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Abstract

The primary objective of the current paper is to suggest and implement effective
computational methods (DECMS) to calculate analytic and approximate solutions to
the nonlocal one-dimensional parabolic equation which is utilized to model specific
real-world applications. The powerful and elegant methods that are used orthogonal
basis functions to describe the solution as a double power series have been
developed, namely the Bernstein, Legendre, Chebyshev, Hermite, and Bernoulli
polynomials. Hence, a specified partial differential equation is reduced to a system
of linear algebraic equations that can be solved by using Mathematica®12. The
techniques of effective computational methods (DECMs) have been applied to solve
some specific cases of time-dependent diffusion equations. Moreover, the maximum
absolute error (MAbsR,,) is determined to demonstrate the accuracy of the proposed
techniques.

Keywords: Nonlocal one-dimensional parabolic equation; Novel analytic
approximate solution methods; Orthogonal basis functions; Power series.
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1. Introduction

In applied sciences and engineering, partial differential equations (PDEs) are used to
model various natural processes [1]. Partial differential equations are also used to study fluid
mechanics, flow in porous media, heat conduction in solids, diffusive transport of chemicals
in porous media, and solid mechanics problems [2]. In addition, the equations arising from
modeling spatial and temporal processes in nature or engineering are of particular interest [3].
Thus, many mathematicians tried numerous methods to solve these problems. For more detail,
see [4-8].

Science and engineering models include an integral term over the spatial domain in some
or all boundaries. Such problems are classified as non-local boundary value problems [9]. In
1963, these problems initially appeared on the scene, one of the quickest development fields
acrosses different applications. Their measurement is typically more precise than that gives a
local state which leads to a more positive outcome [10, 11]. Numerous physical phenomena
are represented in recent years using nonlocal mathematical models. For example, problems
in thermodynamics [12], heat conduction, and plasma physics [13] can be reduced to non-
local problems with integral conditions.

Parabolic partial differential equations with nonlocal initial-boundary conditions simulate
various physical and industrial problems because of this equation is essential in science and
technology [14]. Researchers worked hard to perfect effective methods for solving parabolic
PDEs such as; the Adomian decomposition method [15], finite difference methods [16], radial
basis functions method [9], Legendre collocation method [17], spectral collocation methods
[18], reproducing kernel method [19], Bernstein polynomials basis method [20]. Recently, the
operational matrices method based on orthogonal polynomials has garnered significant
interest from authors because it helps to address a variety of approximation theories and
numerical analysis problems [21]. In addition, orthogonal polynomials like the Bernstein,
Legendre, Chebyshev, Hermite, and Bernoulli polynomials are critical in the least squares
approximation problems across finite domains [22]. Orthogonal polynomials also reduce the
solution by translating non-linear differential equations into systems of non-linear algebraic
equations using the operational matrix technique, which simplifies the equations and allows
any modern software to solve them [23, 24].

On the other hand, the parabolic equations of the one-dimensional time-dependent
diffusion type can describe significant engineering and industrial problems. The microwave
heating process, spontaneous ignition, and mass movement in groundwater are only a few
examples from the literature. The time-dependent diffusion equations have practical and exact
solutions that interest engineers and mathematicians [25, 26]. A double Walsh series was first
introduced in 1978 as a primary research project to approximately describe the functions of
two independent variables. It then investigates single and simultaneous first-order PDEs [27].
The numerical techniques for resolving PDEs have significantly improved recently due to
mathematics and computer science developments. These techniques include the Collocation,
Galerkin, Tau, and Least square methods for more details, see [28-32]. In all these methods,
the approximate solution is expressed in a linear combination of trial functions with
indeterminate coefficients, where the indeterminate coefficients indicate the corresponding
algebraic system solution [32].

Furthermore, Turkyilmazoglu [33] proposed an effective computational method (ECM)
that relies on appropriate base functions based on the standard polynomials [1, x,x2, ...] to
handle many types of problems; for additional details, see [34-37]. In addition, when the
solutions are polynomials, the exact solutions are obtained.
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This paper extends and develops efficient analytic approximate solution methods based on
the Turkyilmazoglu [14] to create a novel and accurate collection of the DECMs proposed
methods using orthogonal base functions like Bernstein, Legendre, Chebyshev, Hermite, and
Bernoulli polynomials with corresponding operational matrices. These orthogonal
polynomials are substituted in the definition of the function u(x,t) with derivatives for
converting the differential equations into the matrix equation, then the inner product of these
orthogonal base functions with both the left and right sides of the matrix equation is
computed. Through these steps, we get the system of linear algebraic equations. By solving
the obtained system, accurate novel approximate solutions to the parabolic PDEs with
nonlocal initial-boundary conditions can be obtained. The solution to the parabolic equation
appears as linear combinations of double power series of orthogonal basis functions. The
coefficients of orthogonal polynomials are determined numerically or analytically using
modern computing software.

The following is the structure of this paper: Section two gives the time-dependent diffusion
equation formulation. Section three discusses the fundamental concepts underlying the
proposed methods. Section four provides the application of the proposed methods to solve
some examples for the parabolic type with nonlocal initial and boundary conditions and
explains numerical results. Finally, section five presents the conclusions.

2. The time-dependent diffusion equation

The one-dimensional time-dependent diffusion equation with an integral condition can
simulate a variety of physical processes in the contexts of thermoelasticity, heat conduction
process, chemical engineering, population dynamics, aerodynamics and hydrodynamics, such
as subsonic and supersonic mixed flows, medical science, control theory, and the life sciences
[14, 38].
The time-dependent diffusion equation is given as follows [14]:

ou 0%u
a(x, t)a = b(x, t)ﬁ-i' cC,h)u+Q(xt), 0<x<1,0<t<1, (D
with the following initial nonlocal conditions:
u(x,0) = au(x, 1) + g(x), 0<x<1, (2)
subject to the integral restrictions' nonlocal boundary conditions:
1
u(0,t) = f p()ulx, t)dx + f(t), 0<t<l, 3)
0
1
u(l,t) = | Y)ulx,t)dx + h(t), 0<t<1. (4)
0

where a, b, c, Q, f, g, h, p and Y are known functions, u(x, t) is the desired solution and « is a
constant.

Various techniques have been utilized to solve this equation such as the finite difference
method [39], the Galerkin technique [29], the collocation approaches [18], the radial basis
functions method [9], the Bernstein polynomials basis method [20], the reproducing kernel
method [40], and the Tau schemes [41]. Other approaches can be found in [42-46].

3. The fundamental concepts of the proposed methods

This section describes the fundamental concepts underlying the proposed methods. In
addition, the orthogonal polynomials and associated operational matrices will be discussed as
tools for developing and expanding the effective computational method technique to provide
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accurate novel analytic approximate solutions to the one-dimensional time-dependent
diffusion problem.

