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Abstract  

     In this paper, an approximation technique is introduced to solve the coupled 

linear parabolic boundary value problems with variable coefficients by using mixed 

of the Galerkin finite element method in space variable with implicit finite 

difference method in the time variable. At any discrete time    this technique is 

transformed the  coupled linear parabolic boundary value problems with variable 

coefficients into a linear algebraic system which is called a Galerkin a linear 

algebraic system, and then it is solved using the Cholesky Decomposition. 

Illustration examples are presented and the results are shown by figures and tables, 

and show the efficiency of the proposed method.   

 

Keywords: Coupled parabolic boundary value problem, Galerkin finite element 

method, implicit difference method, Approximate solution.  

 

الفروقات الضمنية لحل زوج من مسائل القيم الحدودية المكافئة ذات معاملات  –مزج طريقتي كاليركن 
 متغيرة

 

2*ابراهيم, وفاء عبد 1جميل امير الهواسي  

قسم الرياضيات, كلية العلوم, الجامعة المستنصرية, بغداد, العراق1  
قسم الرياضيات, كلية التربية المقداد, جامعة ديالى, ديالى, العراق 2  

 
 الخلاصة 

في هذا البحث, تم تقديم تقنية تقريبية لحل زوج من مسائل القيم الحدودية ذات معاملات متغيرة من النمط      
مزج طريقة كاليركن للعناصر المنتهية بالنسبة لمتغير الفضاء مع الطريقة الضمنية للفروقات  باستخدامالمكافئ 

سائل القيم الحدودية ذات معاملات متغيرة من المنتهية بالنسبة لمتغير الزمن . هذه التقنية حولت زوج من م
طريقة  باستخدامنظام جبري خطي  وهو نظام كاليركن الجبري الخطي . والذي تم حله  إلىالنمط المكافئ 

 تم إعطاء أمثلة توضيحية بالإشكال والجداول وتبين كفاءة الطريقة المقترحة.جولسكي . 
 

1. Introduction 

     A wide range of applications in a natural science, engineering, and technology, are 

described in genera by mathematical modules and, in particular by parabolic boundary value 
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problem (PBVP). Usually these problems are needed to be solved numerically; of course there 

are many numerical methods which are used to solve the PBVPs. Such as; in 2019 , the 

authors in [1] were used the mixed Galerkin finite element method (GFEM) with Crank- 

Nicolson method to solve nonlinear PBVPs(NLPBVPs), in 2020, the numerical solution of 

the PPDEs by using implicit method was introduced in [2], in 2021, the numerical solution of 

LBVPs by using the homotopy perturbation method were found [3], also the collocation 

method was presented in [4] for solving the PBVPVC, in 2022, [5] found the numerical 

solution of PPDEs in one and two space variable by using the central FDM (CFDM), while 

[6] were implemented the numerical solution of the PPDEs by using a novel collocation 

technique, and [7]  was studied asymptotic behaviour on a PPDE and system modelling a 

production planning problem.  

  

     The numerical solution from solving couple elliptic BVP was studied by [8] in 2019, then 

the Ns for CPBVPs was introduced in 2021 by [9]. All the above methods motivated us to 

think about solving CLPBVPVC.  

  

     This paper deals with, the description of the continuous coupled linear parabolic boundary 

value problems with variable coefficients (CLPBVPVC), the weak form (WF)of the problem 

is found and the approximation problem obtained from the discretization of the continuous 

CLPBVPVC, by using the Galerkin finite element method (GFEM) in space variable with 

implicit finite difference method (IFDM) in the time variable, therefore the method is 

abbreviated by IGFEM. At any discrete time    this technique is transformed the CLPBVPVC 

into a linear algebraic system (LAS) which is called a Galerkin LAS (GLAS), and it is solved 

using the Cholesky Decomposition method (ChDeM). An algorithm to solve the problem is 

given.  Finally, illustrations examples are presented to solve different problems using the 

proposed method with the help of the mathematical software- MATLAB, the results are given 

by tables and by figures which show the efficiency of this method.  

