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Abstract  

     Traditional surveillance systems rely on human attention, limiting their 

effectiveness. This study employs convolutional neural networks and transfer 

learning to develop a real-time computer vision system for automatic handgun 

detection. A comprehensive analysis of online handgun detection methods is 

conducted, emphasizing reducing false positives and learning time. Transfer 

learning is demonstrated as an effective approach. Despite technical challenges, the 

proposed system achieves a precision rate of 84.74%, demonstrating promising 

performance comparable to related works, enabling faster learning and accurate 

automatic handgun detection for enhanced security. This research advances security 

measures by reducing human monitoring dependence, showcasing the potential of 

transfer learning-based approaches for efficient and reliable handgun detection. 

 

Keywords: Transfer learning, Deep learning, Moving Object Detection, Computer 

Vision 

 

1. Introduction 

     Gun violence has become an escalating concern in the United States, with a significant 

increase in mass shooting incidents over recent years. In 2015 alone, the Mass Shooting 

Tracker recorded 372 such incidents, resulting in the tragic loss of 475 lives and injuries to 

1,870 individuals [1]. Alongside the rise in gun-related crimes, the incidence of firearm thefts 

has also surged. In 2015, the FBI reported a total of 4,091 bank robberies, with 1,725 

involving the use of firearms [2]. Existing security measures, such as silent alarms and panic 

buttons, rely on individuals' ability to activate them manually, a task that becomes daunting 

when confronted by an armed threat. 

 

     The Portland Police Bureau [3] advises individuals to remain composed and comply with 

robbers' instructions as a flight response strategy. However, this approach has inherent 

challenges. Users may struggle to activate the button, potentially delaying the alert to 

authorities or rendering it ineffective. Even when activated, the response time may allow 

criminals to escape or result in unfortunate accidents. In public areas like parks or other 

establishments, installing signaling devices can be logistically challenging. Furthermore, in 

locations lacking such alert systems, individuals attempting to seek help through alternative 

means may encounter obstacles. Addressing these limitations and identifying opportunities 

for improvement in surveillance and control systems are critical for safeguarding lives and 

preventing theft, necessitating enhancements in effectiveness and response time during 

emergencies. 
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     In today's digital era, computer technology has revolutionized data management, enabling 

seamless storage, processing, indexing, and retrieval of information. Significant strides have 

been made in object detection, thanks to extensive research efforts and the availability of 

international image databases for machine learning. These databases have played a pivotal 

role in advancing methodologies in this field. 

 

     The increasing reliance on digital images, motion analysis, and object detection in videos 

underscores their pivotal role in various applications, particularly in video surveillance. Public 

safety concerns are paramount in modern society and demand attention. Weapons, especially 

in densely populated areas, pose significant threats to individuals' safety and security. Thus, 

relying solely on human operators may prove insufficient for preventing perilous situations 

during major events. This raises the question of harnessing artificial intelligence-based 

systems to provide comprehensive security solutions. 

 

     The utilization of online automatic handgun detection has the potential to improve the 

effectiveness of surveillance methods through the application of deep learning. Deep learning 

techniques, like recurrent neural networks, have been shown to be better than older methods 

like naive Bayes and decision trees in recent years. These techniques are better at many tasks, 

such as image classification, detection, and segmentation [4, 5, 6, 7, 8, 9]. Additionally, 

similar research has been suggested in [10], where an optimal detector demonstrates reliable 

results as an automated alarm system. However, to train deep convolutional neural networks 

(CNNs), which have millions of parameters, you need large datasets with millions of samples 

and access to high-performance computing (HPC) resources, like systems with multiple 

processors and graphics processing unit (GPU) acceleration. 

Extensive research has been dedicated to developing firearms detection and prevention 

technologies, such as X-rays, electromagnetic scintigraphy, and profiling, to identify firearms 

in individuals. However, these technologies face limitations, including potential infringement 

on Second Amendment rights, leading to false alarms. To address this, emerging technologies 

like computer vision (CV) offer promise. CV systems analyze video streams, extracting 

contextual information to detect potential threats effectively. Intelligent video surveillance 

(IVS) systems leveraging CV can autonomously monitor areas without human intervention, 

enhancing firearm detection while considering context. These systems follow a pattern of 

image processing, tracking, and behavior analysis, providing comprehensive surveillance 

capabilities [7].  