3.1 The effective computational method and their operational matrices

The primary hypothesis is that the system of parabolic PDEs, Egs. (1-4), has a unique
solution. Now, we assume that the solution u(x, t) to the considered problem is approximated
as a linear combination of nt"- degree functional double power series based on standard
polynomial as foIIows [14]:

u(x,t) = z Z agxtt. (5)

k=0 (=0
Where ay; are the unknown standard polynomials coefficients whose values will be

determined later. Now we define:

Qoo QAp1 ** Qon

a a cee a
Pi)=[1x x2x%..x",Y©) =[1 ¢t t2¢t3...¢"]T,and A=| :° 7 T

Ano An1  ° Qupn

The approximate solution to the n*" -degree Eq. (5) can be written in matrix form using the
following dot product:

ulx,t) =¥(x).A.Y(t), (6)
Moreover, we can obtain the following nt"*-order partial derivatives for ¥ (x) and Y (t):
0"¥W(x) W(x) (B a"Y(t) B™T ¥(t
S = Y@ .(BY, =B,
That B* (1 1)x(n+1) 1S the operational matrix whose values are as follows [33]:
0 1 0 0 0 - 0 07
0 0 2 0 0 -- 0 0
0 0 0 3 0 0 0
B = 0 0 0 0 4 0 0
0O 0 0 0 O : :
P n—=1 0
0 00 0 0 O 0 n

‘0 0 0 0 0 O 0 0+ )x(n+1)
Hence, the partial derivatives for function u(x, t) that are derived from Eq. (6) can be defined
using the following forms:

0"u(x, t

% =¥(x).B™".A.Y(b), n=>1,

o™ u(x, t) e ™
Consequently, substituting the Eqgs. (6) and (7) into the Egs. (1-4), the following matrix
equations are obtained:

a(x, )P (x) .A.(BHT .Y (t)

=b(x,t)¥(x).(B)2.A.Y(t) + c(x, ) ¥ (x) .A.Y(t) + Q(x,t), (8)

with, P(x).A.Y(0) = a ®(x).A4.Y(1) + g(x), (9)

and, P(0).4.Y(®) = [ p(x) P(x).A.Y([O)dx + f (D), (10)
1

¥(1).4.Y(t) = j W(xX) P(x) . A.Y()dx + h(2). (11)

0
In the Hilbert space H = L?([0,1] x [0,1]), the inner product is given as follows:
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1 1
(f, g) = f f £, 0g(x Ddxdt, (12)

In addition, the set of functions X = {X,, X; ..., X}, and T = {T,, T, ..., T,,} are linearly
independent in H, where X; = x*,0 < i < n, and T; = t/,0 < j < m are the base functions
of the standard polynomials [33].
Hence, implementing Eq. (12) to set the base functions X and T with the left and right sides of
Eqg. (8) results in the matrix equation which is shown as follows:
K =R.
Where the matrix K contains the coefficients A, while the matrix R represents the known
values in Eq. (8) as follows:
(x't/,a(x, )P (x) .A.(B)T .Y (t) — b(x,t)¥(x) .(B*)%.A.Y(t)
—c(x, O¥(x) . A.Y(t)), (x't/,Q(x,t)), 0<i,j<n. (13)
As a result, by replacing the Egs. (9), (10), and (11) into the Eq. (13), some entries in the
matrix equation will be adjusted. We construct an (n + 1 X n + 1) linear algebraic equation
system with coefficients A. To obtain the coefficients A, this system can be numerically
solved using the Mathematica®12. Finally, these values are substituted into Eq. (6) to provide
an approximate solution of Eq. (1).

3.2 The operational matrices for the Bernstein polynomials
The definition of the n*"-degree Bernstein polynomials B; ,(x) on [0,1] is as follows [20]:
n! x' (1 —x)*
Bi,n(x) = il (n—1)! ’
Hence, we assume that a linear combination of the Bernstein polynomials can
apprOX|mat|ver descrlbe u(x, t) as follows:

0<i<n (14)

u(x,0) = Z Z @B (OB () = AT W () Y (O), (15)
where, e
'I’(x) = [BO,n(x)rBl,n(x);BZ,n(x) ’ ---:Bn,n(x)]a
Qoo Qo1 Aon]”

T Ao d1n = g
Y(t) = [BO,Tl(t)J Bl,n(t)i BZ,n(t)l LR Bn,n(t)] ) and A= oee n )
Ano An1 ** Qnn
such that ay;, k, 1 = 0, ..., n are the unknown Bernstein polynomials coefficients whose values
will be determined later.
The matrix form expressions for the partial derivatives of the function u(x, t) for x and t are
as follows:

0™Mu(x,t
% =AT.Bn*". W(x).Y(t) n>1,
Ox (16)
6 U(x, t) T *MNT
at—m=,4 Px).Bn)LY(t) m=1.

such that, Bn*"(n+ 1x (n + 1), Which is the operational matrix of partial derivatives, has the
following definitions [47]: Bn*" =DV Q
(D@ EDTE () - DR G ]
_143\0 (n _ —j [(n n—j
where, D =| 0 -1 (1) - (=DM (1) (n—j)l )

0 0 (-1)° (")

(n+ 1x (n+ 1).

3349



Salih and AL-Jawary Iragi Journal of Science, 2024, Vol. 65, No. 6, pp: 3345-3377

0 0 0 .. 0 [Di]
11 0 0 0| | D3 |
V=|0 2 0 0| ,and Q =| p;1 |
l0 0 0 - nJ(n+1)><n D,'{1|

nx(n+1)
Thus, substituting Egs. (15) and (16) into Egs. (1-4), then the following matrix equations are
obtained:
a(x, ) AT. ¥ (x) .(Bn)T.Y (1)
= b(x, )AT. B 2. W(x) .Y (t) + c(x, )AT . W (x) . Y(t) + Q(x, 1),
with AT P(x).Y(0) =a AT . ¥ (x).Y(D) + g(x),

and AT . P(0).¥(t) = [ p(x) AT. ¥ (x) .Y(t)dx + f(2),

AT . w(1).Y(®) = j Y(x) AT . @ (x) .Y (t)dx + h(t).

0
3.3 The operational matrices for the Legendre polynomials
The definition of the nt"-degree Legendre polynomials P, (x) on [-1,1] is given as follows
[48]:

n(x)—2< 1y e e D (17)

10! (k!
Hence, Po(x) =1, P(0) =%, ..., Ppyy(x) = Z2@0CMDNP® 1y g

Furthermore, we assume that the solution u(x, t) is approximated by the double series based
on the Legendre polynomlals as follows [49]:

u(x, ¢) = Z Z aaPL P () = AT 9 () .Y (0), (18)
where lI’(x)kzo [lPO(x),Pl(x), v, Py(0)], Y(£) = [Py(t), P(0), ..., P,()]T, and
Ago Qo1+ Qon]”
A= a510 a511 ailn ’
Apo Qn1 - Qpn

such that ay;, k, L = 0, ..., n are the unknown coefficients of the Legendre polynomials whose

values will be calculated later.

Using the matrix form, we can write the partial derivatives of u(x, t) for x and ¢t as follows:
"u(x,t)

= AT. L' w(x).Y(t) n>1,
- (19)
% —AT W) . (LYY m 1L

where L* i, 4 1)x (n + 1) 1S the derivatives' operational matrix which is given as follows:

. n=13..,1 if i odd,
2k —1), k=j—n, where, {n =13,..,i—1, ifieven

L0 Otherwise. ) ) )
Hence, substituting Egs. (18) and (19) into Eqgs. (1-4), then the following matrix equations are

obtained:
a(x, DAT. ¥ (x) .(LHT.Y (1)
=b(x, )AT.L*2. W (x) .Y (t) + c(x, ) AT . W(x) .Y (t) + Q(x, 1),
with AT @(x).Y(0) =a AT . W(x).Y(1) + g(x),
and AT ®(0).Y(®) = [ p() AT.¥(x) . Y(D)dx + £ (1),
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1
AT (1) ¥ () = f W(x) AT W) .Y (D)dx + h(D).

3.4 The operational matrices for the Chebyshev polynomials
The definition of the first kind of degree n Chebyshev polynomials T,,(x) is given as follows:

n
(n+k—1)!
— _1\n—k ok k
T,(x) = E (—1)n*2 (n—k)!(Zk)!(x+ 1)~. (20)
k=0
In addition, we assume that the following approximation for the solution u(x,t) using the

double series based on the Chebyshev polynomials of the first kind [50]:
n n

u(x,t) = z z 4, T (OT,(0) = AT . W (x) .Y (D), 1)
where W(x) = [To(0),T1(0), o T (O], Y(E) = [To (6, T1(0), ... T (O], and
oo Qo1 Qon]"
A= as10 a211 asln ,
Qpo Qn1 - Qpn

such that ay;, k,I =0, ...,n are the unknown coefficients of the first kind of Chebyshev

polynomials whose values will be calculated later.

