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Abstract

In this paper, an approximation technique is introduced to solve the coupled
linear parabolic boundary value problems with variable coefficients by using mixed
of the Galerkin finite element method in space variable with implicit finite
difference method in the time variable. At any discrete time ¢; this technique is
transformed the coupled linear parabolic boundary value problems with variable
coefficients into a linear algebraic system which is called a Galerkin a linear
algebraic system, and then it is solved using the Cholesky Decomposition.
Ilustration examples are presented and the results are shown by figures and tables,
and show the efficiency of the proposed method.

Keywords: Coupled parabolic boundary value problem, Galerkin finite element
method, implicit difference method, Approximate solution.
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1. Introduction
A wide range of applications in a natural science, engineering, and technology, are
described in genera by mathematical modules and, in particular by parabolic boundary value
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problem (PBVP). Usually these problems are needed to be solved numerically; of course there
are many numerical methods which are used to solve the PBVPs. Such as; in 2019 , the
authors in [1] were used the mixed Galerkin finite element method (GFEM) with Crank-
Nicolson method to solve nonlinear PBVPS(NLPBVPs), in 2020, the numerical solution of
the PPDEs by using implicit method was introduced in [2], in 2021, the numerical solution of
LBVPs by using the homotopy perturbation method were found [3], also the collocation
method was presented in [4] for solving the PBVPVC, in 2022, [5] found the numerical
solution of PPDEs in one and two space variable by using the central FDM (CFDM), while
[6] were implemented the numerical solution of the PPDEs by using a novel collocation
technique, and [7] was studied asymptotic behaviour on a PPDE and system modelling a
production planning problem.

The numerical solution from solving couple elliptic BVP was studied by [8] in 2019, then
the Ns for CPBVPs was introduced in 2021 by [9]. All the above methods motivated us to
think about solving CLPBVPVC.

This paper deals with, the description of the continuous coupled linear parabolic boundary
value problems with variable coefficients (CLPBVPVC), the weak form (WF)of the problem
is found and the approximation problem obtained from the discretization of the continuous
CLPBVPVC, by using the Galerkin finite element method (GFEM) in space variable with
implicit finite difference method (IFDM) in the time variable, therefore the method is
abbreviated by IGFEM. At any discrete time t; this technique is transformed the CLPBVPVC
into a linear algebraic system (LAS) which is called a Galerkin LAS (GLAS), and it is solved
using the Cholesky Decomposition method (ChDeM). An algorithm to solve the problem is
given. Finally, illustrations examples are presented to solve different problems using the
proposed method with the help of the mathematical software- MATLAB, the results are given
by tables and by figures which show the efficiency of this method.

2. Description of the Couple Linear Parabolic Boundary Value Problem (CLPBVPVC)
Let O = {X¥ = (x,%;) € R?: 0 < x;,x, < 1} © R?, be a region with boundary of Q (9%),
andlet/ =[0,T],Q =Qx1I,0<T < oo, then the CLPBVPVC are given by:

F) L .\ 0U; . . o -
Ult - 272‘,S=16_xs [ars(x, t) a_ZT] + hl (x, t)Ul - g(x, t)UZ = Wl(x' t)! n Q (1)

0 - 0 - - - -
Uz — Z$,s=1a_xs [brs(x: t) a_Zi] + h, (X, )U, + g(x,t)U; = wy(X, t),in Q 2
U1 (%,0) = UP(X), in Q 3)
U,(%,0) = U2(%), in Q 4)
U,(%,t) =0,0n0Q X I (5)
U,(X,t) =0,0n0Q x I (6)

where,U; = U;(%,t),U, = U,(X,t) € H*(Q), a,s(%,t), bys(%,t) (Vr,s = 1,2),h (%, 1),
h,(%,t) and g(%,t) are positive non zero functions in L*(Q),w; = w; (X, t),w, = w, (X, t)
are given functions in L2(Q) for all ¥ € Q.

