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Abstract 

     The primary objective of the current paper is to suggest and implement effective 

computational methods (DECMs) to calculate analytic and approximate solutions to 

the nonlocal one-dimensional parabolic equation which is utilized to model specific 

real-world applications. The powerful and elegant methods that are used orthogonal 

basis functions to describe the solution as a double power series have been 

developed, namely the Bernstein, Legendre, Chebyshev, Hermite, and Bernoulli 

polynomials. Hence, a specified partial differential equation is reduced to a system 

of linear algebraic equations that can be solved by using Mathematica
®
12. The 

techniques of effective computational methods (DECMs) have been applied to solve 

some specific cases of time-dependent diffusion equations. Moreover, the maximum 

absolute error (      ) is determined to demonstrate the accuracy of the proposed 

techniques. 

 

Keywords: Nonlocal one-dimensional parabolic equation; Novel analytic 

approximate solution methods; Orthogonal basis functions; Power series. 
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1. Introduction 

     In applied sciences and engineering, partial differential equations (PDEs) are used to 

model various natural processes [1]. Partial differential equations are also used to study fluid 

mechanics, flow in porous media, heat conduction in solids, diffusive transport of chemicals 

in porous media, and solid mechanics problems [2]. In addition, the equations arising from 

modeling spatial and temporal processes in nature or engineering are of particular interest [3]. 

Thus, many mathematicians tried numerous methods to solve these problems. For more detail, 

see [4-8]. 

 

     Science and engineering models include an integral term over the spatial domain in some 

or all boundaries. Such problems are classified as non-local boundary value problems [9]. In 

1963, these problems initially appeared on the scene, one of the quickest development fields 

acrosses different applications. Their measurement is typically more precise than that gives a 

local state which leads to a more positive outcome [10, 11]. Numerous physical phenomena 

are represented in recent years using nonlocal mathematical models. For example, problems 

in thermodynamics [12], heat conduction, and plasma physics [13] can be reduced to non-

local problems with integral conditions.  

  

     Parabolic partial differential equations with nonlocal initial-boundary conditions simulate 

various physical and industrial problems because of this equation is essential in science and 

technology [14]. Researchers worked hard to perfect effective methods for solving parabolic 

PDEs such as; the Adomian decomposition method [15], finite difference methods [16], radial 

basis functions method [9], Legendre collocation method [17], spectral collocation methods 

[18], reproducing kernel method [19], Bernstein polynomials basis method [20]. Recently, the 

operational matrices method based on orthogonal polynomials has garnered significant 

interest from authors because it helps to address a variety of approximation theories and 

numerical analysis problems [21]. In addition, orthogonal polynomials like the Bernstein, 

Legendre, Chebyshev, Hermite, and Bernoulli polynomials are critical in the least squares 

approximation problems across finite domains [22]. Orthogonal polynomials also reduce the 

solution by translating non-linear differential equations into systems of non-linear algebraic 

equations using the operational matrix technique, which simplifies the equations and allows 

any modern software to solve them [23, 24]. 

 

     On the other hand, the parabolic equations of the one-dimensional time-dependent 

diffusion type can describe significant engineering and industrial problems. The microwave 

heating process, spontaneous ignition, and mass movement in groundwater are only a few 

examples from the literature. The time-dependent diffusion equations have practical and exact 

solutions that interest engineers and mathematicians [25, 26]. A double Walsh series was first 

introduced in 1978 as a primary research project to approximately describe the functions of 

two independent variables. It then investigates single and simultaneous first-order PDEs [27]. 

The numerical techniques for resolving PDEs have significantly improved recently due to 

mathematics and computer science developments. These techniques include the Collocation, 

Galerkin, Tau, and Least square methods for more details, see [28-32]. In all these methods, 

the approximate solution is expressed in a linear combination of trial functions with 

indeterminate coefficients, where the indeterminate coefficients indicate the corresponding 

algebraic system solution [32]. 

 

     Furthermore, Turkyilmazoglu [33] proposed an effective computational method (ECM) 

that relies on appropriate base functions based on the standard polynomials [         ] to 

handle many types of problems; for additional details, see [34-37]. In addition, when the 

solutions are polynomials, the exact solutions are obtained. 
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     This paper extends and develops efficient analytic approximate solution methods based on 

the Turkyilmazoglu [14] to create a novel and accurate collection of the DECMs proposed 

methods using orthogonal base functions like Bernstein, Legendre, Chebyshev, Hermite, and 

Bernoulli polynomials with corresponding operational matrices. These orthogonal 

polynomials are substituted in the definition of the function        with derivatives for 

converting the differential equations into the matrix equation, then the inner product of these 

orthogonal base functions with both the left and right sides of the matrix equation is 

computed. Through these steps, we get the system of linear algebraic equations. By solving 

the obtained system, accurate novel approximate solutions to the parabolic PDEs with 

nonlocal initial-boundary conditions can be obtained. The solution to the parabolic equation 

appears as linear combinations of double power series of orthogonal basis functions. The 

coefficients of orthogonal polynomials are determined numerically or analytically using 

modern computing software. 

 

     The following is the structure of this paper: Section two gives the time-dependent diffusion 

equation formulation. Section three discusses the fundamental concepts underlying the 

proposed methods. Section four provides the application of the proposed methods to solve 

some examples for the parabolic type with nonlocal initial and boundary conditions and 

explains numerical results. Finally, section five presents the conclusions. 

 

2. The time-dependent diffusion equation 

     The one-dimensional time-dependent diffusion equation with an integral condition can 

simulate a variety of physical processes in the contexts of thermoelasticity, heat conduction 

process, chemical engineering, population dynamics, aerodynamics and hydrodynamics, such 

as subsonic and supersonic mixed flows, medical science, control theory, and the life sciences 

[14, 38].  