 

2. Description of the Couple Linear Parabolic Boundary Value Problem (CLPBVPVC) 

   Let   { ⃗  (     )                }      , be a region with boundary of   (  ), 

and let        ,      ,      , then the CLPBVPVC are given by: 

    ∑
 

   
[   ( ⃗  )

   

   
] 

        ( ⃗  )    ( ⃗  )     ( ⃗  ), in                            (1) 

    ∑
 

   
[   ( ⃗  )

   

   
] 

        ( ⃗  )    ( ⃗  )     ( ⃗  ), in                            (2) 

  ( ⃗  )    
 ( ⃗), in                                                                                                             (3)   

  ( ⃗  )    
 ( ⃗), in                                                                                                             (4) 

  ( ⃗  )   , on                                                                                                                (5) 

  ( ⃗  )   , on                                                                                                                (6) 

where,     ( ⃗  )      ( ⃗  )    ( )    ( ⃗  )    ( ⃗  ) (        )   ( ⃗  ) 
  ( ⃗  )      ( ⃗  )  are positive non zero functions in   ( )      ( ⃗  )      ( ⃗  )  
are given functions in   ( ) for all  ⃗   .  

The “classical” of system (1-6) is  ⃗⃗⃗  (  ( ⃗  )   ( ⃗  ))  (  ( ))
 
       ⃗⃗⃗          , 

for all  ⃗ in  . Let (   ) and ‖ ‖  , be denoted the inner product (IP) and norm (NO) in   ( ), 

‖ ‖  be denoted by SNO represent the norm in Sobolev space (SP),     
 ( ), the duality 

bracket between   and its dual    will be denoted by  (   ) and ‖ ‖  be the norm in   ( ). 

 

3. The Weak Formulation of the Couple Linear Parabolic Problem  

Let   {     ( ⃗)    ( )   ⃗                  }, then the WF of the CLPBVPVC 

(1-6) is given by 
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(      )    (       )  ( ( )     )  (     ),        
 ( )  ⃗⃗⃗  (  

 ( ))
 
         (7)   

(  ( )   )  (  
    ), in   

 ( )                                                                                        (8) 

(      )    (       )  ( ( )     )  (     ),        
 ( )  ⃗⃗⃗  (  

 ( ))
 
         (9)   

(  ( )   )  (  
    ), in   

 ( )                                                                                         (10) 

Where the following bilinear form are defined: 

  (       )  ∑    ( ⃗  ) (
   

   
 
   

   
) 

         ( ⃗  )(     )  

  (       )  ∑    ( ⃗  ) (
   

   
 
   

   
) 

         ( ⃗  )(     )  

 

3.1 Assumptions: For      ̅  are positive constants        : 

i. |  (       )|    ‖  ‖ ‖  ‖          

ii.   (       )    ̅‖  ‖ 
          . 

 

4. Discretization of the Weak Form  

      The WF of (7-10) is discretized by using the GFEM as follows: It stars by splitting the 

region   into subregions , i.e. let      be an integer and let     
                 

where        be an “admissible regular triangulation” of  ̅, i.e.  ̅  ⋃   
 
   , let         

be points a polyhedron domain  ̅             , s.t. 

                         &                          . 

Let    
  

⁄ i.e.        and                       and for every integer     , the 

interval        , can be divided into subintervals as      
     

      
   of equal length 

   
 

  
 with                      

 

 4.1 The Approximation solution (APPS) of the CLPBVPVC 

      To find the APPS of   ⃗⃗⃗  (  
    

 ) of (7-10), using the GFEM, let    be a subspace of 

(continuous piecewise linear function (PAF)) of a dimension   of   
 ( ), and the following 

proceedings can be applied: 

Step1: let  ⃗⃗       , when    {                    ( ⃗)         } be a PAF 

finite basis of      in  , then (7-10) for any           can be written as 

(   
    )    (    

    )  ( ( )  
    )  (     ),          ⃗⃗⃗   ⃗⃗                         (11)   

(  ( )   )  (  
    ), in                                                                                                 (12) 

(   
    )    (    

    )  ( ( )  
    )  (     ),          ⃗⃗⃗   ⃗⃗                        (13) 

(  ( )   )  (  
    ), in                                                                                                 (14) 

Step2: Applying the GFEM [10] and the IFDM in [11], the APPS   
  is approximated by 

using the basis (          ) of   , i.e.  