The “classical” of system (1-6) is U = (Uy(%,t), U,(%,1)) € (HZ(Q))2 ,s.tU=00ndQ,
forall  in Q. Let (.,.) and || ||, , be denoted the inner product (IP) and norm (NO) in L2(£),
II. 1, be denoted by SNO represent the norm in Sobolev space (SP), V = H}(Q), the duality
bracket between V and its dual V* will be denoted by (.,.) and ||. ||, be the norm in L*(Q).

3. The Weak Formulation of the Couple Linear Parabolic Problem
LetV = {v:v = v(¥) € H'(Q), VX € Q,with v = 0 on 0}, then the WF of the CLPBVPVC
(1-6) is given by
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(U1, v1) + a1 (t, Uy, v1) = (g(®) Uz, v1) = (W, v1), ¥V 15 € Hy(Q), Ue (Hé(Q))Z (7)

(U,(0),v1) = (U, v,), in Hy () (8)
(U, v2) + a3 (t, Uy, 1) + (g(0) Uy, v2) = (Wp, 1), V v, € Hy(Q), Ue (Hg(Q))Z 9)
(U2(0),v,) = (Ué), v,), in Hé(ﬂ) (10)

Where the following bilinear form are defined:
S\ (9U1 3 S

@y (6, Uy, v1) = B2 o s 0) (52,52) + hi(2, 60Uy, v)
S .\ (9U; @ q

ay(t, Uz, v3) = X7 521 brs (X, 1) (a—xj,ﬁ) + hy (X, ) (U, v2)

3.1 Assumptions: For y;, ¥, are positive constants Vi = 1,2:
I la; (¢, Uy, v)| < villUillllvill, vi=1,2
1. ai(t, Ui, 'Ui) = )71”Ul”% , Vi=1.2.

4. Discretization of the Weak Form

The WF of (7-10) is discretized by using the GFEM as follows: It stars by splitting the
region Q into subregions , i.e. let M; > 0 be an integer and let 0 = O',i = 1,2, ..., N,N = M?
where M = M, — 1 be an “admissible regular triangulation” of Q, i.e. @ = UX, 0;, let x;1, x4,
be points a polyhedron domain Q = [0,1] x [0,1], s.t.
0=x01<x11<"'<xl'1<"‘<xM11=1&O=XO2 <x12 <"‘<xi2 <'--<XM12 =1.
Let h = 1/M1i'e' x;; = thand x;, = ih,i =0,1,2,...,M; and for every integer NT > 0, the
interval I = [0,1], can be divided into subintervals as I; = I]" :== [t}',t/,] of equal length

T . . .
At = —with t; = jAt,j = 0,1,...,NT — 1.

4.1 The Approximation solution (APPS) of the CLPBVPVC

To find the APPS of U™ = (U, U3 of (7-10), using the GFEM, let V; be a subspace of
(continuous piecewise linear function (PAF)) of a dimension N of Hj(Q), and the following
proceedings can be applied:

Stepl: let Vy = Vy x Vy, when Vy = {v;,i = 1,2, ...,N,with v;(¥) = 0 on 9Q} be a PAF
finite basis of Vy in Q, then (7-10) forany i = 1,2, ..., N can be written as

(T, v1) + ay (6, UT, v) = (g(DUF, v1) = (wy, 1),V vy € Vy, U™ € Vy (12)
(U1(0),v1) = (UD,vy),inVy (12)
(Uzt,v2) + ay(t, U3, vp) + (g(DUT, v3) = (Wa,13), Vv, € Vy, ur e V)N (13)
(U,(0),v,) = (U3, v,),inVy (14)

Step2: Applying the GFEM [10] and the IFDM in [11], the APPS U is approximated by
using the basis (vq, vy, ..., vy) Of Vy, i.e.

U{l(fl tj) =Y -1 Ck(tj)vk (%), U?(ff tj) = Yh-1 Ck+N(tj)Vk(5f)

UP(%,0) = E¥oy (0w (@), UF(E,0) = ER_y Cean (013 ()

Where ¢, (t) and ¢,y (t) are unknown coefficients to be found

Step3: Substitute Um in ((11)-(14)) with v; = v, = v,,, to get the following GLAS with its
ICs, i.e.