The time-dependent diffusion equation is given as follows‬[14]: 

      
  

  
       

   

   
                                                              

with the following initial nonlocal conditions: 

                                                                                                          
subject to the integral restrictions' nonlocal boundary conditions: 

       ∫  
 

 

                                                                                         

       ∫  
 

 

                                                                                        

where                       are known functions,        is the desired solution and   is a 

constant. 

 

     Various techniques have been utilized to solve this equation such as the finite difference 

method [39], the Galerkin technique [29], the collocation approaches [18], the radial basis 

functions method [9], the Bernstein polynomials basis method [20], the reproducing kernel 

method [40], and the Tau schemes [41]. Other approaches can be found in [42-46]. 

 

3. The fundamental concepts of the proposed methods 

     This section describes the fundamental concepts underlying the proposed methods. In 

addition, the orthogonal polynomials and associated operational matrices will be discussed as 

tools for developing and expanding the effective computational method technique to provide 
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accurate novel analytic approximate solutions to the one-dimensional time-dependent 

diffusion problem. 

 

 

3.1 The effective computational method and their operational matrices 

     The primary hypothesis is that the system of parabolic PDEs, Eqs. (1-4), has a unique 

solution. Now, we assume that the solution        to the considered problem is approximated 

as a linear combination of    - degree functional double power series based on standard 

polynomial as follows [14]: 

       ∑  

 

   

∑ 

 

   

    
                                                                                                                  

Where     are the unknown standard polynomials coefficients whose values will be 

determined later. Now we define: 

      [               ],      [               ]   and    [

          

          

    
          

]. 

The approximate solution to the     -degree Eq. (5) can be written in matrix form using the 

following dot product: 

                                                                                                                                      
Moreover, we can obtain the following    -order partial derivatives for      and     : 

      

   
             

      

   
                

That   
            is the operational matrix whose values are as follows [33]: 

   

[
 
 
 
 
 
 
 
        
        
        
        
        
          
        
        ]

 
 
 
 
 
 
 

           

 

Hence, the partial derivatives for function        that are derived from Eq. (6) can be defined 

using the following forms: 
         

   
                       

         

   
                          

                                                                    

Consequently, substituting the Eqs. (6) and (7) into the Eqs. (1-4), the following matrix 

equations are obtained: 

                         
                                                               

with,                                                                                                            

and,                                    ∫  
 

 
                                                               

              ∫  
 

 

                                                                                            

In the Hilbert space      [   ]  [   ] , the inner product is given as follows: 
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⟨   ⟩  ∫  
 

 

∫  
 

 

                                                                                                                 

In addition, the set of functions   {         }, and   {         } are linearly 

independent in    where            , and             are the base functions 

of the standard polynomials [33]. 

Hence, implementing Eq. (12) to set the base functions   and   with the left and right sides of 

Eq. (8) results in the matrix equation which is shown as follows: 

     
Where the matrix   contains the coefficients  , while the matrix   represents the known 

values in Eq. (8) as follows: 

〈                                                        

                     〉    〈           〉                                         
As a result, by replacing the Eqs. (9), (10), and (11) into the Eq. (13), some entries in the 

matrix equation will be adjusted. We construct an           linear algebraic equation 

system with coefficients  . To obtain the coefficients  , this system can be numerically 

solved using the Mathematica
®
12. Finally, these values are substituted into Eq. (6) to provide 

an approximate solution of Eq. (1). 

 

3.2 The operational matrices for the Bernstein polynomials 

     The definition of the    -degree Bernstein polynomials         on [0,1] is as follows [20]: 

        
              

         
                                                                                                

Hence, we assume that a linear combination of the Bernstein polynomials can 

approximatively describe        as follows: 

       ∑  

 

   

∑ 

 

   

                                                                                         

where, 

      [                                  ], 

     [                                 ]
 
  and    [

          

          

    
          

]

 

  

such that               are the unknown Bernstein polynomials coefficients whose values 

will be determined later. 

The matrix form expressions for the partial derivatives of the function        for   and   are 

as follows: 
         

   
                                       

         

   
                                  

                                                                   

such that,     
                , which is the operational matrix of partial derivatives, has the 

following definitions [47]:               

where,   

[
 
 
 
 

 

      ( 
 
)       ( 

 
) (   

 
)          ( 

 
) (   

   
)

       ( 
 
)          ( 

 
) (   

   
)

 
 

 
 

 
 
                  

 
      ( 

 
) ]
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[
 
 
 
 
     
     
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 ]
 
 
 
 

       

   and    

[
 
 
 
 

 

  
  

  
  

  
  

 
  

  

 

]
 
 
 
 

       

  

Thus, substituting Eqs. (15) and (16) into Eqs. (1-4), then the following matrix equations are 

obtained: 

                          

                                                       
with                                                          

and                                  ∫  
 

 
                             

               ∫  
 

 

                                           

3.3 The operational matrices for the Legendre polynomials 

The definition of the    -degree Legendre polynomials       on [-1,1] is given as follows 

[48]: 

      ∑       
       

              
        

 

   

                                                                    

Hence,                                      
                        

   
             

Furthermore, we assume that the solution        is approximated by the double series based 

on the Legendre polynomials as follows [49]: 

       ∑  

 

   

∑ 

 

   

                                                                                           

where       [                   ],       [                   ]
   and 

   [

          

          

    
          

]

 

  

such that               are the unknown coefficients of the Legendre polynomials whose 

values will be calculated later. 

Using the matrix form, we can write the partial derivatives of        for   and   as follows: 
         

   
                                      

         

   
                                   

                                                                     

where   
                is the derivatives' operational matrix which is given as follows: 

   {
                      {

                          
                     

   
                          

              

Hence, substituting Eqs. (18) and (19) into Eqs. (1-4), then the following matrix equations are 

obtained: 

                         

                                                      
with                                                          

and                                  ∫  
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               ∫  
 

 

                                           

3.4 The operational matrices for the Chebyshev polynomials 

The definition of the first kind of degree   Chebyshev polynomials       is given as follows: 

      ∑          
        

           
                                                                         

 

   

 

In addition, we assume that the following approximation for the solution        using the 

double series based on the Chebyshev polynomials of the first kind [50]: 

       ∑  

 

   

∑ 

 

   

                                                                                             

where       [                   ],       [                   ]
   and 

   [

          

          

    
          

]

 

  

such that               are the unknown coefficients of the first kind of Chebyshev 

polynomials whose values will be calculated later. 