   
 ( ⃗   )  ∑   (  )  ( ⃗) 

    ,      
 ( ⃗   )  ∑     (  )  ( ⃗) 

    

  
 ( ⃗  )  ∑   ( )  ( ⃗) 

    ,      
 ( ⃗  )  ∑     ( )  ( ⃗) 

    

Where   ( ) and     ( ) are unknown coefficients to be found 

Step3: Substitute  ⃗⃗⃗  in ((11)-(14)) with         , to get the following GLAS with its 

ICs, i.e. 

(     )  
   

        
   

    
 
    ⃗⃗ (    )                                                               (15) 

   ( )   ⃗⃗ 
                                                                                                                           (16)  

(     )    
   

      
   

      
 

    ⃗⃗ (    )                                                           (17) 

     ( )   ⃗⃗ 
                                                                                                                      (18) 
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where   (   )          (     )      (   )            (     )     (     )  

∑    ( ⃗) (
   

   
 
   

   
) 

      (  ( ⃗)     )         (   )         ( ( ⃗)     )                 

  (   )            (     )     (     )  ∑    ( ⃗) (
   

   
 
   

   
) 

      (  ( ⃗)     ) 

  (  )  (  (  ))
   

     (  )  (    (  ))
   

,  ⃗⃗  (   )        (  ( ⃗     )   ), 

 ⃗⃗  (   )        (  ( ⃗     )   ) ,  ⃗⃗ 
  (   

 )       
  (  

    ),  ⃗⃗ 
  (   

 )       
  

(  
    ),                 . 

Step4: Solve the GLAS (15-18) using the ChDeM, to find the APPS for the problem. 

 

4.2Remark: The matrices  ,  ,  , and   are positive definite, hence the GLAS has a unique 

solution. 

 

4.3Remark: The space of the basis    was choice as a space of continuous piecewise linear 

function, because the graph of such basis on a compact interval is a polygonal chain, and this 

play an important role in the GFEM. 

 

4.4 The Cholesky Decomposition Method  

     The ChDeM is used to solve the GLAS with two conditions,       ,(  is the transpose 

operator)  every symmetric positive definite matrix    can be decomposed into a product of a 

unique  lower triangular matrix   and its transpose [11] . The ChDeM can be represented in 

the following steps:  

Step1:     (    ∑    
    

   )
 

 ⁄                  

Step2:     
    ∑        

   
   

   
                    

 

5. The Algorithm for Solving the Couple Linear Parabolic Boundary Value Problem 

Step1: Solve the ICs (16) and (18) respectively to get   
  and     

  

Step2: Set     

Step3: Solve the GLAS (15) and (17), to get   
  and     

  respectively 

Step4: Set        

Step5: Repeated step 3-4, until     . 

 

6. Stability and the Convergent 

 

6.1 Lemma (Stability):For    is sufficiently small, and               , then  

‖ ⃗⃗⃗ 
  ‖ 

    
 ,   ∑ ‖ ⃗⃗⃗ 

  ‖  
    

     
   , ∑ ‖ ⃗⃗⃗   

     ⃗⃗⃗ 
  ‖  

     
      

 ,&   ∑ ‖ ⃗⃗⃗   
  ‖  

     
      

  

 

Proof: Using the IFDM in the WF ((11)&(13)), then substituting   ⃗      ⃗⃗⃗   
  , to get  

  (     
       

 )  (   
       

 )      (     
       

 )  ( (    )     
       

 )    

   (  (    )      
 )                    (19) 

  (     
       

 )  (   
       

 )      (     
       

 )  ( (    )     
       

 )    

   (  (    )      
 )                  (20) 

Using the assumptions on    and    in R.H.S. of (19) and (20), rewritten the 1
st
 two terms in 

the L.H.S. of (19) and (20) in the norm form, then adding the obtained two inequalities, and 

finally taking then  summing both sides for              , to get 

‖  ⃗⃗⃗ 
  ‖ 

   ∑  ‖  ⃗⃗⃗   
     ⃗⃗⃗ 

  ‖  
    

       ∑     (     
       

 )    (     
       

 )   
        

https://en.wikipedia.org/wiki/Polygonal_chain
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     ∑ ‖  ⃗⃗⃗   
  ‖  

     
        ,    where            , and      

     
                                (21) 

Since ‖ ⃗⃗⃗   
  ‖ 

   ‖ ⃗⃗⃗ 
  ‖ 

   ‖ ⃗⃗⃗   
     ⃗⃗⃗ 

  ‖  
 , ‖ ⃗⃗⃗ 

  ‖ 
     (from the Projection theorem)& 

∑   (   
     

 )    (   
     

 ) 
    ∑   (     

       
 )   

    , for       . 