 

     In an Intelligent Video Surveillance (IVS) system, video input undergoes several steps: 

Background model generation identifies foreground pixels, grouping them into targets (blobs) 

for activity monitoring. This process efficiently filters CCTV system data, providing relevant 

video metadata. High-level algorithms process this metadata, detecting predefined events and 

triggering responses, such as alarms. IVS systems, with real-time processing capabilities, can 

monitor multiple cameras simultaneously, potentially replacing human agents in CCTV 

surveillance. This typical structure in automated surveillance systems involves image 

processing, tracking, and higher-level scene and behavior analysis modules [7]. The process is 

visually illustrated in Figure 1.  
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Figure 1: Organizational chart of the computer vision pipeline designed for security 

applications [11] 

 

     The potential of computer vision to enhance safety is acknowledged. Threatening poses are 

identified, and there is a promise of prompt alerting by authorities, with an 80% accuracy rate. 

Despite challenges, security and public safety can be significantly enhanced by it [12]. 

Researchers at AGH University in Krakow, Poland [13] used computer vision to detect 

firearms and knives in CCTV footage. They achieved 94.93% specificity and 81.18% 

sensitivity for knife detection and 96.69% specificity and 35.98% sensitivity for firearms. 

While more improvements can be made, this research highlights the potential of computer 

vision to enhance security through advanced surveillance systems [13].  

Firearms were found to be detected more accurately than knives in [14], primarily due to 

limited database diversity and low-resolution CCTV recordings. To address this issue, the 

implementation of higher-quality cameras for faster threat detection is planned. Additionally, 

terahertz detection initiatives in the 100–500 GHz range are being pursued with the aim of 

enhancing security through the detection of concealed dangerous items.  

In this concise overview of related works, the potential of computer vision in safety 

enhancement and the successful detection of firearms and knives in surveillance footage are 

emphasized. These insights underscore the significance of accuracy and privacy in weapon 

detection systems (see Table 1). 

 

Table 1: Summary of Related Works 

Related Works Accuracy (%) Specificity (%) Sensitivity (%) 

Identifying threatening poses [12] 80   

AGH University (Knives Detection) [13]  94.93 81.18 

AGH University (Firearms Detection) [13]  96.69 35.98 

 

     Privacy is prioritized in this work, and invasive methods for identifying weapons are 

avoided. Alerts are only triggered when weapons are openly displayed or used, ensuring 

safety without unnecessary police notifications for concealed carry. 

 

     This work shares similarities with a previous project [13], both aiming to automate weapon 

detection to address information overload in CCTV systems. However, the previous project 

faced limitations, particularly in firearm detection, due to a high number of false positives. To 

overcome these challenges, the goal is to enhance the system through specialized hardware 
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utilization, incorporating hardware preprocessing for faster and more consistent weapon 

detection results. Additionally, transfer learning is employed to improve efficiency, 

leveraging pre-trained models' knowledge to accelerate learning and enhance detection 

accuracy, particularly with limited training data. This research demonstrates the effectiveness 

of transfer learning in developing a fast and accurate handgun detection system, contributing 

to computer vision's advancement in public safety and security. 

 

     The subsequent sections of this paper will cover various aspects. Section 2 will delve into 

the detailed explanation of the proposed methodology, while Section 3 will describe the 

experiments conducted and the datasets employed. The results obtained will be presented and 

analyzed in Section 4. Finally, Section 5 will summarize and conclude this work. 

 

2. Proposed methodology  

     The task of handgun detection involves recognizing objects and determining their positions 

in static images or video sequences. In this study, we propose and test a basic CNN model 

(shown in Figure 2) for finding handguns using the same datasets and both the sliding 

window method and the region proposal method [10]. 

  

     The process begins with image acquisition, involving two stages: capturing the initial 

images and capturing subsequent images. The subsequent images are essential for motion 

detection, as this process cannot be performed without them. The quality of the results relies 

heavily on the careful acquisition of images, emphasizing the importance of this step in 

achieving successful registration. 

 

2.1 Motion Detection  

     In contrast to static images, motion detection is crucial for handgun detection within a 

video sequence. However, due to its computational cost, it is important to optimize the 

process. To prevent unnecessary triggering of the handgun detection algorithm in the absence 

of motion in the video, a set of simple image processing operations is performed to identify 

the presence of a moving object, where applicable. This helps improve the efficiency and 

accuracy of the overall detection process [8].  