The partial derivatives of the function        for   and   are expressed in matrix form as 

follows: 
         

   
                                      

         

   
                                

                                                                       

where   
                is the operational matrix of derivatives and has the following 

definition: 

   (    )  {

  

  
                  

                        

 

where             if   is odd, or               if   is even,             
             . 

Consequently, substituting Eqs. (21) and (22) into Eqs. (1-4), then the following matrix 

equations are obtained: 

                         

                                                      
with                                                          

and                                  ∫  
 

 
                             

               ∫  
 

 

                                           

3.5 The operational matrices for the Hermite polynomials 

     The definition of the    -degree Hermite polynomials       on        is given as 

follows [51]: 

        ∑     
          

             
 

 

   

                                                                                              

where   
  

  
  if   is even and   

    

  
  if   is odd.  
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Moreover, we assume that the double series based on the Hermite polynomials can be used to 

approximate the function        as follows: 

       ∑  

 

   

∑ 

 

   

                                                                                            

where       [                   ],       [                   ]
   and 

  [

          

          

    
          

]. 

such that               are the unknown coefficients of the Hermite polynomials whose 

values will be determined later. 

In addition, the      can be expressed by the relevant matrix relation as follows: 

                  
where      [        ], and the matrix   is defined for odd   as follows [52]: 

  

(

 
 
 
 
 
 
 
 

                         
 
 

 
 

 

 
           

 
           

 
 

 

 
 
 
 
 

  

 

   
 
  
 

 

 
  

  (
   

 
)   

 

 
  
 
 
 

 

   
 
  
 

  
 
  

  (
   

 
  )   

 
 
 
 

 
 
  
  
 

  

)

 
 
 
 
 
 
 
 

  , 

and if   is even, then the matrix   is defined as follows [52]: 

  

(

 
 
 
 
 
 

                        

    
 
 

 
                  

 

  
  
 
  

  (
 

 
)   

    

    
 

 

 
 
 
 

 

 
                 

               
 

 
   

                   

 
  

  (
 

 
  )      

  

        
 

  

)

 
 
 
 
 
 

. 

Consequently, the derivatives of the      can be represented as follows: 

                        

where,    

[
 
 
 
 
 
   
   
   

 
 
 
 

   
   
   

 
 
 ]
 
 
 
 
 

           

. 

Consequently, using the matrix form, we can write the partial derivatives of        for   and 

  as follows: 
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Thus, substituting the Eqs. (24) and (25) into the Eqs. (1-4), the following matrix equations 

are obtained: 

                              

                                                           
with                                                       

and                                 ∫  
 

 
                            

              ∫  
 

 

                                          

3.6 The operational matrices for the Bernoulli polynomials 

The definition of the    -degree Bernoulli polynomials       is as follows: 

      ∑
     

                 
         

 

   

                                                                             

where          for each     is referred to as the Bernoulli number. These numbers are 

computed using the identity that is given below [53]: 

 

    
 ∑  

 

   

  

  
  

The following are some of the first Bernoulli numbers: 

          
 

 
    

 

 
     

 

  
    and         for    . 

In addition, we assume the following approximation for the solution        using the double 

series based on the Bernoulli polynomials [32]: 

       ∑  

 

   

∑ 

 

   

                                                                                           

where,       [                   ],       [                   ]
   and 

   [

          

          

    
          

]

 

  

such that               are the unknown coefficients of the Bernoulli polynomials whose 

values will be computed later. 

Moreover, we can write the partial derivatives of        for   and   in matrix form as 

follows: 
         

   
                                       

         

   
                                    

                                                                   

where                    is the derivatives' operational matrix and is given as follows [54]: 

    

[
 
 
 
 
        
        
 
 
 

 
 
 

 
 
 

 
 
   

  
  
  ]

 
 
 
 

           

. 

Therefore, substituting the Eqs. (27) and (28) into the Eqs. (1-4), the following matrix 

equations are obtained: 

                          

                                                       
with                                                          
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and                                  ∫  
 

 
                             

               ∫  
 

 

                                           

4. The application of the proposed methods and numerical results 

     In this paper, the proposed methods DECMs are based on the base functions of orthogonal 

polynomials such as the Bernstein, the Legendre, the Chebyshev, the Hermite, and the 

Bernoulli polynomials which have been implemented to solve some specific cases of the time-

dependent diffusion equations that are considered nonlocal parabolic partial differential 

equations to demonstrate the application of the suggested approaches and their performance. 

The base functions of the orthogonal polynomials are executed in two steps of the DECMs 

proposed methods to extend and improve the ECM method. First, define the unknown 

function        and its derivatives, then compute the inner product to obtain the matrix 

equation explained in Eq. (13). 

 

     In addition, the nonlocal initial and boundary conditions given in Eqs. (9-11) are 

substituted into the matrix equation, and then some entries of Eq. (13) are modified. These 

operations convert the considered problem to an           linear algebraic equation 

system with coefficients  . Consequently, we solve this system using Mathematica
®
12 and 

obtain novel approximate and analytic solutions to the time-dependent diffusion equations. 

 

Example 1. Consider the time-dependent diffusion equation of the following form [14]: 

 
  

  
  

   

   
                                                                     

Subjected to the nonlocal boundary conditions: 
                                     
                      

                                                                                           

This problem's exact solution is                            
Turkyilmazoglu in [14] solved this problem for      where   is the order of approximation 

using the efficient analytic approximate method, namely ECM based on the standard 

polynomials, and obtained the exact solution. 