(A+ AtB)C* — AtDC]TY = AC] + Athy(tj41) (15)
AC,(0) = B? (16)
(A+ AtE)CIT + AtDC]™ = ACL, \, + Athy(t41) (17)
ACy4n(0) = D3 (18)
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where A = (argk)NaxN' Ak = Wi, Vi), B = (bmi)nxns bk = a1(Vk, Vi), @y (Vg ) =
er 1ars( )( s Um) + (hl(x)vk» Um) D= (dmk)NxN' dmk = (g(f)vk, vm) )

- (emk)NxNJ €mk = az(vk» vm) az(vk'vm) - er 1brs( )(av: avm) + (hz(x)vk' vm)
Ck(tj) = (Ck(tj))le 'Ck+N(tj) = (Ck+N(tj))NX1’ by = (b1i)nx1, b1 = (W1(x’ j+1)’77m),

by = (b)) wx1, bai = (Wa(%, tjsr1) Vm) bY = (b1, b = (UL, ), bY = (b9, b3; =
wdv), vmk=12,..,N.
Step4: Solve the GLAS (15-18) using the ChDeM, to find the APPS for the problem.

4.2Remark: The matrices A, B, D, and E are positive definite, hence the GLAS has a unique
solution.

4.3Remark: The space of the basis V, was choice as a space of continuous piecewise linear
function, because the graph of such basis on a compact interval is a polygonal chain, and this
play an important role in the GFEM.

4.4 The Cholesky Decomposition Method

The ChDeM is used to solve the GLAS with two conditions, A = L. LT (T is the transpose
operator) every symmetric positive definite matrix A can be decomposed into a product of a
unique lower triangular matrix L and its transpose [11] . The ChDeM can be represented in
the following steps:

Stepl: Ly, = (ap, — X021 I3 )/2 for p=12,..,N

Step2: Ly, M forq=p+1,..,N
aq

5. The Algorithm for Solving the Couple Linear Parabolic Boundary Value Problem
Stepl: Solve the ICs (16) and (18) respectively to get C2 and C2, 5

Step2: Setj =0

Step3: Solve the GLAS (15) and (17), to get C and C, y respectively

Step4: Set j=j+1

Step5: Repeated step 3-4, until NT — 1.

6. Stability and the Convergent

6.1 Lemma (Stability):For At is sufficiently small, and ¥V j = 0,1, ..., NT — 1, then
107 1 < d2, eSS G713 < d3, BT 10— O [} < d2.& AT 102 < o2

Proof: Using the IFDM in the WF ((11)&(13)), then substituting v = ZAtl_fj’_‘H, to get
2[(UTj41, Uljen) = (U5, Uljaa) + Btas (Ulen, UTjia) = (9(41) UZjin, Ul )] =

ZAt(W1( +1) u ]+1) (19)
2[(U£lj+1j U2]+1) (UZj: U?j+1) + Ataz(U?jﬂ' U2nj+1) + (Q(tj+1)U1nj+1' Uglj+1)] =
20t(wy(ti41), USi4y) (20)

Using the assumptions on w; and w, in R.H.S. of (19) and (20), rewritten the 1% two terms in
the L.H.S. of (19) and (20) in the norm form, then adding the obtained two inequalities, and
finally taking then summing both sides for j =0toj=1—1,toget