Then, substituting the above inequality in the R.H.S of (21), the equality in its  L.H.S., and 

using assumption A(i), to get  

‖ ⃗⃗⃗ 
  ‖ 

  (     ) ∑ ‖ ⃗⃗⃗   
     ⃗⃗⃗ 

  ‖  
    

      ∑     (     
       

 )    (     
       

 )    
     

      ∑ ‖  ⃗⃗⃗   
  ‖  

    
    ,    where                (     ), and      

     
      (22) 

Since the 2
nd

 and the 3
rd

 terms in the L.H.S. are nonnegative (from assumptions A(ii)), then 

‖ ⃗⃗⃗ 
  ‖ 

       ∑ ‖ ⃗⃗⃗   
  ‖  

     
    , with        . 

Applying the discrete Bellman- Gromwell inequality, to get(for any arbitrary index  ):   

‖ ⃗⃗⃗ 
  ‖ 

    
 , hence ‖ ⃗⃗⃗ 

  ‖ 
    

 ,               ,  which gives  

   ∑ ‖ ⃗⃗⃗ 
  ‖  

      
      

 , where   
        

 . 

Again from (22) with     , since the 1
st
 & the 3

rd
 terms in the L.H.S. are nonnegative, then  

∑  ‖  ⃗⃗⃗   
     ⃗⃗⃗ 

  ‖  
     

      
  ,   

    
    . 

Also, since the 1
st
 and the 2

nd
 terms in L.H.S.of (22) are nonnegative, then we have from A(ii) 

    ∑  ‖  ⃗⃗⃗   
  ‖  

     
      

  , then 

  ∑  ‖  ⃗⃗⃗   
  ‖  

     
      

  , where   
  

  
 

  
 and        (  ̅   ̅).  

 

6.2 Convergence: 

The following definitions for the functions "almost everywhere” on   are useful in the proof 

of next theorem, so let  

 ⃗⃗⃗ 
  ( )      ⃗⃗⃗ 

  , and    ⃗⃗⃗ 
  ( )      ⃗⃗⃗   

   for     
                   .   

also   ⃗⃗⃗ 
  ( )     ⃗⃗⃗ 

   be a continuous affine linear function on   
  ,                  ,  

 

6.2.1 Theorem: The discrete solutions  ⃗⃗⃗ 
  ( )   ⃗⃗⃗ 

  ( )       ⃗⃗⃗ 
  ( )  are converges strongly in 

  ( ), where      . 

 

Proof: From Lemma (6.1), ‖ ⃗⃗⃗ 
  ‖ 

     
 ,                 , then  

‖ ⃗⃗⃗ 
  ‖  (   )

   ‖ ⃗⃗⃗ 
  ‖  (   )

  , and ‖ ⃗⃗⃗ 
  ‖  (   )

   are bounded. 

And also    ∑ ‖ ⃗⃗⃗   
    ⃗⃗⃗ 

  ‖ 
      

        
    , as      ,  gives  ⃗⃗⃗̅ 

    ⃗⃗⃗̅ 
    strongly in  

  (   ) and then in   ( ).                                                       

Then by Alaoglu theorem, there exist subsequences of { ⃗⃗⃗ 
  }, { ⃗⃗⃗ 

  }, { ⃗⃗⃗ 
  }) use again the same 

notations, s.t.    ⃗⃗⃗ 
    ⃗⃗⃗   ⃗⃗⃗ 

    ⃗⃗⃗  ⃗⃗⃗ 
    ⃗⃗⃗                (   ) . 

In this point the first compactness theorem [12] is used, to get that   ⃗⃗⃗ 
    ⃗⃗⃗ strongly in 

  ( ), then  ⃗⃗⃗ 
    ⃗⃗⃗ and  ⃗⃗⃗ 

    ⃗⃗⃗ strongly  in   ( )   

Now, let  { ⃗⃗  }   
  be a sequence of subspaces of  ⃗⃗. Then by the Galerkin approach for each 

 ⃗  (     )   ⃗⃗, there is a sequence{ ⃗  (       )}    ⃗⃗  ,   , s.t. ⃗    ⃗ ST in   ( )   
Consider that  ⃗⃗( )  (     )  (       ) , for which    ⃗⃗( )    ⃗⃗ ( )          ⃗⃗( )  
  ⃗⃗ ( )           ⃗⃗ ( )  continuous piecewise interpolation of   ⃗⃗( ) with  respect to   