Furthermore, we can apply the novel DECMs proposed methods to solve this problem in the 

current study for     as follows:  

First: Applying the DECMs proposed methods based on the Bernstein polynomials. 

By inserting the Eqs. (15) and (16) into the Eqs. (29) and (30), we change the function        
and its partial derivatives into matrices. Therefore, the following results are obtained: 

 (                    )   (                  )

                                                                  
                              

                                
                                                                                        

The technique has been applied as shown in Eq. (13), which results in: 

〈                ( 
                   )

  (                  ) 〉    〈                               

                   〉                                                             
Then, applying the inner product to solve the left and right sides of the matrix equation given 

in Eq. (33), with substituting the initial conditions Eq. (32), we obtain the following linear 

algebraic system for coefficients                                        : 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
    

 

 

 

  
  

 

  

 

  
  

 

  
 

  
  
 

  
   

 

  
         

 

  
  
 

  
   
 

 
         

 

  
    

 

  

 

  
  

 

  

 

  
  

 

  

 
 

  
 

 

  
 

 

  

 

  

 

  
  
 

 
 

 

  
 

 

  
 

 

  

 
 

  
 

 

  
 

  

   

 

  

 

  
  
  

  
 

 

  
 

 

  
 

 

  

         
 

 
  
 

  

 

  

         
 

  
  
 

  

 

  

         
 

  
  
 

  

 

 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
   

   

   
   

   
   

   
   

   ]
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
       
       
       

 

 
  

   

 
   

    
 
 
 ]

 
 
 
 
 
 
 
 
 
 

  

Therefore, the following coefficient values are calculated for this system using 

Mathematica
®
12: 

                        
   

   
      

   

    
      

   

   
           

           . 

Finally, by entering the values of these coefficients into Eq. (15), the results are as follows: 

                 (                              )

         (                              )

   (                              )  
Then, the following approximate solution is produced for    : 

       
 

   
                         

Moreover, by proceeding in this way for    , the following approximate solution is 

obtained: 

       
       

       
 

      

     
 

        

     
 

     

    
 

         

       
 

        

     

 
          

      
 

        

     
 

         

       
 

       

    
 

         

     

 
       

     
  

Furthermore, for all    , the exact solution is obtained as follows: 

                          
Second: Using the DECMs proposed methods based on the Legendre polynomials. 

By substituting Eqs. (18) and (19) into Eqs. (29) and (30), yielding the following: 

 (                   )   (                 )

                                                                
                              

                                
                                                                                       

Then, the technique has been applied as shown in Eq. (13), which results in: 
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〈            ( 
                  )

  (                 ) 〉    〈                           

                   〉                                                            
Also, by applying the same procedure mentioned above‬for the Eqs. (36) and (35), we obtain 

the following linear algebraic system for coefficients 

                                         

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

 

 
  

 

 
 

 

 
   

 

 
  
 

 
   
 

 
       

 

 
 

 

 
 

 

  

   
 

 
   
 

 
        

 

  
 

 

  

    
 

 
 

 

 
  

 

 
 

 

 
  

 

 
 

 

  

 
 

 

 

 
 

 

 
  
 

 
 

 

 
 

  

   
 

 

  

  
 

 
    

 

  
 

 

  
 

 

 
 

  

  

  
 

 
  

 

 
      

 

 
 

 

 
 
 

 

 

 

 

 

 

 
  
 

 

 

 
  
 

 

 

 

  
 

 

 

 
 

 

 
  
 

 
   

 

 

 

 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
   

   

   
   

   
   

   
   

   ]
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
      
      
      

  

 
   

   

 
  

   
  

 
  
  ]

 
 
 
 
 
 
 
 
 
 

  

By solving this system numerically using Mathematica
®
12, the values of coefficients are 

given as follows: 

    
    

    
      

   

   
      

   

    
      

    

    
     

   

   
      

   

   
    

 
    

    
      

   

   
        

   

    
  

Finally, by inserting the values of these coefficients into Eq. (18), the results are as follows: 

                ( 
 

 
 

   

 
)     (         ( 

 

 
 

   

 
)   )

 ( 
 

 
 

   

 
)(         ( 

 

 
 

   

 
)   )  

Then, the following approximate solution is produced, for    : 

       
 

   
                         

Additionally, by proceeding in this way for    , the following approximate solution is 

obtained: 
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Furthermore, the exact solution mentioned above is obtained for all    . 

Third: Implementing the DECMs proposed methods based on the Chebyshev polynomials of 

the first kind. By inserting the Eqs. (21) and (22) into the Eqs. (29) and (30), we obtain: 

 (                   )   (                 )

                                                                 
                              

                                
                                                                                        

Then, the procedure has been applied as shown in Eq. (13), which results in: 

〈            ( 
                  )

  (                 ) 〉    〈                           

                   〉                                                   
Applying the same procedure mentioned above‬ for the Eqs. (39) and (38), we obtain the 

following linear algebraic system for coefficients                                          

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         

 

 
    

 

 

 

 
 

 
  
 

 
        

 

 
 

 

 
 

 
 

 
      

 

  
      

 

 
  

 

  

    
 

 
    

 

 
 

 

 
   

 
 

 

 

 
 

 

 
  
 

 
 

 

 
 

 

  
 

 

  

  
 

 
   

 

  
    

 

  
 

 

 

  
 

 
 

 

 
 

 

 
   

 

 
   

 

 
 

 

 
 

 
 
 

 
 

 

 

 

 
   

 

 
  
 

 
 

 
 

 
  

 

  
 

 

 
   

 

  
 

 

 
   

 

  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
   

   

   
   

   
   

   
   

   ]
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
      
      
      

  

 
   

   

 
  

   
   

 
  
  ]

 
 
 
 
 
 
 
 
 
 

  

Thus, solving this system numerically using Mathematica
®
12, the values of coefficients are 

given as follows: 

    
   

   
      

  

  
      

  

  
      

   

   
     

  

 
      

  

  
     

   

   
 

     
  

  
     

  

  
  

Finally, by inserting the values of these coefficients into Eq. (21), the results are as follows: 

                                                   
                                 

Then, the following approximate solution is produced, for    : 

       
  

   
                       

Also, by proceeding in this way for    , the following approximate solution is obtained: 
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Furthermore, the exact solution mentioned above is obtained for all    . 