NTP N3+ S5 N U= UP 13 + 28t 2528 [ay (U1, Uyir) + ag(UZ 41, UBiyy) <
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cy + AtZﬁ;%) | l7}ﬁ1||(2) , where ¢, = lAtc; ,and c; = ¢? + c%, (21)
Since ||U% 4113 < 2[|U7 112 + 2]|U%,— UM 112, 1UR 112 < c, (from the Projection theorem)&

beo@ (U UD) — a;(UR, UR) = X5 ai(US 41, Uy ) L for i = 1,2,
Then, substituting the above inequality in the R.H.S of (21), the equality in its L.H.S., and
using assumption A(i), to get
IUF NG + (1 = 288) Z5Z5 00— U NI + AtES2g [as (Ul UThen) + a2(U3540, Usjaa)]
< s+ AtXTOI US4 N5 . where c5 = IAte; + ¢ + cavs +¥2), and ¢y = cZ + ¢, (22)
Since the 2" and the 3" terms in the L.H.S. are nonnegative (from assumptions A(ii)), then
1T 13 < cs + ALTIZE TR 112, with At < 1/2.
Applying the discrete Bellman- Gromwell inequality, to get(for any arbitrary index [):
U™ |12 < d?, hence ||l7j” I3 <d? Vvj=0,,....,TN, which gives
Aty NI ||l7j" I3 < d3, where d3 = AtNTd3.
Again from (22) with [ = NT, since the 1% & the 3" terms in the L.H.S. are nonnegative, then
INTSLN Uy~ UM 13 < d3, d3 = d +cs.
Also, since the 1% and the 2" terms in L.H.S.of (22) are nonnegative, then we have from A(ii)
20ty 35571 1 U l1F < df, then

— 2

AtYNTSL | UR |12 < d} , where d2 = j—; and ¥ = min(7;, 73).

6.2 Convergence:
The following definitions for the functions "almost everywhere” on I are useful in the proof
of next theorem, so let

Ur(t) := U,and U} (¢) := U~ fore I',Vj=01,...,NT —1.
also U™ (¢) := l_]’j" be a continuous affine linear functionon Ii*, vj=10,1,...,Nt — 1,

6.2.1 Theorem: The discrete solutions U™ (v), 1713 (t),and ur (t) are converges strongly in
L2(Q), where n — oo,

Proof: From Lemma (6.1), ||l7]?1 I? <d? Vvj=0,1,...,Nt — 1, then
NU2 200y WUR N2 (py » @0 [UR || 22,y @re bounded.

And also At¥NEG! ||l7fi1 - 171-” I3 < Atd?,— 0, as At — 0, gives ﬁf — gr strongly in
L?(1,V) and then in L?((Q).

Then by Alaoglu theorem, there exist subsequences of {U"}, {U"}, {U}) use again the same
notations, s.t. U" — U,U" — U,U — U weakly in L2(1,V) .

In this point the first compactness theorem [12] is used, to get that ur — U strongly in
[2(Q), then U™ — U and U™ — U strongly in L2().

Now, let {17,\, }n=1 be a sequence of subspaces of V. Then by the Galerkin approach for each
B = (vy,v,) €V, there is a sequence{By = (v1y, Von)} € Vy, YN, st.By — © ST in L2(Q).
Consider that @(t) = (@4, ®,) € (C?[0,T])?, for which @(T) = @'(T) = 0and $(0) =
¢'(0) # 0,let ¢"(t) continuous piecewise interpolation of @(t) with respectto I™*, and let
$ = (0101(8), 1202(1)), With " = (W1y@1™(£), Van @™ (1)), With

" = (@ (D), Vo @™ () , L € I, j=01,..., Nt — 1,3y € Vy,

an o= (ing1} (0, van g2y (0), tE€ I, j=01,....Nt—1,0y € Vv,
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O = (@i (D), van @™ (0), tE 1, By €Ty,
Setting v = Z}‘H in equation ((19)-(20)), and summing both sides of the obtained equation

for j =0,to j = NT — 1, then using the discrete integration by parts for the 1% term in the
L.H.S., once can get that

—fur @y de + [ lar (U, 8 ) — (82 ) UR,, 83 )] de =
[ AR URD, ) e+ (U, vi) 91™(0)
— [TUR (G dt + [ [as (U, S8 ) + (g(e3 ) U, G )] dt =

(€2 U3, C8 ) dt + (U, van) 95™(0)

In this point, the same steps which used in the proof of theorem 3.1 in [13], can be used here
to get the APPS U (o), ﬁf (), U (t) are converges strongly to U in L*(1,V), where
n — oo, Thus, the limit U satisfies the WF ((7)-(20)).