The partial derivatives of the function u(x,t) for x and t are expressed in matrix form as

follows:
o"u(x,t)

= AT V" @(x).Y(t) n>1,
~ (22)
% —ATW) . (VYY) m=1

where V¥4 1)« (n+ 1) IS the operational matrix of derivatives and has the following
definition:

2i fori—i—k

vio=(diy)={w T

0 otherwise,
where k =1,3,5,...,n if nisodd, or k =1,3,5,..,n—1if n is even, y, = 2, and y; =
1forallk > 1.
Consequently, substituting Egs. (21) and (22) into Egs. (1-4), then the following matrix
equations are obtained:

a(x, )AT. ¥ (x).(VHT.Y(t)
= b(x, )AT.VE2W(x) .Y (t) + c(x, AT . W(x) .Y (t) + Q(x, 1),

with AT P(x).Y(0)=a AT . ¥(x).Y(D) + g(x),
and AT ®(0).Y(®) = [ p() AT.¥(x).Y(D)dx + £ (1),

AT WD) .Y(t) = f ' W) AT W () .Y (£)dx + h(b).
0

3.5 The operational matrices for the Hermite polynomials
The definition of the nt*-degree Hermite polynomials H,(x) on (—oo,) is given as
follows [51]:

2 n—2i
n<x)—n'2( - '<(nx32 ST (23)

where k = 2— |f nisevenand k = 2— if nis odd.
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Moreover, we assume that the double series based on the Hermite polynomials can be used to
approximate the function u(x, t) as follows:
n n

u(x, t) = Z Z a Hy COH(E) = $(x) .A.Y(D), (24)
where 'P(xsc==0 [llz-Ioo(x),Hl(x), v, Hy(0)], Y(t) = [Hy(t), H (t), ..., H,()]7, and
Qoo Qo1 - Qon
A= a:10 a:11 a3n .
Apo Qn1  * Qpn

such that ay;, k,1 = 0, ..., n are the unknown coefficients of the Hermite polynomials whose
values will be determined later.
In addition, the ¥ (x) can be expressed by the relevant matrix relation as follows:
Y(x) = Ax).(E"DT.
where A(x) = [1, x, ..., x™], and the matrix E is defined for odd n as follows [52]:

1 0 0 0 . 0
1
0 2 0 0 =0
1 1 0 0
E=]|3 0 4 ) :
3 8 v 0
R
0 nt 0 n!
2n(0)a1 2n(=2-1)13!
and if n is even, then the matrix E is defined as follows [52]:
1 0 0 0 .. 0
0 = 0 0 .. 0
2
1 1
2 0 r 0 . 0
E = 5 1
0 2 0 3 0
1;! : n! ‘ n!
zn(g)!m 0 zn(§—1)!2! 0 .. 2n(0)!n!

Consequently, the derivatives of the ¥ (x) can be represented as follows:
w(x)™ = A(x).N". (E-DT.

[O 1 0 0]
0 0 2 0|
where, N = 000 0
000 r’z‘
0 00 0 yxmen)

Consequently, using the matrix form, we can write the partial derivatives of u(x, t) for x and
t as follows:

TUED AN EDTAYD,  n>1,
i .
e = (0. A A (N ETY, m= 1
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Thus, substituting the Egs. (24) and (25) into the Egs. (1-4), the following matrix equations
are obtained:
a(x, ¥ (x).A.A). (NT.(E-HT
=b(x,t)A(x).N?> (EDT.A.Y(t) + c(x, )P (x) .A.Y(t) + Q(x, 1),
with Yx).AY0)=a¥kx).A.Y(Q) +g(x),
and w(0).4.Y(1) = [, p(x) P(x).A.Y()dx + f(b),

Y(1).A.Y(1) = f YP(x)P(x).A.Y(t)dx + h(t).
0

3.6 The operational matrices for the Bernoulli polynomials
The definition of the nt*-degree Bernoulli polynomials B,,(x) is as follows:
n

B,(x) = z n! by + 1)k (26)
n(¥) T LTk ol 2 (e + 1™,
where b, = B, (0) for each k > 0 is referred to as the Bernoulli number. These numbers are
computed using the identity that is given below [53]:

it k

x x
ex—l_zbkﬁ'

k=0
The following are some of the first Bernoulli numbers:
bO = 1,b1 = _g,bz = %,b4 = _%, ey and b2k+1 = O fOI‘k = 1

In addition, we assume the following approximation for the solution u(x, t) using the double
series based on the Bernoulli polynomials [32]:

u(x, t) = Z Z 4B (X)B, (D) = AT . W(x) .Y (D), 27)
where, lI’(xIS=i l[?o(x),Bl(x), wr, By ()], Y(t) = [By(t),B,(t), ..., B,(t)]T, and
Ago Qo1+ Qon]”
e
Apno Qn1 - Qpn

such that ay;, k, L = 0, ..., n are the unknown coefficients of the Bernoulli polynomials whose
values will be computed later.

Moreover, we can write the partial derivatives of u(x,t) for x and t in matrix form as
follows:

0"u(x,t
% =AT.Bi*". ¥(x).Y(t) n=1,
0™u(x, t) , oy (28)
where Bi* ;1 1)x (n + 1) IS the derivatives' operational matrix and is given as follows [54]:
0 0 0 .. 0 0
[1 0 0 ... 0 o]
Bi*=|0 2 0 = 0 0}
0 00 - n O (n+1)x(n+1)

Therefore, substituting the Egs. (27) and (28) into the Egs. (1-4), the following matrix
equations are obtained:
a(x, )AT. ¥ (x) . (Bi)T.Y(t)
= b(x, )AT.Bi*2. W(x) .Y (t) + c(x, ) AT . ¥(x) .Y (t) + Q(x, 1),
with AT @(x).Y(0) =a AT . W(x).Y(1) + g(x),
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and AT ®(0).Y(®) = [ p() AT.¥(x).Y(D)dx + £ (1),

AT W) .Y(t) = f Ww(x) AT ¥ (%) .Y (t)dx + h(t).
0

4. The application of the proposed methods and numerical results

In this paper, the proposed methods DECMs are based on the base functions of orthogonal
polynomials such as the Bernstein, the Legendre, the Chebyshev, the Hermite, and the
Bernoulli polynomials which have been implemented to solve some specific cases of the time-
dependent diffusion equations that are considered nonlocal parabolic partial differential
equations to demonstrate the application of the suggested approaches and their performance.
The base functions of the orthogonal polynomials are executed in two steps of the DECMs
proposed methods to extend and improve the ECM method. First, define the unknown
function u(x,t) and its derivatives, then compute the inner product to obtain the matrix
equation explained in Eq. (13).

In addition, the nonlocal initial and boundary conditions given in Egs. (9-11) are
substituted into the matrix equation, and then some entries of Eq. (13) are modified. These
operations convert the considered problem to an (n+ 1 X n + 1) linear algebraic equation
system with coefficients A. Consequently, we solve this system using Mathematica®12 and
obtain novel approximate and analytic solutions to the time-dependent diffusion equations.

Example 1. Consider the time-dependent diffusion equation of the following form [14]:

ou azu 3 2 2 2
xa—tﬁ=(—1+2t)x (14 x%)—2t(1 —t+t“)(—1+ 6x°), (29)
Subjected to the nonlocal boundary conditions:
u(x,0) = u(x, 1), 0<x<1,

u0,t) =u(L,t)=0, 0O0=<t<Ll (30)

This problem's exact solution is u(x, t) = x?(x? — 1)(—t + t* + 1).

Turkyilmazoglu in [14] solved this problem for n > 4, where n is the order of approximation
using the efficient analytic approximate method, namely ECM based on the standard
polynomials, and obtained the exact solution.