Fourth: Utilizing the DECMs proposed methods based on the Hermite polynomials. 

The following findings are obtained by inserting the Eqs. (24) and (25) into the Eqs. (29) and 

(30): 

                              (                       )

                                                                
                            

                              
                                                                                            

Then, the technique has been applied as shown in Eq. (13), which results in: 

〈                                       

  (                       ) 〉    〈                           

                   〉                                                             
Applying the same technique mentioned above‬ for the Eqs. (42) and (41), we obtain the 

following linear algebraic system for coefficients                                          

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             

 

 

 

 

   
 

 
          

 

 
 

 
 

 
      

  

  
      

 

 
  

  

  

         
 

 
 

  

 
   

 
 

 

  

 
    

  

 
 

  

 
 

   

  
 

  

  

  
 

 
   

 

 
    

   

  
 

  

 

   
 

 
     

 

 
    

 

 

  
 

 
  

 

 
      

 

 
 

 
 

 
  

  

  
 

 

 
   

  

  
 

 

 
   

  

  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
   

   

   
   

   
   

   
   

   ]
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
      
      
      

  

 
   

   

 
  

   
   

 
  
  ]

 
 
 
 
 
 
 
 
 
 

  

In addition, by solving this system numerically using Mathematica
®

12, the values of 

coefficients are given as follows: 

    
   

   
      

  

  
      

  

  
      

   

   
     

  

  
      

  

  
     

   

    
 

     
  

  
     

  

   
  

Finally, by inserting the values of these coefficients into Eq. (24), the results are as follows: 

                                                          
                             

Then, the following approximate solution is produced, for    : 
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Moreover, by proceeding in this way for    , the following approximate solution is 

obtained: 

       
         

         
 

       

     
 

         

       
 

        

      
 

            

          

 
          

       
 

           

       
 

         

      
 

            

          

 
          

       
 

           

       
 

        

      
  

Furthermore, the exact solution mentioned above is obtained for all    . 

Fifth: Applying the DECMs proposed methods based on the Bernoulli polynomials. 

By substituting the Eqs. (27) and (28) into the Eqs. (29) and (30) produce the following 

results: 

 (                    )   (                  )

                                                                 
                              

                                
                                                                                       

Then, the procedure has been applied as shown in Eq. (13), which results in: 

〈            ( 
                   )

  (                  ) 〉    〈                           

                   〉                                                           
Applying the same procedure mentioned above‬ for the Eqs. (45) and (44), we obtain the 

following linear algebraic system for coefficients                                          

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

 

 
 

 

 
  

 

 
 

 

  
   

 

 
  
 

  

 

  
       

 

  
 

 

   
 

 

    

   
 

  
   

 

   
        

 

    
 

 

    

    
 

 
 

 

  
  

 

  
 

 

  
  

 

   
 

 

   

 
 

  

 

  
 

 

   
  

 

   
 

 

  
 

  

    
 

 

    

  
 

   
   

 

    
 

 

   
 

 

   
 

  

     

 
 

 
 

 

 

 

 
   

 

 
 
 

  
 

 

 

 

  

 

  

 

 

 

  
  

 

   

 

  
 
 

  

 

   

  
 

  

 

   
 

 

   
  

 

   
   

 

   

 

    ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
   

   

   
   

   
   

   
   

   ]
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
      
      
      

  

 
   

   

 
  

   
   

 
  
  ]

 
 
 
 
 
 
 
 
 
 

  

Therefore, by solving this system numerically using Mathematica
®

12, the values of 

coefficients are given as follows: 
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Ultimately, by inserting the values of these coefficients into Eq. (27), the results are as 

follows: 

           
 

 
     ( 

 

  
 

  

 
)    

 

 
 (    

 

 
     ( 

 

  
 

  

 
)   )

 ( 
 

  
 

  

 
)(    

 

 
     ( 

 

  
 

  

 
)    )  

Thus, the following approximate solution is produced, for    : 

       
 

   
                         

Moreover, by proceeding in this way for    , the following approximate solution is 

obtained: 

       
            

            
 

           

          
 

            

          
 

           

         

 
               

            
 

             

          
 

              

          

 
            

         
 

              

            
 

             

          

 
              

          
 

           

         
  

Furthermore, the exact solution mentioned above is obtained for all    . 

To explain the efficiency of the DECMs proposed methods to solve Example 1 referred to in 

Eqs. (29) and (30), the maximum absolute error (      ) is computed as follows: 

          
       

|              |                                                                                            

 Where         is the exact solution and        is the approximate solution achieved. 

 Table (1) lists        for the approximate solution obtained by applying the DECMs 

proposed methods with approximation order            . Moreover, we can demonstrate 

the accuracy of the proposed methods by comparing the error values for     and 3, as the 

error becomes smaller as the value of   increases. 

 

Table 1: The comparison between the        for the example (1) by the DECMs proposed 

methods. 

  
DECMs 

Bernstein 

DECMs 

Legendre 

DECMs 

Chebyshev 
DECMs Hermite 

DECMs 

Bernoulli 

2 0.0857417 0.269846 0.270249 0.270249 0.269846 

3 0.00951975 0.0360467 0.0393046 0.0393046 0.0360467 

 

Example 2. Consider the time-dependent diffusion equation of the following form [14]: 

  

  
 

   

   
                                                                                                                    

Subjected to the nonlocal boundary conditions: 
                                      

                 ∫         
 

 

       
                                                       

This problem's exact solution is                    
Turkyilmazoglu in [14] solved this problem for     using the efficient analytic approximate 

method, namely ECM based on the standard polynomial, and obtained the exact solution. 

