U-S$ Jordan homomorphism such that T is 2 - torsion free semiprime inverse semiring, then either ψ is a homomorphism or an anti homomorphism on U.
Proof :
By Theorem (3.5) For all $a, b, r \in U$
$a_{b} \psi(r) a^{b}+a^{b} \psi(r) a_{b}=0$
and by Lemma (2.11)

$$
a_{b} \psi(r) a^{b}+a^{b} \psi(r) a_{b}=0
$$

then either $a_{b}=0 \quad$ or $\quad a^{b}=0$
$\psi(a b)+\psi(a) \psi(b)^{\prime}=0$
and by Lemma (2.9)

$$
\psi(a b)=\psi(a) \psi(b)
$$

Or $a_{b}=0$

$$
\psi(a b)+\psi(b) \psi(a)^{\prime}=0
$$

and by Lemma (2.9)

$$
\psi(a b)=\psi(b) \psi(a)
$$

Then, ψ is either homomorphism or anti-hommorphism..

References

1. Vandiver. H.S. 1934. Note on A Simple Type of Algebra in Which the Cancellation Law of Addition Does Not Hold, Bull. Amer. Math. Soc., 40: 916-920.
2. Herstein I.N. 1956. Jordan Homomorphisms, Trans. Amer. Math. Soc, 81: 331-351
3. Herstein I. 1967. On A Type of Jordan Mappings, An. Acad. Brasil. Ci Oenc, 39: 357-360
4. Herstein I.N., 1957. Jordan Derivations of Prime Rings, Proc. Amer. Math. Soc., 8: 1104-1110
5. Bresar, M. 1988. Jordan Derivations on Semiprime Rings, Proc. Amer. Math. Soc., 104: 10031006
6. Bresar, M. 1989. Jordan Mappings of Semiprime Rings, J. Algebra, 127: 218-228
7. Bresar M. 1991. Jordan Mappings of Semiprime Rings II, Bull. of the Austral. Math. Soc., 44: 233 -238.
8. Baxter W.E. Martindale W.S. 1979. Jordan Homomorphisms of Semiprime Rings, J. Algebra, 56: 457-471
9. Petrish,M. 1973. Introduction to Semiring. Charles Emerrll publishing Company,OHIO,1973.
10. Sara S. Aslam, M. and Javed, M.A. 2016. On centralizer of semiprime inverse semiring. General Algebra and Applications, 36(1): 71-84.
11. Sultana, K. A. 2014. Some Structural Properties of Semirings, Annals of Pure and Applied Mathematics, 5(2): 158-167
12. Javed , M. A., Aslam M., Hussain M . 2012. On Condition(A2) of Bandlet and Petrish for inverse semirings. Int. Math. Forum, 7(59): 2903-2914.
13. Shafiq, S. and Aslam, M. 2017. On Jordan Mapping of Inverse Semirings. Open Math. 15: 11231131

[^0]: *Email: rawnaq.kalel@gmail.com