Furthermore, we can apply the novel DECMs proposed methods to solve this problem in the
current study for n = 2 as follows:

First: Applying the DECMs proposed methods based on the Bernstein polynomials.

By inserting the Eqgs. (15) and (16) into the Egs. (29) and (30), we change the function u(x, t)
and its partial derivatives into matrices. Therefore, the following results are obtained:

x(AT.W(x).(Bn).Y(t)) —t (AT. Bn'2.¥(x) .Y(t))
=(—-14+2)x3(=1+x%) = 2t(1 —t + t?)(—1 + 6x?), (31)
AT . P(x).Y(0) =AT . ¥(x).Y(1), (32)
AT . w(0).Y(t) =AT.¥(1).Y(t) = 0.
The technique has been applied as shown in Eq. (13), which results in:
(B;2(x)B;, (), x(AT.¥(x) . (Bn")T.Y (1))
—t (AT. Bn'2. ¥(x) .Y(t)) ), (Biz(X)B;(t), (=1 + 2)x*(—1 + x2)
—2t(1—t+t?)(=1+6x2)), 0<1i,j <2 (33)
Then, applying the inner product to solve the left and right sides of the matrix equation given

in Eq. (33), with substituting the initial conditions Eq. (32), we obtain the following linear
algebraic system for coefficients ayg, ap1, Qp2, @10, A11, A12, A20, A21 and ayy:
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r 1 0 1 1 0 1 1 0 17
5 5 10 10 30 30
! 2 ! 0 0 0 0 0 0
10 15 10
! ! ! 0 0 0 0 0 X
30 10 5 %oo] 0
1 0 1 2 2 1 1 || %01 8
10 10 15 15 10 10[ 702 16
1 2 1 1 4 1 2 2 1 a10 | "7
30 45 30 45 45 9 45 45  45||q), Teo |
1 1 17 1 1 23 1 1 7 a -
—— e e = = = = —— ——||%o0 1400
60 18 180 90 15 90 45 15 90| az1 0
o o o o o0 o = L I fla 0
5 10 30 0
0 0 0 0 0 0 ! 2 !
10 15 10
0 0 0 0 O 0 ! ! !
. _ o 30 10 5 ) _
Therefore, the following coefficient values are calculated for this system using

Mathematica®12:
283
ago = 0,a91 =0,a9, =0,a40 =

—— a — —
700’ 11

271 283

— a4y = ——,059 = 0,a,; =
1400’ 12 700’ 20 »21

0 and a,, = 0.
Finally, by entering the values of these coefficients into Eq. (15), the results are as follows:
ulx,t) = (1—2t+t)((1 = 2x + x¥age + (2x — 2xHayo + x%ay)
+ (2t = 2e)((1 = 2x + x¥)ag; + 2x — 2x¥)ay; + x%ay;)
+ 2((1 = 2x + x®)agy + (2x — 2x?)ay, + x2ay,).
Then, the following approximate solution is produced for n = 2:

u(x,y) = %(283 + 295(—1+ t)t)(—1 + x)x.

Moreover, by proceeding in this way for n = 3, the following approximate solution is
obtained:

( )_429979x 8999tx+10199t2x 40t3x  3669097x% 30443tx?
Wy = 2143575 40830 40830 1361 1667225 13610
655603t%x% 1630t3x? 6002404x3 8233tx®> 58421t%x3
285810 28581 3001005 4083 28581
790t3x3
28581 °

Furthermore, for all n > 4, the exact solution is obtained as follows:
ulx,t) =x?>(x? = 1D(—-t +t2 + 1).

Second: Using the DECMs proposed methods based on the Legendre polynomials.
By substituting Egs. (18) and (19) into Egs. (29) and (30), yielding the following:

x(AT.W(x) . (LY. Y(6)) -t (AT.L*Z. W(x) .Y(t))

=(—-14+2)x3(=1+x%) = 2t(1 —t + t?)(—1 + 6x?),
AT P(x).Y(0)=A4T . ¥(x).Y(D),

AT . w(0).Y(t) =AT . ¢(1).Y(t) = 0.

Then, the technique has been applied as shown in Eq. (13), which results in:

(34)
(35)
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(P;(x)P;(£), x(AT. ¥ (x) . (L)T. Y (1))
—t (AT.L*Z. W (x) .Y(t)) ), (Pi(OP; (), (1 + 20)x*(—1 + x?)

—2t(1—t+t?)(=1+6x2)), 0<i,j<2 (36)
Also, by applying the same procedure mentioned above for the Egs. (36) and (35), we obtain
the following linear algebraic system for coefficients
Qoo Ao1, Aoz, A10, 11, 12, 20, A21 AN dyy:
0 -1 -2 L3 6 o o]
2 2 4
1 1 1 0 0 0 1 1 1
2 3 8 4 6 16
0 1 1 0 0 0 0 1 1 0
8 5 16 10]|[%0o 0
0 1 3 0 1 1 0 1 3 || %01 8
2 4 3 2 8 16|00 121
0 1 1 0 1 1 1 37 1 a1° ~ 17710
6 3 8 4 2 120 15||ay, 2% |
0 0 1 0 0 3 3 1 11 o ~T0%
8 32 16 5 80|} az1 0
1 1 1 a,,] 0
1 > 0 1 > 0 1 > 0 0
1 1 1 1 1 1 1 1 1
2 3 8 2 3 8 2 3 8
0 1 1 0 1 1 0 1 1
8 5 8 5 8 5

By solving this system numerically using Mathematica®12, the values of coefficients are
given as follows:

4906 212 424 4906 212 424
%00 = Tggg’ %01 T T 399’ %02 T T7g7° %10 T Tgg5’ #11 T 7337412 T T 3997 %20
9812 424 848

_ ~ Thogyr 1T T399" %227 7197
Finally, by inserting the values of these coefficients into Eq. (18), the results are as follows:

1 3X2 1 3X2
u(xrt)=a00+xa10+ _§+T a20+t a01+xa11+ _§+T a1

1 3t? 1 3x?
+ _E'i‘T a02+xa12+ _E‘i‘T ar; |-

Then, the following approximate solution is produced, for n = 2:

u(x,t) = 62E(641 +530(—1 4+ t)t)(—1 + x)x.

Additionally, by proceeding in this way for n = 3, the following approximate solution is
obtained:
43119369493x 261947587tx 443785127t%x 36367508t3x

315658049175 1002089045 * 1002089045 200417809
1431965499991x% 4760726501tx? 5094246971t%x?

631316098350 * 2004178090 2004178090
33352047t3x? 269145352201x3 4236831327tx3

200417809 * 126263219670 2004178090
4206676717t*x® 3015461t3x3

2004178090 * 200417809 °

u(x,t) =
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Furthermore, the exact solution mentioned above is obtained for all n > 4.
Third: Implementing the DECMs proposed methods based on the Chebyshev polynomials of
the first kind. By inserting the Egs. (21) and (22) into the Egs. (29) and (30), we obtain:
x(AT.W(x) . (VHT.Y () — t (AT. V2P (x) .Y(t))
=(—1+26)x3(-1+x?) = 2t(1 —t + t*)(—1 + 6x32), (37)
AT Y(x).Y(0)=AT.¥(x).Y(D), 38)
AT w(0).Y(t) =AT.¢(1).Y(t) = 0.
Then, the procedure has been applied as shown in Eq. (13), which results in:
(T; ()T (0), x(AT. ¥ (x) . (VHT.Y (D))
—t (AT. V2w (x) .Y(t)) ), (T:(OT;(0), (1 + 20)x*(—1 + x2)
—2t(1—t+t3)(-1+6x?)), 0<ij<2. (39)
Applying the same procedure mentioned above for the Egs. (39) and (38), we obtain the
following linear algebraic system for coefficients aqg, @g1, g2, @10, @11, A12, A20, A1 aNd ay5:

0 -1 -2 0 -2 -1 o -+ Z]
2 3 3
L o - L1
2 3 3
Lo 7 0 o0 o I o ! X
3 15 3 15 |[%o0 0
2 o1 0
0 -5 -1 0 -3 -2 0 0 0 ||ay, 1021
, Lo+ 1 12 7 zf|te) -5
6 9 8 3 3 15  45|[q.. '
1 1 7 1| 11
0 -—— 0 0 —-—— 0 0 —-— —=|{%0 [ 210
9 12 45 3 arq 2010
. 1 1 ) 1 1 L 1 1 |lay,] 0
2 3 2 3 2 0
L , 1 L
2 3 2 3 2 3
1 7 Loy 7 1 7
15 3 15 3

L 3 i
Thus, solving this system numerically using Mathematica®12, the values of coefficients are
given as follows:

759 11 11 759 11 11 759

Q00 = 5507 01 = g0 %02 = g %0 = " g 011 = 7412 = T G20 = g
11 11
a1 = —ﬁ'azz = %

Finally, by inserting the values of these coefficients into Eq. (21), the results are as follows:
u(x, t) = agy + xa,9 + (=1 + 2x3)ay + t(ag, + xay; + (=1 + 2x?)ay;)
+ (=1 + 2t?)(agy + xas, + (=1 4 2x?)ay,).
Then, the following approximate solution is produced, for n = 2:

u(x,t) = % (49 +40(—1+ t)t)(—1 + x)x.

Also, by proceeding in this way for n = 3, the following approximate solution is obtained:
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49746579x 15067tx 469884t%x 42749t3x 2652568957x>

482054720 63295 * 1076015 215203 1205136800
2491841tx* 2688846t%x* 39401t3x* 5056405019x3

1076015 1076015 * 215203 * 2410273600
2235702tx® 2218962t%x® 3348t3x3

1076015 + 1076015 + 215203 °
Furthermore, the exact solution mentioned above is obtained for all n > 4.
Fourth: Utilizing the DECMs proposed methods based on the Hermite polynomials.
The following findings are obtained by inserting the Egs. (24) and (25) into the Egs. (29) and
(30):
x (P(x).AAQ). (NT.(EHT) —t(A(x).N? (ETHT.A. Y1)
=(=1+4+2)x3(-1+x?) —=2t(1 —t + t>)(—1 + 6x?), (40)
Yx).A.Y(0)=%(x).A.Y(D), (41)
w0).A.Y(t) =%(1).A.Y(t) =0.
Then, the technique has been applied as shown in Eg. (13), which results in:
(H;()H; (), x (P (x) . A. A1) (N)".(E~D)T)
—t(A(x).N? (ETDT.A.Y(®)), (H;(x)H;(©), (-1 + 2t)x*(—1 + x?)
—2t(1—t+t?>)(-1+6x2)), 0<i,j<2. (42)
Applying the same technique mentioned above for the Egs. (42) and (41), we obtain the
following linear algebraic system for coefficients aqg, ag1, g2, @10, @11, A12, A20, A1 aNd ay5:

u(x,t) =

4
0 -2 -4 0 -2 —4 0 = =
3 3
12 0 0 o 0 2 5
3 3
2, B . 4 . 56 0
3 15 3 15 |[%o0 0
8 16 Qo1 0
0 -2 —4 0 -3 -— 0 0 0 ||ay, 2042
, 4 3% ., & 16 112 32 ol - T8
3 9 3 3 15 45|[4"
12 22
. 8, %t 12 16)lg, | |-7oz
) "3 45 3 ||an 0
2 4 4 |lay, 0
1 1 —-= 2 2 —= 2 y
3 3 3 0
20 2 8o 8 0
3 3 3
2, 28 4 56 4 , 56
15 3 15 3 15

L 3 |
In addition, by solving this system numerically using Mathematica®12, the values of
coefficients are given as follows:

759 11 11 759 11 11 759
o0 = Fgor 901 = " gg0 %02 = 5gr 410 = “gggr i =350 M2 = T 5540 = 10
11 11
a1 = ~gg 022 = 1y

Finally, by inserting the values of these coefficients into Eq. (24), the results are as follows:
u(x, t) = agy + 2xas0 + (—2 + 4x?)ay + 2t(ag;, + 2xay; + (=2 + 4x*)ay,) + (-2
+ 4t2)(agp + 2xa;, + (—2 + 4x%)ay,)
Then, the following approximate solution is produced, for n = 2:
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u(x,t) = %(49 +40(—1+6)t)(—1 + x)x.

Moreover, by proceeding in this way for n = 3, the following approximate solution is
obtained:
49746579x 15067tx 469884t%x 42749t3x 2652568957x2

482054720 63295 * 1076015 215203 1205136800
2491841tx* 2688846t%x* 39401t3x* 5056405019x3

1076015 1076015 * 215203 * 2410273600
2235702tx® 2218962t%x® 3348t3x3

1076015 + 1076015 + 215203 °
Furthermore, the exact solution mentioned above is obtained for all n > 4.
Fifth: Applying the DECMs proposed methods based on the Bernoulli polynomials.
By substituting the Egs. (27) and (28) into the Egs. (29) and (30) produce the following
results:

x(AT.®(x) . (Bi")T.Y(t)) —t (AT. Bi*2. ¥(x) .Y(t))
= (=1+20)x3(-1+x%) = 2t(1 —t + t*)(—1 + 6x2?), (43)
AT P(x).Y(0) = AT . ¥(x).Y(1), (44)
AT . 2(0).Y() =A4T.w(1).Y(t) = 0.
Then, the procedure has been applied as shown in Eq. (13), which results in:
(B;(x)B;(t), x(AT.¥(x) . (Bi")".Y (1))
—t(AT. B W(x).Y(1))), (B()B;(t),(—1+20)x3(~1 + x?)
—2t(1—t+t?)(-1+6x%)), 0<i,j<2. (45)
Applying the same procedure mentioned above for the Egs. (45) and (44), we obtain the
following linear algebraic system for coefficients aqg, @g1, g2, @10, A11, A12, A20, A1 aNd aAyy:

u(x,t) =

o -1 2 o I L 0 0 |
2 4 8 16
1 Ly o ) 1 1 1
4 12 96 48 144 1152
0~ = 0 o 0 0 ! ! :
96 180 1152 2160 [[%00] 0
0 1 1, 1 1 0 1 1 ||%o2 8
8 16 24 48 192 384 |002 121
o L 1, 1 1 1 37 1102 ~ 810
8 72 128 192 48 5760 2160 ||q, 13 |
N 1 1 1 1 Naw| |23
576 1536 384 720  34560||az 0
S . 1 1 o |laz! 0
4 2 8 6 24 L o
1 1 1 1 1 1 1 1 1
4 12 96 8 24 192 24 72 576
11 1 1 1 1
0 — — 0 — — 0
96 180 192 360 576 1080 |

Therefore, by solving this system numerically using Mathematica®12, the values of
coefficients are given as follows:

4906 424 848 9812 848 1696
Qoo = —5985'%1 ;;Z?ﬂOZ = 13€T996: A0 = _331—335'6111 = ﬁ'au = _—133 » A2

~ 1995 %21 T T 33 %22 T 33~
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Ultimately, by inserting the values of these coefficients into Eq. (27), the results are as
follows:

1 1 x? 1 1 1 x?
u(xit)=a00+§xa10+ _ﬁ-l_z a20+§t a01+5xa11+ _E-I_T a1

1 t2 1 1 x?
+ —E-i'z a02+§xa12+ _E-*_I ass |.

Thus, the following approximate solution is produced, for n = 2:
2
u(x,t) = %(641 +530(—1+ t)t)(—1 + x)x.