Differential images [15] are obtained by subtracting two images: 

Gdif(x, y)  =  g1(x, y)  −  g2(x, y)                                                  (1) 

 
     A differential image Gdif highlights motion by revealing variations between two images 

g1 and g2. It involves computing the differences between three consecutive images: It-1, It, 

and It+1. This method offers the advantage of removing static background information and 

concentrating solely on the relevant changes associated with motion detection: 

∆I1  =  It+1  −  It, ∆I2  =  It  − It−1, ∆I =  ∆I1 ˄ ∆I2                                         (2) 

 
     In practical implementation, three images are captured at times t-1, t, and t+1 to compute 

the differences ∆I1 and ∆I2. ∆I1 represents the absolute difference between the last two 

images, while ∆I2 represents the absolute difference between the first two images. The final 

differential image, ∆I, is obtained by taking the bitwise difference between ∆I1 and ∆I2. 
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Figure 2: General block diagram of the proposed model 

 

2.1.1 Conversion to Gray Scale and Noise Reduction 

     Prior to conducting any operations on the captured images, it is crucial to convert them to 

grayscale. Utilizing grayscale images simplifies the process and is more efficient for the 

intended task. Furthermore, reducing the noise caused by cameras and lighting is essential. 

This can be accomplished by averaging each pixel with its neighboring pixels. 

 

2.1.2 Application of Threshold  

     At this stage of the process, the aim is to transform the image into a binary format, which 

means having two possible pixel values. Pixels that surpass a certain threshold will be 

classified as white, while the remaining pixels will be classified as black. This binary 

representation helps in identifying the moving object within the image [16]. 

 

2.1.3 Contour detection 

     Once the region of interest (ROI) is obtained from the image, the subsequent step is to 

identify and detect the outlines within this specific region. If no contours are detected after 

this process, it signifies the absence of movement, and the system reverts to the image 

acquisition step. However, if contours are detected, it initiates the process of handgun 

detection [17]. 

 

2.2 Handgun Detection 

     The described process depends on a computer vision module that employs a CNN-based 

model [18] for handgun detection. The CNN comprises nodes, where an input tensor is fed 

and another tensor is produced as output from the final nodes. The input tensor represents the 
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input image, while the output tensor indicates the binary classification label for detection or 

non-detection of handguns. 

 

     The detection of handguns involves exploring various solutions to address the challenge of 

real-time detection. However, one of the major hurdles lies at the hardware level. 

Consequently, experiments were conducted using four different models to address this issue: 

1. Model based on CNN. 

2. Model based on Fast R-CNN [5]. 

3. Model based on MobileNet [19]. 

4. Model based on AlexNet [20]. 

 

2.2.1 CNN based Model 

     The first model, depicted in Figure 3, consists of five convolution layers, two maximum 

pooling layers, and three fully connected layers. The input image has a size of 32x32 pixels. 

The image is first passed through the initial convolution layer, which comprises 32 filters of 

size 3x3. Each convolutional layer is followed by a rectified linear unit (ReLU) activation 

function, which ensures that the neurons only output positive values. This convolution 

operation generates 32 feature maps of size 32x32. 

 

     The resulting features are then fed into the second convolution layer, which consists of 32 

filters. After the convolution, a ReLU activation function is once again applied, and then a 

pooling operation that lowers the size of the feature maps and the quantity of parameters 

follows. The output of this layer is 32 feature maps of size 16x16. This process is repeated for 

the third, fourth, and fifth convolutional layers, with each layer having 64 filters. The ReLU 

activation function is applied after each operation of convolution. 

Following the five convolutional layers, a pooling layer is employed, which produces 64 

feature maps with dimensions of 8x8. The feature vector extracted from these convolutions 

possesses a dimension of 4096. 

Afterward, a neural network with three fully connected layers is utilized. The first two layers 

consist of 1024 neurons each, employing the ReLU activation function. The third layer uses a 

SoftMax activation function to compute the probability distribution across the 100 classes 

(corresponding to the number of classes in the Handgun Dataset for the sliding window 

approach). 

 

 
Figure 3: Proposed CNN Architecture [21] 
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2.2.2 Fast R-CNN based Model  

     The second model, illustrated in Figure 4, takes region proposals generated by an external 

system (such as a selective search) as input. Following the proposals, they undergo a pooling 

layer specifically designed for the region of interest (ROI). This pooling layer resizes each 

region and its corresponding data to a fixed size. This resizing step is essential because the 

fully connected layer requires all vectors to have the same size for further processing. By 

resizing the regions, consistency in the input dimensions is ensured for further processing in 

the model. 