Furthermore, now we can use the same procedure in the previous example to apply the novel 

DECMs proposed methods to solve this problem for     as follows: 

First: Applying the DECMs proposed methods based on the Bernstein polynomials. 
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By inserting the Eqs. (15) and (16) into the Eqs. (47) and (48), we convert the function        

and its partial derivatives into matrices. Therefore, the following results are obtained: 

                                                                           
                               

                                    ∫                   
 

 

                                       

The technique has been applied as shown in Eq. (13), which results in: 

〈                
                                      

                〉    〈                       〉                         
Moreover, we use the same procedure in the previous example for solving Eq. (51). After 

generating a linear algebraic system of equations, we use Mathematica
®
12 to determine the 

values of the coefficients   as follows, 

  [

         

         

         

]  

[
 
 
 
 
             

 
 

 
 

 

 
  
 

 

   
 

 
   ]

 
 
 
 

  

Finally, by substituting the coefficients   in the Eq. (15), we get the following exact solution: 

                   
Second: Using the DECMs proposed methods based on the Legendre polynomials. 

By substituting Eqs. (18) and (19) into Eqs. (47) and (48), yielding the following: 

                                                                                
                               

                                    ∫                   
 

 

                                       

Then, the technique has been applied as it is shown in Eq. (13) which results in the following: 

〈            
                                    

                〉    〈                   〉                              
Moreover, we use Mathematica

®
12 to solve Eq. (54), and determine the values of the 

coefficients   as follows, 

  [

         

         

         

]  [
   
    
   

]  

Finally, by substituting the coefficients   in the Eq. (18), we get the exact solution mentioned 

above. 

Third: Implementing the DECMs proposed methods based on the Chebyshev polynomials of 

the first kind. By inserting the Eqs. (21) and (22) into the Eqs. (47) and (48), we obtain: 

                                                                                
                               

                                    ∫                   
 

 

                                       

Then, the technique has been applied as shown in Eq. (13) which results in the: 

〈            
                                    

                〉    〈                   〉                              

Additionally, we use Mathematica
®
12 to solve Eq. (57), and determine the values of the 

coefficients   as follows: 
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  [

         

         

         

]  [

   
 

 
  

 

 
   

]  

Therefore, by substituting the coefficients   in the Eq. (21), we get the exact solution 

mentioned above. 

Fourth: Utilizing the DECMs proposed methods based on the Hermite polynomials. 

The following findings are obtained by inserting the Eqs. (24) and (25) into the Eqs. (47) and 

(48): 

                                                              
                

                             

                               ∫                  
 

 

                                        

Then, the technique has been applied as shown in Eq. (13) which results in: 

〈                                                           

               〉    〈                   〉                                
Furthermore, we use Mathematica

®
12 to solve Eq. (60), and determine the values of the 

coefficients   as follows: 

  [

         

         

         

]  [

   
 

 
 

 

 

 

 
   

]  

Consequently, by substituting the coefficients   in the Eq. (24), we get the exact solution 

mentioned above. 

Fifth: Applying the DECMs proposed methods based on the Bernoulli polynomials. 

By substituting the Eqs. (27) and (28) into the Eqs. (47) and (48) produce the following 

results: 

                                                                              
                               

                                    ∫                   
 

 

                                       

Then, the technique has been applied as shown in Eq. (13) which results in the: 

〈            
                                      

                〉    〈                   〉                              

Additionally, we use Mathematica
®
12 to solve Eq. (63), and determine the values of the 

coefficients   as follows, 

  [

         

         

         

]  [
   
     
   

]  

Thus, by substituting the coefficients   in the Eq. (27), we get the exact solution mentioned 

above. 

 

Example 3. Consider the time-dependent diffusion equation of the following form [14, 20]: 

                                                                                                                        

Subjected to the nonlocal boundary conditions: 

                

                 ∫  
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This problem's exact solution is               
Turkyilmazoglu in [14] solved this problem for     using the efficient analytic approximate 

method, namely ECM based on the standard polynomials, and produced the following 

approximate solution: 

                                                                    

                                                 

                                                   

                                                   

                                                    

                                                  

 

Furthermore, now we can use the same procedure in the previous examples to apply the 

DECMs proposed methods to solve this problem as follows: 

First: Applying the DECMs proposed methods based on the Bernstein polynomials. By 

substituting the Eqs. (15) and (16) into the Eqs. (64) and (65), we convert the function        

and its partial derivatives into matrices. Therefore, the following results are obtained: 

                                                                                         

                  

                                    ∫                   
 

 

                                       

The technique has been applied as shown in Eq. (13) which results in: 

〈                
                                       〉 

〈                         〉                                                           

Moreover, we use the same procedure in the previous examples for solving Eq. (68). After 

generating a linear algebraic system of equations for     as solved in [14], we use 

Mathematica
®
12 to determine the values of the coefficients   as follows: 

  

[
 
 
 
 
 
                                                                     

                                                                     

                                               
                                          
                                          
                                         ]

 
 
 
 
 

  

Finally, by substituting the coefficients   in the Eq. (15), we get the following approximate 

solution for    : 

                                                          

                               

                                                       

                           
                                                        

                            
                                                        

                             
                                                          

                            
                                                      

                             
Second: Using the DECMs proposed methods based on the Legendre polynomials. 

By substituting Eqs. (18) and (19) into Eqs. (64) and (65), this yields the following: 
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                                    ∫                   
 

 

                                       

Also, the technique has been applied as shown in Eq. (13) which results in: 

〈            
                                     〉 

〈                     〉                                                                

Moreover, we use Mathematica
®
12 to solve Eq. (71), and determine the values of the 

coefficients   as follows: 

 

 

[
 
 
 
 
 

                                                 
                                                
                                               

                                                  
                                                    

                                                        ]
 
 
 
 
 

  

Finally, by substituting the coefficients   in the Eq. (18), we get the following approximate 

solution for    : 

                                                           

                              

                                                    

                         
                                                     

                         
                                                       

                            
                                                      

                          
                                                    

                           
Third: Implementing the DECMs proposed methods based on the Chebyshev polynomials of 

the first kind. 