 , and let  

 ⃗  (    ( )     ( )), with   ⃗   (      
 ( )       

 ( )), with  

 ⃗  
     (      

 ( )       
 ( ))       

                   ⃗     ⃗⃗     

 ⃗  
      (      

 ( )       
 ( ))      

                       ⃗     ⃗⃗     
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 ⃗  
      (      

 ( )       
 ( ))            ⃗    ⃗⃗          

Setting   ⃗    ⃗    
   in equation ((19)-(20)), and summing both sides of the obtained equation 

for    , to        , then using the discrete integration by parts for the 1
st
 term in the 

L.H.S.,  once can get that     

 ∫ (    
    (   

   

 
) )     ∫    (

 

 
    

       
  )  ( (    

  )     
       

  )     

∫ (
 

 
  (    

       
  )     

  )     (    
       )    

 ( )                                                      

 ∫ (    
    (   

   

 
) )    ∫    (

 

 
    

       
  )  ( (    

  )     
       

  )       

∫ (
 

 
  (    

       
  )     

  )     (    
       )    

 ( )       

In this point, the same steps which used in the proof of theorem 3.1 in [13], can be used here 

to get the APPS  ⃗⃗⃗ 
  ( )  ⃗⃗⃗ 

  ( )  ⃗⃗⃗ 
  ( )  are converges strongly to  ⃗⃗⃗ in   (   ), where  

    . Thus, the limit  ⃗⃗⃗ satisfies the WF ((7)-(10)). 

 

7. Numerical Examples 
In this section numerical examples are carried out to show the efficiency for the presented 

method in this paper. 

 

7.1. Example:- Let        , then the  CLPBVPVC are given as 

    
 

   
[(  

   )
   

   
]  

 

   
[(  

   )
   

   
]  (  

   
   )   (  

    
   )  =   ( ⃗  ), 

in   

    
 

   
[(  

   )
   

   
]  

 

   
[(  

   )
   

   
]  (    

   )   (  
    

   )   

  ( ⃗  )      in   

  ( ⃗  )    
 ( ⃗)      (    )(    )       

  ( ⃗  )    
 ( ⃗)      (    )(    )       

  ( ⃗  )             

  ( ⃗  )             

Such that the right hand term   ( ⃗  ) and   ( ⃗  ) are given as 

  ( ⃗  )      (    )(    )    (  
   

   )  (  
    

   )       
     

       (    )  (    )(  
   )    

 (    )      
  (    )(  

   ) 

  ( ⃗  )      [  
 (  

 (    ))    
 (  

   )  (    (  
      ))     

 (  
     

 )   (     )].     (  
    )(  

    
 )    

 (  
    )    (  

    
    

    )  
The exact solution (EXS) of the above CLPBVPVC is 

  ( ⃗  )      (    )(    ) 
    

  ( ⃗  )      (    )(    ) 
     

This problem is solved using the IGFEM for                    , then the APPS 

 ⃗⃗⃗  and the EXS  ⃗⃗⃗              are given at the time       in the Table (1) and are shown 

in Figure (1), the absolute maximum error is (0.0024). 
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Table1:  Comparison between the EXS and APPS. 

      EXS    
APPS 

   

Absolute 

error 
      EXS    APPS    

Absolute 

error 

0.1 0.1 0.0049 0.0045 0.0004 0.1 

 

0.1 

 