 

 
Figure 2: Fast R-CNN architecture [5] 

 

2.2.3 MobileNet based Model 

     This model shares a similar architecture with the second model, with slight adjustments 

made to the configuration of learning parameters. These adjustments might include changes in 

the learning rate, regularization techniques, or optimization algorithms used during the 

training process. These modifications aim to improve the model's performance and adapt it to 

specific requirements or challenges encountered in the task of handgun detection. 

 
Figure 3: MobileNet architecture [21] 
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2.2.4 AlexNet based Model 

     To expedite the learning task and reduce the required time and epochs, it is possible to 

retrain a pre-trained image classification network. In the same manner that people employ 

their prior knowledge to understand and accomplish new problems, neural networks are 

trained and tested on various datasets [22]. This pre-trained network has already learned to 

extract powerful and informative features from natural images. By using this pre-trained 

network as a starting point, it becomes easier to learn a new task efficiently.  

AlexNet is indeed one of these pre-trained networks. It is a convolutional neural network that 

has already been trained on over a million images from the ImageNet database [23]. The 

AlexNet network is 8 layers deep and has the capability to classify images into 1000 object 

categories, including items like keyboards, mice, pencils, and various animals. This extensive 

training has enabled the network to learn complex feature representations for a diverse set of 

images. The network's image input size is 227 x 227 pixels. 

 

 
Figure 4: The AlexNet archit\ecture with spatial pyramid pooling [24] 

 

3. Experiments  

     To assess the effectiveness of the proposed models, two databases [25] are utilized during 

the learning phase. 

 

3.1 Handgun Dataset for the sliding window approach.  

     The training dataset used for the classification task consists of 102 classes with a total of 

9,261 images. Among these classes, the handgun class contains 200 images. 
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Figure 7: Samples from the Handgun Dataset for the Sliding Window Approach 

 

3.2 Handgun Dataset for the region.  

     The training dataset used for the detection task comprises 3,000 images specifically 

focused on handguns. These images are meticulously chosen to encompass a comprehensive 

context surrounding the handguns. 

 

 
Figure 8: Samples from the Handgun Dataset for the Region Proposal Approach 

 

     The test dataset employed for both classification and detection tasks comprises a total of 

608 images. Out of these, 304 images are specifically focused on handguns, while the 

remaining 304 images represent non-handgun objects. 

For the first three models, the learning process involved utilizing a sample of 420 images 

from the Handgun Dataset database for the region proposal approach. The first and fourth 

models were then evaluated using the entire test dataset, which comprises 608 images (304 
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handgun images and 304 non-handgun images). The second model was tested with a subset of 

200 images, while the third model was evaluated using a subset of 420 images. 

 

4. Obtained results  

    In the evaluation of the models, the following metrics [26, 27, 28, 29, 30, 31, 32, 33, 34, 

35] were used: 

• Positive (P): The number of real positive cases in the dataset. 

• Negative (N): The number of real negative cases in the dataset. 

• True Positives (TP): This indicates the number of images where the process accurately 

detects a handgun among the 304 images that contain a handgun. 

• True Negatives (TN): This refers to the number of images in which the process correctly 

does not detect a handgun among the 304 images that do not contain a handgun. 

• False Positives (FP): This indicates the number of images in which the process incorrectly 

detects a handgun among the 304 images that do not contain a handgun. 

• False Negatives (FN): This signifies the number of images in which the process fails to 

detect a handgun among the 304 images that contain a handgun. 

• Accuracy (ACC): This is the degree of closeness of measurements of a quantity to that 

quantity's true value. It is calculated as (TP + TN) / (P + N). 

• Accuracy =
True Positives + True Negatives

Positives + Negatives
                                 (3) 

• Precision (P): This represents the percentage of correctly detected handguns among the 304 

images that contain handguns. It is calculated as TP / (TP + FP). 

• Precision =
True Positives

True Positives + False Positives
                                 (3) 

• Recall (R): This indicates the percentage of correctly detected handguns among the entire 

608 images in the test dataset. It is calculated as TP / (TP + FN). 

• Recall =
True Positives

True Positives + False Negatives
                     (4) 

• F1 measure: This is a metric that combines precision and recall into a single value to 

provide a balanced evaluation. It is calculated as 2 * (precision * recall) / (precision + recall). 

• F1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                        (5) 

 
     These metrics help assess the performance of the models in terms of their ability to 

accurately detect handguns in the test dataset and provide a comprehensive evaluation of their 

precision, recall, and overall effectiveness. 

 

     The results obtained from the experiments demonstrate that the performance improves as 

the neural network learns from the database, particularly with an increase in the time of 

learning. The size and quality of the learning database also play a crucial role in achieving 

better results. When analyzing the results obtained, reference is made to Table 2, where it is 

observed that the learning error and validation decrease as the learning time increases. 