Moreover, by proceeding in this way for n = 3, the following approximate solution is
obtained:
43119369493x 261947587tx 443785127t?x 36367508t3x

315658049175 1002089045 * 1002089045 200417809
1431965499991x% 4760726501tx?> 5094246971t%x>

631316098350 * 2004178090 2004178090
33352047t3x% 269145352201x3 4236831327tx3

200417809 + 126263219670 2004178090
4206676717t*x® 3015461t3x3

2004178090 * 200417809 °
Furthermore, the exact solution mentioned above is obtained for all n > 4.
To explain the efficiency of the DECMs proposed methods to solve Example 1 referred to in
Egs. (29) and (30), the maximum absolute error (MAbsR,,) is computed as follows:
MAbSR,, = Olr}cc%icllue (x,t) —u(x, t)]. (46)

Where u, (x, t) is the exact solution and u(x, t) is the approximate solution achieved.

Table (1) lists MAbsR,, for the approximate solution obtained by applying the DECMs
proposed methods with approximation order n = 2 and 3. Moreover, we can demonstrate
the accuracy of the proposed methods by comparing the error values for n = 2 and 3, as the
error becomes smaller as the value of n increases.

u(x,t) =

Table 1: The comparison between the MAbsR,, for the example (1) by the DECMs proposed
methods.

DECMs DECMs DECMs . DECMs
Bernstein Legendre Chebyshev DIECL RIS Bernoulli

2 0.0857417 0.269846 0.270249 0.270249 0.269846
3 0.00951975 0.0360467 0.0393046 0.0393046 0.0360467

Example 2. Consider the time-dependent diffusion equation of the following form [14]:
ou 09%u

E—ﬁ—u(x, t) = (7— 3t)tx. (47)
Subjected to the nonlocal boundary conditions:
u(x,0) = —u(x, 1), 0<x<1,
' (48)

u(0,t) =0, u(l,t) = 2[ u(x, t)dx, 0<t<l.
0

This problem's exact solution is u(x, t) = x(3t%> — t — 1).
Turkyilmazoglu in [14] solved this problem for n > 2 using the efficient analytic approximate
method, namely ECM based on the standard polynomial, and obtained the exact solution.
Furthermore, now we can use the same procedure in the previous example to apply the novel
DECMs proposed methods to solve this problem for n = 2 as follows:
First: Applying the DECMs proposed methods based on the Bernstein polynomials.
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By inserting the Egs. (15) and (16) into the Egs. (47) and (48), we convert the function u(x, t)
and its partial derivatives into matrices. Therefore, the following results are obtained:
AT W(x).(Bn)T.Y(t) —AT.Bn* 2. W(x).Y(t) — AT . W(x).Y(t) = (7 —3t)tx, (49)
AT W(x).Y(0) =-AT . ¥(x).Y(1),

1
AT W(0).Y(t) =0, AT.W(1).Y(t) =2 f AT W(x) .Y (t) dx. G0

0
The technique has been applied as shown in Eq. (13), which results in:

(Bi,(x)B;j,(t), AT.¥(x) .(Bn)T.Y(t) — A".Bn**. ¥(x) .Y (t)
—AT W(x).Y(t)), (B, (X)B; (1), (7-30)tx), 0<i,j <2 (51)
Moreover, we use the same procedure in the previous example for solving Eq. (51). After
generating a linear algebraic system of equations, we use Mathematica®12 to determine the
values of the coefficients 4 as follows,
0 O]
3 1|
4 2|
1
- 1
Finally, by substituting the coefficients A in the Eq. (15), we get the following exact solution:
u(x,t) =x(3t2 —t—1).
Second: Using the DECMs proposed methods based on the Legendre polynomials.
By substituting Egs. (18) and (19) into Egs. (47) and (48), yielding the following:
AT W) . (L)T.Y(t) — AT. L. W (x) .Y(t) — AT . ¥(x).Y(t) = (7 — 3t)tx, (52)
AT . P(x).Y(0) = -AT . ¥(x).Y(1),

A=|0p Q11 Q2

Ayo QAz1 Ay

Qoo Qo1 aoz]

|
I
N

1
AT . w(0).Y() =0, AT.¥(1).Y(t) =2 f AT (%) .Y (t) dx. (53)
0
Then, the technique has been applied as it is shown in Eq. (13) which results in the following:
(P,(x)P;(t),AT.¥(x).(LH". Y () — AT. L2 ®(x).Y(t)
—AT ¥(X).Y (), (P;(x)P;(t),(7—30tx), 0<1i,j<2. (54)
Moreover, we use Mathematica®12 to solve Eq. (54), and determine the values of the

coefficients A4 as follows,
Qoo Qo1 Qg2 0O 0 O
Ao A11 A2\ =10 -1 2]

Qz0 Q21 Q22 0 0 O
Finally, by substituting the coefficients A in the Eq. (18), we get the exact solution mentioned

above.
Third: Implementing the DECMs proposed methods based on the Chebyshev polynomials of
the first kind. By inserting the Eqgs. (21) and (22) into the Eqgs. (47) and (48), we obtain:
AT W) . (VHT.Y() —AT. V2 W (x).Y(t) — AT .®¥(x).Y(t) = (7 — 3b)tx, (55)
AT P(x).Y(0) =-AT . ¥(x).Y(1),

A=

1
AT w(0).Y() =0, AT.®(1).Y(t) =2 J AT . P(x).Y(t) dx. (56)
Then, the technique has been applied as shownoin Eq. (13) which results in the:
(T:0)T; (), AT ¥ (x) . (V). Y () — AT. V2. ¥ (x) .Y (¢)
—AT P(x).Y()), (T;(x)T;(), (7 —3t)tx), 0<4i,j <2 (57)
Additionally, we use Mathematica®12 to solve Eq. (57), and determine the values of the
coefficients A as follows:
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Qoo QAp1 Qo2 (1) 0 g
A=A a1 0412 = 5 -1 5

a a a

20 21 22 0 o0 o0

Therefore, by substituting the coefficients A in the Eqg. (21), we get the exact solution
mentioned above.
Fourth: Utilizing the DECMs proposed methods based on the Hermite polynomials.
The following findings are obtained by inserting the Egs. (24) and (25) into the Egs. (47) and
(48):
P(x).AAQR).(MHT.(EDT —AX). N2 (ETHT.A.Y() —P(x) . A.Y(t)
= (7 — 3t)tx, (58)
Y(x).A.Y(0)=-¥(x).A.Y(D),
1
W0).A.Y(E) =0 WA).A.Y({) =2 j W(x).A.Y(t) dx. (59)
0
Then, the technique has been applied as shown in Eq. (13) which results in:
(H;OH; (1), P (x) . A.A®). (N)T.(E"D)T — A(x).N* .(ET)T.A.Y(t)
—¥(x).A.Y(t)) (H;(x)H;(t),(7—30tx), 0<1i,j <2 (60)
Furthermore, we use Mathematica®12 to solve Eq. (60), and determine the values of the
coefficients A as follows:

Qoo Qo1 Qo2 (1) 01 g
A=A a1 a1z = 7 "7 8l
a a a
20 Q21 Q22 0 0 0

Consequently, by substituting the coefficients A in the Eq. (24), we get the exact solution
mentioned above.
Fifth: Applying the DECMs proposed methods based on the Bernoulli polynomials.
By substituting the Egs. (27) and (28) into the Eqgs. (47) and (48) produce the following
results:
AT W(x) . (BiNT.Y(t) —AT.Bi*>. ¥ (x) .Y(t) — AT .W(x) .Y(t) = (7 = 3t)tx,  (61)
AT . P(x).Y(0) = -AT . ¥(x).Y(1),
1
AT w(0).Y(t) =0, AT.w(1).Y(t) =2 f AT W(x).Y(t) dx. (62)
0
Then, the technique has been applied as shown in Eq. (13) which results in the:
(B;(x)B;(1), AT. ¥ (x) . (Bi")".Y(t) — AT.Bi*>. ¥(x) .Y (¢t)
—AT . ¥(x).Y(t)), (B;(x)B;(t),(7—-3t)tx), 0<i,j <2 (63)
Additionally, we use Mathematica®12 to solve Eq. (63), and determine the values of the

coefficients A as follows,
Qoo Qo1 Qo2 0 O 0
Ao Q411 alZ] = [O —4 24].
Q0 d21 A2 0 O 0

Thus, by substituting the coefficients A in the Eq. (27), we get the exact solution mentioned
above.