0.0030 0.0032 0.0002 

0.3 0.1 0.0115 0.0105 0.0010 0.3 0.1 0.0070 0.0077 0.0007 

0.5 0.1 0.0136 0.0125 0.0012 0.5 0.1 0.0083 0.0097 0.0014 

0.7 0.1 0.0115 0.0105 0.0009 0.7 0.1 0.0070 0.0086 0.0017 

0.9 0.1 0.0049 0.0046 0.0003 0.9 0.1 0.0030 0.0038 0.0009 

0.1 0.3 0.0115 0.0104 0.0011 0.1 0.3 0.0070 0.0072 0.0002 

0.3 0.3 0.0267 0.0240 0.0028 0.3 0.3 0.0162 0.0174 0.0012 

0.5 0.3 0.0318 0.0286 0.0033 0.5 0.3 0.0193 0.0220 0.0027 

0.7 0.3 0.0267 0.0243 0.0025 0.7 0.3 0.0162 0.0198 0.0036 

0.9 0.3 0.0115 0.0106 0.0009 0.9 0.3 0.0070 0.0088 0.0019 

0.1 0.5 0.0136 0.0122 0.0015 0.1 0.5 0.0083 0.0081 0.0001 

0.3 0.5 0.0318 0.0282 0.0036 0.3 0.5 0.0193 0.0195 0.0002 

0.5 0.5 0.0379 0.0337 0.0042 0.5 0.5 0.0230 0.0247 0.0017 

0.7 0.5 0.0318 0.0286 0.0032 0.7 0.5 0.0193 0.0223 0.0029 

0.9 0.5 0.0136 0.0125 0.0011 0.9 0.5 0.0083 0.0100 0.0017 

0.1 0.7 0.0115 0.0102 0.0012 0.1 0.7 0.0070 0.0064 0.0005 

0.3 0.7 0.0267 0.0237 0.0030 0.3 0.7 0.0162 0.0153 0.0009 

0.5 0.7 0.0318 0.0284 0.0035 0.5 0.7 0.0193 0.0193 0.0000 

0.7 0.7 0.0267 0.0241 0.0026 0.7 0.7 0.0162 0.0174 0.0012 

0.9 0.7 0.0115 0.0105 0.0009 0.9 0.7 0.0070 0.0078 0.0009 

0.1 0.9 0.0049 0.0044 0.0005 0.1 0.9 0.0030 0.0026 0.0003 

0.3 0.9 0.0115 0.0103 0.0011 0.3 0.9 0.0070 0.0063 0.0007 

0.5 0.9 0.0136 0.0124 0.0013 0.5 0.9 0.0083 0.0078 0.0004 

0.7 0.9 0.0115 0.0105 0.0010 0.7 0.9 0.0070 0.0070 0.0001 

0.9 0.9 0.0049 0.0046 0.0003 0.9 0.9 0.0030 0.0032 0.0002 

                                    
 

 

Figure1: Shows the EXS and shows the APPS 

 

 

 ⃗⃗⃗  ⃗⃗⃗ 
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7.2. Example:- Let          the CLPBVPVC  is given as 

    
 

   
[(  

       )
   

   
]  

 

   
[(    )

   

   
]  (      )   (   

      

  )  =   ( ⃗  ), in   

    
 

   
[(   

  )
   

   
]  

 

   
[(    )

   

   
]  (  

   
 )   (   

        )   

  ( ⃗  )      in   

  ( ⃗  )    
 ( ⃗)       (    )(    )    (

  

 
)       , 

  ( ⃗  )    
 ( ⃗)         , 

  ( ⃗  )            , 

  ( ⃗  )            , 

Such that the right hand term   ( ⃗  ) and   ( ⃗  ) are given as 

  ( ⃗  )     (
  

 
)     (  ⁄ ) (    ) [(    ) (  (      )          

   

  
 

  

 
   (  ⁄ ))  (   

        )].   (    )    (  ⁄ ) [   (      (
  

 
)     (

  

 
) )  

(    )

 
   (

  

 
) ]  [

 

 
  (    ) (   

        )   (    )    (  ⁄ )] 

  ( ⃗  )  
 

 
    (  ⁄ ) [

 

 
  (    )    (

  

 
)     (    )  (    )(    )   (   

 ) (   (
  

 
)   )]     (    )    (  ⁄ ) [   (    ) (

 

   
(    )    (

  

 
)  

 

 
(    ) (   (

  

 
)   ))  (

 

  
   (

  

 
)     (    )     (    ) (   (

  

 
)   ))]  

     (    ) (   (
  

 
)   ) [   (  ⁄ )(       )  

 

 
  (    ) (√    (  

 ⁄ )
 

 

  
   

    (  ⁄ )  
 

 
)]+  (    )(    )    (  ⁄ )    (

  

 
) (   

        ). 

The EXS of the above CLPBVPVC is 
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This problem is solved using the IGFEM for                    , then the APPS 

 ⃗⃗⃗  and the EXS  ⃗⃗⃗              are given at the time       in the Table (2) and are shown 

in Figure (2), the absolute maximum error is (0.0002) 

 

Table2:  Comparison between the EXS and APPS. 