For the first model, a total of 274 images were misclassified. On the other hand, 334 images 

were correctly classified. As a result of limited learning time and hardware configuration 

constraints, the unsupervised classification model achieved an accuracy rate of 55%, 

indicating its performance is suboptimal. 

 

     In contrast, the second model achieved better results. It misclassified only 40 images. The 

remaining 160 images were correctly classified, yielding an accuracy rate of 80%. However, 

for real-time testing using a webcam, this model indeed demands a robust hardware 

configuration, particularly the computational capabilities provided by a GPU, to achieve 

optimal performance. 
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     The third model exhibited superior performance, misclassifying only 42 images. A 

significant majority of the images (378) were correctly classified, resulting in an impressive 

accuracy rate of 90% for static images. This model also showed good performance in real-

time testing. As depicted in Figure 6, compared to the other previous models, the proposed 

model requires less time for learning and performs better during execution (testing). 

Furthermore, this proposed transfer learning-based model exhibited good performance even 

when tested on larger datasets, achieving an accuracy rate of 86.68%. 

 

Table 2: Comparison of all models 

Model 
Number of 

Images 

Number of Well 

Classified Images 

Number of 

Misclassified Images 

Learning 

Time (Hours) 

Accuracy 

 

 

CNN 608 334 274 5 55 

Fast R-CNN 200 160 40 24 80 

MobileNet 420 378 42 192 90 

AlexNet 608 527 81 9 86.68 

 

     Overall, the results highlight the importance of sufficient learning time, a large and diverse 

learning database, and powerful hardware configurations to achieve optimal performance in 

handgun detection tasks. The proposed model, utilizing a transfer learning approach, 

demonstrated the highest accuracy-to-learning time ratio. 

Table 2 showcases the results obtained from the different models used in this study in terms 

of accuracy. The utilization of the fast R-CNN and MobileNet-CNN models involves 

initiating a fresh learning process using the Handgun Dataset, which comprises 3,000 images 

for region proposals. This learning process spans 48 hours. Additionally, the last classification 

layer of the proposed AlexNet-based model is modified to accommodate two classes instead 

of the original 1,000. It is then retrained using 1,000 non-handgun images from the Handgun 

Dataset for the sliding window approach and 1,000 handgun images from the Handgun 

Dataset for the region proposals approach [10]. The retraining process takes 9 hours to 

complete. 

 

     Furthermore, the evaluation is performed using the other metrics on a test set containing 

608 images, consisting of 304 handgun images and 304 non-handgun images. As depicted in 

Table 3, all models exhibit good performance on static images and demonstrate real-time 

capabilities. However, the proposed AlexNet-based model stands out with a higher ratio of 

precision, recall, and F1 measure compared to the other trained models. It is important to note 

that, in comparison to other studies in the literature, more improvements can be achieved. 

 

     It is worth mentioning that all the learning tasks in this work were conducted on basic 

machines with modest hardware configurations. Despite the hardware limitations, the models 

were able to achieve satisfactory results, showcasing their potential for application in real-

world scenarios.  

 

Table 3: Obtained Results 

Model TP FN TN FP P R F1 

Fast R-CNN 232 72 248 56 80.76 76.31 78.37 

MobileNet 156 54 168 42 78.78 74.28 76.46 

Alexnet 272 32 255 49 84.74 89.47 87.04 

[10] 304 0 247 57 84.21 100 91.43 
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Figure 9: Detection of a handgun in real-time in an image captured by a webcam 

 

5. Conclusion  

     In conclusion, this study significantly contributes to the field by highlighting the potential 

of AI as an efficient solution for real-time surveillance, thereby enhancing security during 

significant events. The research's primary components, motion detection and real-time 

handgun detection, have been thoroughly explored. While implementing deep learning for 

handgun detection presented challenges, particularly due to computational requirements, the 

study demonstrates the feasibility of utilizing soft deep learning models for handgun 

detection, albeit with longer learning times, even when constrained by a CPU. Furthermore, 

the results obtained from the proposed-based model emphasize its potential to reduce learning 

time and overcome hardware limitations by leveraging pre-trained networks such as AlexNet 

while maintaining detection performance. As a future direction, additional experimentation 

can be conducted on the proposed transfer learning model, utilizing more powerful machines 

to further optimize the learning process and enhance the handgun detection system's overall 

performance, thus advancing the existing literature in the field of AI-based surveillance. 
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