7. Numerical Examples
In this section numerical examples are carried out to show the efficiency for the presented
method in this paper.

7.1. Example:- Let I = [0,1], then the CLPBVPVC are given as
- —[( + 122 | = {2 + 1) 2| + (Fxd + DU — (e + 3 + DU= wi3,0),
2 2

|nQ
Use = 5 |63 + D2 ——[(x1 FDSE| + (axd + DU, + (xf + 53 + DU, =

WZ(X t), inQ

U (%,0) = U2(%) = x12,(1 — x)(1 — x3),in O

Uy (%,0) = U2(X) = x1x,(1 — x)(1 — x3),in Q.

Uj(%,t) =0, ondQ x I

Uy,(%,t) =0, on 0Q x |

Such that the right hand term w, (¥, t) and w, (%, t) are given as

wi (X, 1) = 212, (x; — D(x, — D]e (kx5 — 4) — (xf + x5 + De™%]

—2xle_t[x1x2(x2 -1+ (x; — 1)(X2 +1) +x; (x1 -] - 2xze_t(x2 - 1)(35% +1)
wy(%,60) = e 2 xZ (x5 (0, — 1)) —x2(xZ + 1) + (0, — 2(x% + x, + 1)) 2(x% +x, +
1) —2(x;, + xz)] +e (x5 — xp) (xf — x7) + xF (x5 — x) — 2, (xF — x5 + x5 + x,)]

The exact solution (EXS) of the above CLPBVPVC is

Ui(f,t):= x1%, (1 —x)(1 —'Xz)e_t

Ué(f,t):= x1%2 (1 —x)(1 —'xz)e_Zt

This problem is solved using the IGFEM for M = 9,NT = 20 and T = 1, then the APPS
U™ and the EXS U at x; and x, are given at the time t = 0.5 in the Table (1) and are shown
in Figure (1), the absolute maximum error is (0.0024).
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Tablel: Comparison between the EXS and APPS.

x| % | EXSU AZ';S Azi‘r’(')‘:te x | x, | EXSu, |APPSU, AZ??(')‘;”E
01|01 00049 00045 | 00004 |01 |01 00030 00032 | 0.0002
03| 01| 00115 00105 | 00010 |03 |01 | 00070 0.0077 | 0.0007
05| 01| 00136 00125 | 00012 |05 | 01| 00083 00097 | 0.0014
07 | 01| 00115 00105 | 00009 |07 | 01| 00070 0.0086 | 0.0017
09 | 01| 00049 00046 | 00003 |09 |01 | 00030 0.0038 | 0.0009
01| 03| 00115 00104 | 00011 |01 | 03| 00070 00072 | 0.0002
03| 03| 0027 00240 | 00028 |03 | 03| 00162 00174 | 0.0012
05| 03| 00318 00286 | 00033 |05 | 03| 00193 00220 | 0.0027
07 | 03| 00267 00243 | 00025 |07 | 03| 00162 00198 | 0.0036
09 | 03| 00115 00106 | 00009 |09 |03 | 00070 0.0088 | 0.0019
01|05 | 00136 00122 | 00015 |o01| 05| 00083 0.0081 | 0.0001
03| 05| 00318 00282 | 00036 |03 |05 | 00193 00195 | 0.0002
05 | 05 | 00379 00337 | 00042 |05 |05 | 00230 00247 | 00017
07 | 05| 00318 00286 | 00032 |07 |05 | 00193 00223 | 0.0029
09 | 05| 00136 00125 | 00011 |09 |05 | 00083 00100 | 0.0017
01| 07| 00115 00102 | 00012 |01 |07 | 00070 0.0064 | 0.0005
03] 07| 00267 00237 | 00030 |03 |07 | 00162 00153 | 0.0009
05|07 | 00318 00284 | 00035 |05 |07 | 00193 00193 | 0.0000
07 | 07 | 00267 00241 | 00026 |07 | 07| 00162 00174 | 00012
09 | 07 | 00115 00105 | 00009 |09 |07 | 00070 0.0078 | 0.0009
01|09 | 00049 00044 | 00005 | 01|09 | 00030 0.0026 | 0.0003
03|09 | 00115 00103 | 00011 |03 |09 | 00070 0.0063 | 0.0007
05|09 | 00136 00124 | 00013 |05 |09 | 00083 0.0078 | 0.0004
07 | 09 | 00115 00105 | 00010 |07 |09 | 00070 0.0070 | 0.0001
09 | 0.9 | 00049 00046 | 00003 |09 |09 | 00030 00032 | 0.0002
.
é\v ) 2N o .
% S %, S