      EXS    
APPS 

   

Absolute 

error 

      

      
EXS 

   

APPS 

   

Absolute 

error 

       

0.1 0.1 0.0024 0.0024 0.0261 0.1 0.1 0.0000 0.0001 0.0520 

0.3 0.1 0.0057 0.0056 0.0599 0.3 0.1 0.0000 0.0001 0.1012 

0.5 0.1 0.0068 0.0067 0.0804 0.5 0.1 0.0000 0.0001 0.1031 

0.7 0.1 0.0057 0.0056 0.0792 0.7 0.1 0.0000 0.0001 0.0721 

0.9 0.1 0.0024 0.0024 0.0382 0.9 0.1 0.0000 0.0000 0.0226 

0.7 0.2 0.0101 0.0101 0.0613 0.7 0.2 0.0000 0.0001 0.1242 

0.1 0.3 0.0057 0.0057 0.0079 0.1 0.3 0.0000 0.0001 0.0957 

0.3 0.3 0.0133 0.0133 0.0147 0.3 0.3 0.0000 0.0002 0.1982 

0.5 0.3 0.0158 0.0158 0.0114 0.5 0.3 0.0000 0.0002 0.2106 

0.7 0.3 0.0133 0.0133 0.0424 0.7 0.3 0.0000 0.0002 0.1561 
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0.9 0.3 0.0057 0.0057 0.0298 0.9 0.3 0.0000 0.0001 0.0565 

0.1 0.5 0.0068 0.0068 0.0258 0.1 0.5 0.0000 0.0001 0.0903 

0.3 0.5 0.0158 0.0159 0.0542 0.3 0.5 0.0000 0.0002 0.1964 

0.5 0.5 0.0188 0.0189 0.0263 0.5 0.5 0.0000 0.0002 0.2183 

0.7 0.5 0.0158 0.0158 0.0205 0.7 0.5 0.0000 0.0002 0.1706 

0.9 0.5 0.0068 0.0068 0.0240 0.9 0.5 0.0000 0.0001 0.0669 

0.1 0.7 0.0057 0.0057 0.0223 0.1 0.7 0.0000 0.0001 0.0580 

0.3 0.7 0.0133 0.0133 0.0466 0.3 0.7 0.0000 0.0001 0.1377 

0.5 0.7 0.0158 0.0158 0.0217 0.5 0.7 0.0000 0.0002 0.1629 

0.7 0.7 0.0133 0.0133 0.0198 0.7 0.7 0.0000 0.0001 0.1357 

0.9 0.7 0.0057 0.0057 0.0224 0.9 0.7 0.0000 0.0001 0.0579 

0.1 0.9 0.0024 0.0024 0.0034 0.1 0.9 0.0000 0.0000 0.0162 

0.3 0.9 0.0057 0.0057 0.0092 0.3 0.9 0.0000 0.0000 0.0487 

0.5 0.9 0.0068 0.0068 0.0017 0.5 0.9 0.0000 0.0001 0.0633 

0.7 0.9 0.0057 0.0057 0.0179 0.7 0.9 0.0000 0.0001 0.0574 

0.9 0.9 0.0024 0.0024 0.0150 0.9 0.9 0.0000 0.0000 0.0280 

 
Figure 2: Shows the EXS and shows the APPS 

 

8. Conclusions   

     In this article, the approximate method IGFEM has been proposed for solving 

CLPBVPVC. Two examples have been solved numerically to demonstrate the efficiency and 

accuracy of the method. Based on the obtained results, we can point out the following 

conclusions: 

1. Depending on the result in Tables 1 and 2, the absolute maximum error between the EXS 

and the APPS for the considered problems show the efficiency of the method, although the 

space variable is discretized only for ten grid (   ) and      . 

2. The transformed system of equations can be solved by the ChDeM, this method is very fast 

than the gauss elimination method for solving LAS. 

3. Although, the   obtained results from solving the two examples were for all the values of 

the time on the interval [0,1] with      , gave a good and accurate results but we shown  

the results  at the time       t=0.5 to save the space. 

 ⃗⃗⃗ 

 ⃗⃗⃗ 
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4. The APPS in the two examples were obtained at all the discrete points for the space 

variable but they indicated half of these values to abbreviate the space.  
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