A=

Example 3. Consider the time-dependent diffusion equation of the following form [14, 20]:

U (X, 1) = Uyr(x,8) = =(2 4+ x%)e " (64)
Subjected to the nonlocal boundary conditions:
u(x,0) = x?, 0<x<1,
! (65)

u(0,t) =0, u(1,t) = Sf u(x,t)dx, 0<t<1.
0
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This problem'’s exact solution is u(x, t) = x%e™t.

Turkyilmazoglu in [14] solved this problem for n = 5 using the efficient analytic approximate

method, namely ECM based on the standard polynomials, and produced the following

approximate solution:

u(x, t) = t(—0.0000106x — 0.999977x2 + 0.0000057x3 — 0.0000205x* + 0.0000029x°)
+t2(0.0001035x + 0.499678x% — 0.0000366x3 + 0.0001757x*
—0.0000187x%) + t3(—0.0003798x — 0.165163x2 — 0.0000083x>
—0.0004624x* — 0.0000057x°) + t*(0.0005608x + 0.0385037x2
+0.0001756x3 + 0.0004746x* + 0.0000933x°) + t>(—0.0003255x
—0.0051564x2 — 0.0002198x3 — 0.0001256x* — 0.0001151x>).

Furthermore, now we can use the same procedure in the previous examples to apply the

DECMs proposed methods to solve this problem as follows:

First: Applying the DECMs proposed methods based on the Bernstein polynomials. By

substituting the Eqgs. (15) and (16) into the Egs. (64) and (65), we convert the function u(x, t)

and its partial derivatives into matrices. Therefore, the following results are obtained:

AT W(x).(Bn)T.Y(t) —AT.Bn* 2. W(x) .Y(t) = —(2 + x2)e (66)
AT . P(x).Y(0) = x?,
' (67)
AT . w(0).Y(t) =0, AT.¥(1).Y(®) = Sf AT W (x).Y(¢) dx.
0

The technique has been applied as shown in Eq. (13) which results in:

(Bin(X)B; n(0),AT.W(x) .(Bn)T.Y(t) — AT.Bn>. ¥(x) .Y (1)),
(Bin(X)Bjn(t),—(2+x*e”"), 0<i,j<n. (68)

Moreover, we use the same procedure in the previous examples for solving Eq. (68). After

generating a linear algebraic system of equations for n =5 as solved in [14], we use

Mathematica®12 to determine the values of the coefficients A as follows:
1.5931x 1077 —3.9827x10~7 53103 x10~7 —3.9827x10~7 1.5931x10~7 —2.6551x 1078
—9.5585 x 10~7  2.9579 x 10™¢ —4.2052x 10~6 3.3281x10"® —1.3795x 106 2.1206 x 107

_ 0.10000 0.079996 0.065004 0.053336 0.044148 0.036788
0.30000 0.24001 0.19498 0.16003 0.13243 0.11036
0.60000 0.48000 0.38999 0.32004 0.26488 0.22073
1.0000 0.80001 0.64997 0.53340 0.44146 0.36788

Finally, by substituting the coefficients A in the Eqg. (15), we get the following approximate
solution for n = 5:
u(x,t) =~ 1.59309 x 1077 — 5.57581 x 10~°x + 1.00004 x2 — 0.00013382 x3
+ 0.000167274 x* — 0.0000736007 x°
+ t*(0.0000334549 — 0.00148504 x + 0.047857 x? — 0.0283518 x3
+ 0.0354723 x* — 0.0152071 x°)
+ t2(0.0000148688 — 0.000628183 x + 0.503839 x? — 0.0125701 x3
+0.0157746 x* — 0.00684482 x°)
+t(—2.78791 x 107 + 0.000111782 x — 1.00076 x2 + 0.00235022 x3
—0.00294969 x* + 0.00128853 x°)
+ t>(—0.0000122668 + 0.000552275 x — 0.00859203 x2 + 0.0103951 x3
—0.0129788 x* + 0.00553251 x°)
+ t3(—0.0000334549 + 0.00145593 x — 0.17452 x? + 0.0283307 x3
—0.0355084 x* + 0.0153124 x°>).
Second: Using the DECMs proposed methods based on the Legendre polynomials.
By substituting Egs. (18) and (19) into Egs. (64) and (65), this yields the following:
AT W(x) . (LHT.Y () —AT. L. W(x) . Y(t) = —(2 + xDet, (69)
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AT . ®(x).Y(0) = x?,

r r L (70)
A" Y(0).Y(t)=0 A".P(1).Y(t) = Sf A" . P(x).Y(t)dx.
Also, the technique has been applied as shown (i)n Eq. (13) which results in:

(PiO)P;(0),AT. W (x) .(L)T.Y(t) —AT.L"2.¥(x) .Y () ),

(P;(x)P;(t),—(2+x*)e"), 0<i,j<n. (71)

Moreover, we use Mathematica®12 to solve Eq. (71), and determine the values of the
coefficients A as follows:

A
0.42294 —0.44279 0.19791  —-0.075885  0.025443  —0.0051188
—0.075795 0.18204 —0.19128 0.12770 —0.054133 0.011784
_| 0.86282 —0.92628 0.43859 —0.18032 0.062988 —0.012872
| —0.053682 0.12893 —0.13547  0.090432  —0.038334  0.0083433 |
0.023020 —0.055288 0.058095 —0.038781  0.016440 —0.0035785
L—0.0051073  0.012266 —0.012888 0.0086022 —0.0036459 0.00079316-

Finally, by substituting the coefficients A in the Eqg. (18), we get the following approximate
solution for n = 5:
u(x,t) =~ 9.55854 x 1077 — 0.0000286756 x + 1.0002 x? — 0.000535278 x>

+ 0.000602188 x* — 0.000240875 x>
+ t*(0.000499265 — 0.0151775 x + 0.143642 x2 — 0.279703 x3
+0.314671 x* — 0.125613 x°)
+ t2(0.000176955 — 0.0053522 x + 0.536921 x2 — 0.0991218 x3
+0.11153 x* — 0.0445689 x°)
+t (—0.0000265583 + 0.000800449 x — 1.00556 x2? + 0.0148749 x3
—0.0167364 x* + 0.00669141 x°)
+ t>(—0.000195643 + 0.00595839 x — 0.0463702 x2? + 0.109605 x3
—0.123289 x* + 0.0491881 x°)
+ t3(—0.000455628 + 0.0138197 x — 0.261089 x? + 0.255245 x3
—0.287185 x* + 0.114703 x°).

Third: Implementing the DECMs proposed methods based on the Chebyshev polynomials of

the first kind.

By inserting the Egs. (21) and (22) into the Egs. (64) and (65), we obtain:

AT W(x).(VHT.Y(t) —AT. V2 W(x).Y(t) = —(2 + x2)et, (72)
AT . ®(x).Y(0) = x?,
' (73)
AT w(0).Y() =0, AT.®(1).Y(t) =3 J AT . P(x).Y(t) dx.