By inserting the Eqs. (21) and (22) into the Eqs. (64) and (65), we obtain: 

                                                                                                
                  

                                    ∫                   
 

 

                                       

Also, the technique has been applied as shown in Eq. (13) which results in: 

〈            
                                     〉 

〈                     〉                                                                  

Additionally, we use Mathematica
®
12 to solve Eq. (74), and determine the values of the 

coefficients   as follows: 

 

 

[
 
 
 
 
 

                                                 
                                                
                                                 

                                                   
                                                      

                                                           ]
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Finally, by substituting the coefficients   in the Eq. (21), we get the following approximate 

solution for    : 

                                                           

                              

                                                    

                         
                                                     

                          
                                                       

                            
                                                     

                          
                                                    

                           
Fourth: Utilizing the DECMs proposed methods based on the Hermite polynomials. 

The following findings are obtained by inserting the Eqs. (24) and (25) into the Eqs. (64) and 

(65): 

                                                                                   
                 

                               ∫                  
 

 

                                       

Moreover, the technique has been applied as it is shown in Eq. (13) which results in: 

〈                                                           〉 

〈                     〉                                                               

Furthermore, we use Mathematica
®
12 to solve Eq. (77), and determine the values of the 

coefficients   as follows: 

  

[
 
 
 
 
 

                                                
                                                
                                                
                                                  
                                                       

                                                            ]
 
 
 
 
 

  

Hence, by substituting the coefficients   in the Eq. (24), we get the following approximate 

solution for    : 

                                                           

                              

                                                    

                        
                                                     

                          
                                                      

                           
                                                    

                          
                                                   

                           
Fifth: Applying the DECMs proposed methods based on the Bernoulli polynomials. 

By substituting the Eqs. (27) and (28) into the Eqs. (64) and (65) produce the following 

results: 

                                                                                            



Salih and AL-Jawary                                Iraqi Journal of Science, 2024, Vol. 65, No. 6, pp: 3345-3377 

 

3366 

                  

                                    ∫                   
 

 

                                       

Then, the technique has been applied as shown in Eq. (13) which results in the: 

〈            
                                        〉 

〈                     〉                                                                
Moreover, we use Mathematica

®
12 to solve Eq. (80), and determine the values of the 

coefficients   as follows: 

  

[
 
 
 
 
 
                                        
                                        
                                       
                                       
                                       
                                       ]

 
 
 
 
 

  

Consequently, by substituting the coefficients   in the Eq. (27), we get the following 

approximate solution for    : 

                                                           

                              

                                                    

                         
                                                     

                         
                                                       

                            
                                                      

                          
                                                    

                           
 In addition, the        referred to in Eq. (46) is computed to demonstrate the accuracy and 

reliability of the DECMs proposed methods to solve Example 3. 

Table (2) lists        for the approximate solution obtained by applying the ECM method 

described in [14] and by the DECMs proposed methods with approximation order        as 

explained in [14]. Moreover, we can demonstrate that the accuracy of the DECMs proposed 

methods is better than that of the ECM method [14]. In addition, the DECMs based on the 

Bernstein polynomial have slightly greater accuracy and less error than the other proposed 

methods. 
 

 Table 2: The comparison between the        for the example (3) by the ECM method 

[14], and by the DECMs proposed methods. 
ECM 

Standard [14] 

DECMs 

Bernstein 

DECMs 

Legendre 

DECMs 

Chebyshev 

DECMs 

Hermite 

DECMs 

Bernoulli 

       
      

       
      

       
      

       
      

       
      

       
      

 

Furthermore, Figures (1) and (2) illustrate the absolute error values for         that is 

obtained using the proposed approaches with approximation order              respectively, 

as given in [14]. In reality, the accuracy improves as the approximation order increases. 
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Figure 1: The absolute error values achieved by the proposed methods of the example (3)  

with    . 

 

 

 

 

 

 

 

 

 

 

  
DECMs Bernstein DECMs Legendre 

 

 

DECMs Chebyshev DECMs Hermite 

 

 

 

 

 

 

 

 

 

DECMs Bernoulli 
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DECMs Bernstein DECMs Legendre 

  

DECMs Chebyshev DECMs Hermite 

 

DECMs Bernoulli 

Figure 2: The absolute error values achieved by the proposed methods of the example (3) 

with     

 

Example 4. Consider the time-dependent diffusion equation of the following form [14]: 

                               

     (                                   )             
Subjected to the nonlocal boundary conditions: 

                     
                      

                                                                                            

Where the value of    
 

     
, and this problem's exact solution is                   

   . 

Turkyilmazoglu in [14] solved this problem for     using the efficient analytic approximate 

method, namely ECM based on the standard polynomials, and produced the following 

approximate solution: 
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Furthermore, now we can use the same procedure in the previous examples to apply the 

DECMs proposed methods to solve this problem as follows: 

First: Applying the DECMs proposed methods based on the Bernstein polynomials. 

By substituting the Eqs. (15) and (16) into the Eqs. (81) and (82), we convert the function 

       and its partial derivatives into matrices. Therefore, the following results are obtained: 

                                                             
                                                       

                (              ) 

                                
                                                                                       

The technique has been applied as it is shown in Eq. (13) which results in: 

〈                                                             

                〉    〈                
                        

                〉                                                                        
Moreover, we use the same procedure in the previous examples for solving Eq. (85). After 

generating a linear algebraic system of equations for    , as solved in [14], we use 

Mathematica
®
12 to determine the values of the coefficients   as follows: 

 

 

[
 
 
 
 
 
                                                                           

                                                                    

                                                                     

                                                
                                                

                                                                           ]
 
 
 
 
 

  

Finally, by substituting the coefficients   in the Eq. (15), we get the following approximate 

solution for    : 

                                                              

                    

                                                

                                        
                                               

                                       
                                              

                                           
                                                         

                           
                                               

                                         
Second: Using the DECMs proposed methods based on the Legendre polynomials. 