%2 %2

Figurel: Shows the EXS and shows the APPS

2699



Al-Hawasy and Ibrahim Iragi Journal of Science, 2024, Vol. 65, No. 5, pp: 2693- 2702

7.2. Example Let I = [0,1], the CLPBVPVC is given as

Uy —— [(x1 —2x, + 7) o0 %[(xl +1) aUl] + (x5 + DU; — (2x2 + 5x, +
X1 2
11)U2— Wl(x t),inQ
Une = 5= | (o™ 52 = 22 |G + D T2| + (ExD)U, + (2 + 53, + 1D, =

Wz(x t), inQ

U, (%,0) = UY(%) = 2.7%,(1 — x,)(1 — x,) sin (%) ,inQ,

U,(%,0) =US(R) =0, inQ,

U;(X,t) =0, ondQ x I,

Uy,(%,t) =0, ondQ x I,

Such that the right hand term w, (%, t) and w, (X, t) are given as

wq(%,t) = sin (x_z) cos("/o) (xz —1) [(X1 - 1) (xl(x1x2 +1) = 2x; +x1%; % -
—sm(t/g)) — (4x? — 4x, + 14)] —x,(x, — 1)ec0s(/o) [ X1 (2x2 cos( ) + sm( ) ) -
%cos (%2) ] - [gxl(xz —1) (2x2 + 5x, + 11)sin(x; — 1) tan(t/g)]

w, (X, t) = %rrtan(t/g) E x1(x, + 1) sin (%2) sin(1 —x;) — (x; + 1)(x, — 1)cos(x; —

1) (cos (%2) — 1)] + mx;(x, — 1) tan(t/g) [sin(x1 -1) (E (x, +1) cos( ) +
%(xl +1) (cos (%2) — 1)) + (% sin (%2) sin(x; —1) —cos(x; — 1) (cos (?) — 1))] —
m sin(x; — 1) (cos (%) - 1) Itan(t/g)(x1+x2 +1) — ixl(xz -1) <9ftan2(t/9) +

x2x3 tan(t/g) + %) +x,(; — 1), — Decos( t/s) sm( ) (2x% + 5x, + 11).

The EXS of the above CLPBVPVC is

Uy (%,t) = x;(1 — x)(1 — x5) sin (%2) ecos("t/o)

U,(X,t) = énxl(l —x,)sin(1 — x;) (1 — cos (%2)) tan(_t/g)

This problem is solved using the IGFEM for M = 9, NT = 20 and T = 1, then the APPS

U™ and the EXS U at x, and x, are given at the time t = 0.5 in the Table (2) and are shown
in Figure (2), the absolute maximum error is (0.0002)

Table2: Comparison between the EXS and APPS.