By substituting Eqs. (18) and (19) into Eqs. (81) and (82), this yields the following: 

                                                           
                                                        

                (              ) 
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Also, the technique has been applied as it is shown in Eq. (13) which results in: 

〈                                                       

               〉    〈            
                        

                〉         
                                                                                     

Moreover, we use Mathematica
®
12 to solve Eq. (88), and determine the values of the 

coefficients   as follows: 
 

 

[
 
 
 
 
 

 

                                                                     
                                                      

                                                                    
                                                        

                                                                     
                                                     ]

 
 
 
 
 

  

Finally, by substituting the coefficients   in the Eq. (18), we get the following approximate 

solution for    : 

                                                                 

                                  
                                              

                                                 

                                                         

                 

                                             

                                                

                                                   

                   
Third: Implementing the DECMs proposed methods based on the Chebyshev polynomials of 

the first kind. 

By inserting the Eqs. (21) and (22) into the Eqs. (81) and (82), we obtain: 

                                                           
                                                        

                (              ) 

                                
                                                                                        

Also, the technique has been applied as shown in Eq. (13), which results in: 

〈                                                       

                〉    〈            
                        

                〉         
                                                                                     

Additionally, we use Mathematica
®
12 to solve Eq. (91), and determine the values of the 

coefficients   as follows: 
 

 

[
 
 
 
 
 

 

                                                                     
                                                         

                                                                     
                                                        

                                                                       

                                                        ]
 
 
 
 
 

  

Finally, by substituting the coefficients   in the Eq. (21), we get the following approximate 

solution for    : 
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Fourth: Utilizing the DECMs proposed methods based on the Hermite polynomials. 

The following findings are obtained by inserting the Eqs. (24) and (25) into the Eqs. (81) and 

(82): 

                                                                     

     (                                   )             

               (             ) 

                              
                                                                                            

Moreover, the technique has been applied as it is shown in Eq. (13) which results in: 

〈                                                                  

              〉    〈            
   (                    

               )〉                                                                      
Furthermore, we use Mathematica

®
12 to solve Eq. (94), and determine the values of the 

coefficients   as follows: 
 

 

[
 
 
 
 
 

 

                                                                 

                                                  
                                                                 

                                                    
                                                                     

                                                           ]
 
 
 
 
 

  

Consequently, by substituting the coefficients   in the Eq. (24), we get the following 

approximate solution for    : 

                                                                 

                                  
                                              

                                                 

                                                          

                 

                                             

                                                 

                                                    

                   
Fifth: Applying the DECMs proposed methods based on the Bernoulli polynomials. 

By substituting the Eqs. (27) and (28) into the Eqs. (81) and (82) produce the following 

results: 

                                                             
                                                       

                (              ) 

                                
                                                                                       

Then, the technique has been applied as it is shown in Eq. (13) which results in the: 
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〈                                                         

                〉    〈            
                        

                〉         
                                                                                    

Moreover, we use Mathematica
®
12 to solve Eq. (97), and determine the values of the 

coefficients   as follows, 
 

 

[
 
 
 
 
 
                                                             
                                                        
                                                    

                                      
                                                 

                                      ]
 
 
 
 
 

  

Thus, by substituting the coefficients   in the Eq. (27), we get the following approximate 

solution for    : 

                                                                 

                                  
                                              

                                                 

                                                         

                 

                                             

                                                

                                                   

                  
 

Furthermore, the        is calculated to demonstrate the accuracy and reliability of the 

suggested approaches for solving the problem given in Eqs. (81) and (82). 

Table (3) presents the values of        corresponding to the approximate solution derived 

from the ECM technique delineated in [14], and the DECMs proposed methods, with an 

approximation order of      , as expounded in [14]. Furthermore, it can be demonstrated 

that the accuracy of the DECMs' proposed techniques slightly surpasses that of the ECM 

approach. 

 

Table 3: The comparison between the        for the example (4) by the ECM [14], and by 

the DECMs proposed methods. 
ECM 

Standard [14] 

DECMs 

Bernstein 

DECMs 

Legendre 

DECMs 

Chebyshev 

DECMs 

Hermite 

DECMs 

Bernoulli 

            
       
      

       
      

       
      

       
      

       
      

 

      Furthermore, Figures (3) and (4) demonstrate the absolute error values for the interval 

       , obtained from the proposed techniques with approximation orders of   
       , respectively. In reality, the precision of the solution improves, and the error is less 

with the ascending value of  . 
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Figure 3: The absolute error values obtained using the proposed techniques of the example 

(4) with order approximation    . 

 

 

 

 

 

 

 

 

 

DECMs Bernstein DECMs Legendre 

  

DECMs Chebyshev DECMs Hermite 

 

DECMs Bernoulli 
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Figure 4: The absolute error values obtained using the proposed techniques of the example 

(4) with order approximation    . 

 

5. Conclusions 

     This paper introduces and implements a new class of computational techniques (DECMs) 

for solving parabolic partial differential equations based on suitable orthogonal polynomials 

such as the Bernstein, the Legendre, the Chebyshev, the Hermite, and the Bernoulli 

polynomials. In this work, we develop and extend the ECM-described double power series 

expansion technique to get novel analytic approximate solutions to the problem. The time-

dependent diffusion equations have been reduced to a linear algebraic system which is solved 

by Mathematica
®
12. The proposed procedures are straightforward, and it is demonstrated 

with examples that the methods can produce exact solutions when the solutions are expressed 

as polynomials. Otherwise, highly accurate solutions are obtained with small approximation 

orders for some nonlocal problems. Furthermore, the results demonstrate that the proposed 

approaches improve ECM in terms of accuracy and error rate. 

 

 

 

DECMs Bernstein DECMs Legendre 

  

DECMs Chebyshev DECMs Hermite 

 

DECMs Bernoulli 
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