X X, EXS U, AZPS Ak;?(')';ﬂe X4 X, El)]( = AlP]PS Azsr?(!:‘ne
1 1xe3 2 2 e* 1073
0.1 | 0.1 | 0.0024 0.0024 0.0261 0.1 0.1 0.0000 0.0001 0.0520
0.3 | 0.1 | 0.0057 0.0056 0.0599 0.3 0.1 0.0000 0.0001 0.1012
05 | 0.1 | 0.0068 0.0067 0.0804 0.5 0.1 0.0000 0.0001 0.1031
0.7 | 0.1 | 0.0057 0.0056 0.0792 0.7 0.1 0.0000 0.0001 0.0721
09 | 0.1 | 0.0024 0.0024 0.0382 0.9 0.1 0.0000 0.0000 0.0226
0.7 | 0.2 | 0.0101 0.0101 0.0613 0.7 0.2 0.0000 0.0001 0.1242
0.1 | 0.3 | 0.0057 0.0057 0.0079 0.1 0.3 0.0000 0.0001 0.0957
0.3 | 0.3 | 0.0133 0.0133 0.0147 0.3 0.3 0.0000 0.0002 0.1982
05 | 0.3 | 0.0158 0.0158 0.0114 0.5 0.3 0.0000 0.0002 0.2106
0.7 | 0.3 | 0.0133 0.0133 0.0424 0.7 0.3 0.0000 0.0002 0.1561
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09 | 0.3 | 0.0057 | 0.0057 0.0298 0.9 0.3 0.0000 0.0001 0.0565
0.1 | 0.5 | 0.0068 | 0.0068 0.0258 0.1 0.5 0.0000 0.0001 0.0903
0.3 | 0.5 | 0.0158 | 0.0159 0.0542 0.3 0.5 0.0000 0.0002 0.1964
05 | 05 | 0.0188 | 0.0189 0.0263 0.5 0.5 0.0000 0.0002 0.2183
0.7 | 0.5 | 0.0158 | 0.0158 0.0205 0.7 0.5 0.0000 0.0002 0.1706
09 | 0.5 | 0.0068 | 0.0068 0.0240 0.9 0.5 0.0000 0.0001 0.0669
01 | 0.7 | 0.0057 | 0.0057 0.0223 0.1 0.7 0.0000 0.0001 0.0580
03 | 0.7 | 0.0133 | 0.0133 0.0466 0.3 0.7 0.0000 0.0001 0.1377
05 | 0.7 | 0.0158 | 0.0158 0.0217 0.5 0.7 0.0000 0.0002 0.1629
0.7 | 0.7 | 0.0133 | 0.0133 0.0198 0.7 0.7 0.0000 0.0001 0.1357
0.9 | 0.7 | 0.0057 | 0.0057 0.0224 0.9 0.7 0.0000 0.0001 0.0579
0.1 | 0.9 | 0.0024 | 0.0024 0.0034 0.1 0.9 0.0000 0.0000 0.0162
0.3 | 0.9 | 0.0057 | 0.0057 0.0092 0.3 0.9 0.0000 0.0000 0.0487
0.5 | 0.9 | 0.0068 | 0.0068 0.0017 0.5 0.9 0.0000 0.0001 0.0633
0.7 | 0.9 | 0.0057 | 0.0057 0.0179 0.7 0.9 0.0000 0.0001 0.0574
0.9 | 0.9 | 0.0024 | 0.0024 0.0150 0.9 0.9 0.0000 0.0000 0.0280
0. .
. X
K \,Y[? 3 . /Ogdi‘s K \'Zf{, 02\ A NS
0 % ‘> 0% -

%

Figure 2: Shows the EXS and shows the APPS

8. Conclusions

In this article, the approximate method IGFEM has been proposed for solving
CLPBVPVC. Two examples have been solved numerically to demonstrate the efficiency and
accuracy of the method. Based on the obtained results, we can point out the following
conclusions:
1. Depending on the result in Tables 1 and 2, the absolute maximum error between the EXS
and the APPS for the considered problems show the efficiency of the method, although the
space variable is discretized only for ten grid (M = 9) and NT = 20.
2. The transformed system of equations can be solved by the ChDeM, this method is very fast
than the gauss elimination method for solving LAS.
3. Although, the obtained results from solving the two examples were for all the values of
the time on the interval [0,1] with NT = 20, gave a good and accurate results but we shown
the results at the time t = 0.5 t=0.5 to save the space.
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4. The APPS in the two examples were obtained at all the discrete points for the space
variable but they indicated half of these values to abbreviate the space.
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