Also, the technique has been applied as shown ?n Eq. (13) which results in:
(T;()T; (), AT. P (x).(V)T.Y(t) — A" V2 W(x).Y(t)),
(T;(O)T;(1),—(2 +x*e”"), 0<i,j<n. (74)
Additionally, we use Mathematica®12 to solve Eq. (74), and determine the values of the
coefficients A as follows:

A
0.72838 —0.73420 0.25220 —0.082395 0.024152 —0.0044284 1
—0.17072 0.30274 —0.20871 0.10811 —0.038574 0.0075689
_ | 0.75023 —0.77294 0.27891 —0.096230 0.029089 —0.0053969
~ | —0.061430 0.10893 —0.075100  0.038898 —0.013878 0.0027228
0.022129  —-0.039241  0.027054 —0.014013  0.0049999 —0.00098100
.—0.0044185 0.0078351 —0.0054014 0.0027974 —0.00099799 0.00019570 -
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Finally, by substituting the coefficients A in the Eqg. (21), we get the following approximate
solution for n = 5:
u(x,t) = 9.55854 x 10~7 — 0.0000286756 x + 1.0002 x* — 0.000535278 x3
+ 0.000602188 x* — 0.000240875 x>
+ t*(0.000507711 — 0.0154298 x + 0.145424 x* — 0.284433 x3
+0.319993 x* — 0.127743 x°)
+ t2(0.000179073 — 0.00541516 x + 0.537368 x? — 0.100308 x3
+0.112864 x* — 0.0451029 x°)
+t (—0.0000267617 + 0.000806472 x — 1.00561 x? + 0.0149887 x3
—0.0168645 x* + 0.00674269 x°)
+ t5(—0.00019926 + 0.00606666 x — 0.0471338 x2 + 0.111631 x3
—0.125569 x* + 0.0501002 x°)
+ t3(—0.000462392 + 0.0140213 x — 0.262516 x2 + 0.259032 x3
—0.291445 x* + 0.116408 x°).
Fourth: Utilizing the DECMs proposed methods based on the Hermite polynomials.
The following findings are obtained by inserting the Egs. (24) and (25) into the Egs. (64) and
(65):
Y(x).AAR).(NT.(EDT —AX).N? (ETDHT.A.Y(E) =-2+x%)et, (75)
Y(x).A.Y(0) = x?,
' (76)
Y(0).A.Y(t) =0, Y(1).A.YQ®) = 3[ Y(x).A.Y(t)dx.
Moreover, the technique has been applied as it isoshown in Eq. (13) which results in:
(H(OH;(1), ¥ (x) . A.A). (N)".(ETDT = A(x).N* .(ETDT.A.Y (1)),
(H(OH;(),—(2+x*e™"), 0<i,j<n. (77)
Furthermore, we use Mathematica®12 to solve Eq. (77), and determine the values of the
coefficients A as follows:

0.92188 —0.75728 0.33227 —0.12159 0.020269 —0.0038354

[ —0.44268 0.69018 —0.40013 0.17179 —0.029871 0.0058813 ]
_| 057602 —0.55808 0.27016 —0.10546 0.017900 —0.0034470 |
| —0.11092 0.17293 —0.10026 0.043040 —0.0074844 0.0014734 |

0.019221 —0.029969 0.017374 —0.0074600 0.0012971 —0.00025543
—0.0038377 0.0059825 —0.0034686 0.0014889 —0.00025893 0.000050962
Hence, by substituting the coefficients A in the Eq. (24), we get the following approximate

solution for n = 5:
u(x,t) = 9.55854 x 10~7 — 0.0000286756 x + 1.0002 x? — 0.000535278 x3

+ 0.000602188 x* — 0.000240875 x>
+ t*(0.000526853 — 0.0160013 x + 0.149464 x? — 0.295154 x3
+ 0.332053 x* — 0.13257 x°)
+ t2(0.000183716 — 0.00555308 x + 0.538348 x2 — 0.102907 x3
+ 0.115788 x* — 0.0462736 x°)
+t (—0.0000271906 + 0.000819164 x — 1.0057 x? + 0.0152288 x3
—0.0171344 x* + 0.0068508 x°)
+ t°(—0.000207529 + 0.006314 x — 0.0488791 x2 + 0.116263 x3
—0.130779 x* + 0.0521855 x°)
+ t3(—0.000477527 + 0.0144721 x — 0.26571 x? + 0.267506 x3
—0.300977 x* + 0.120224 x°).

Fifth: Applying the DECMs proposed methods based on the Bernoulli polynomials.

By substituting the Egs. (27) and (28) into the Egs. (64) and (65) produce the following

results:

AT W(x).(BiT.Y(t) — AT.Bi**. W(x) .Y(t) = —(2+x2)et, (78)
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AT . ®(x).Y(0) = x?,

1
AT . w(0).Y(t) =0, AT.¥(1).Y(t) =3 f AT . W(x).Y(t) dx. (79
0
Then, the technique has been applied as shown in Eq. (13) which results in the:
(B;(x)B;(t), AT.®¥(x) .(Bi")T.Y(t) — AT.Bi">. ¥ (x) .Y (?) ),
(Bi(x)B;(t),—(2+x*)e7"), 0<i,j<n. (80)

Moreover, we use Mathematica®12 to solve Eq. (80), and determine the values of the

coefficients A as follows:

1 0.42294 —1.0476 1.6963 —2.2343 1.7810 —1.2899
—0.26917 2.2835 —7.9202 14927 -—13.456 10.544
A= 56373 —17.340 36.895 —57.982 49471 —37.497
—1.7887 15.173 —=52.624 99.166 —89.397 70.033 |
1.6114 —13.671 47.416 —89.363 80.556 —63.124
L —-1.2870 10917 —-37.862 71338 —64.314 50.369 -

Consequently, by substituting the coefficients A in the Eq. (27), we get the following
approximate solution for n = 5:
u(x,t) =~ 9.55854 x 1077 — 0.0000286756 x + 1.0002 x? — 0.000535278 x3
+ 0.000602188 x* — 0.000240875 x>
+ t*(0.000499265 — 0.0151775 x + 0.143642 x? — 0.279703 x3
+0.314671 x* — 0.125613 x°)
+ t2(0.000176955 — 0.0053522 x + 0.536921 x? — 0.0991218 x3
+0.11153 x* — 0.0445689 x°)
+t (—0.0000265583 + 0.000800449 x — 1.00556 x2? + 0.0148749 x3
—0.0167364 x* + 0.00669141 x>)
+ t5(—0.000195643 + 0.00595839 x — 0.0463702 x2 + 0.109605 x3
—0.123289 x* + 0.0491881 x°)
+ t3(—0.000455628 + 0.0138197 x — 0.261089 x? + 0.255245 x3
—0.287185 x* + 0.114703 x°).
In addition, the MAbsR,, referred to in Eq. (46) is computed to demonstrate the accuracy and
reliability of the DECMs proposed methods to solve Example 3.
Table (2) lists MAbsR,, for the approximate solution obtained by applying the ECM method
described in [14] and by the DECMs proposed methods with approximation order n = 7, as
explained in [14]. Moreover, we can demonstrate that the accuracy of the DECMs proposed
methods is better than that of the ECM method [14]. In addition, the DECMs based on the
Bernstein polynomial have slightly greater accuracy and less error than the other proposed
methods.

Table 2: The comparison between the MAbsR, for the example (3) by the ECM method
[14], and by the DECMs proposed methods.

ECM DECMs DECMs DECMs DECMs DECMs
Standard [14] Bernstein Legendre Chebyshev Hermite Bernoulli
3.55525 1.14285 1.21206 1.21206 1.21206 1.21206

x 1078 x 1077 x 107° x 107 x 1077 x 1079

Furthermore, Figures (1) and (2) illustrate the absolute error values for 0 < x,t < 1 that is
obtained using the proposed approaches with approximation order n = 4 and 7, respectively,
as given in [14]. In reality, the accuracy improves as the approximation order increases.
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Figure 1: The absolute error values achieved by the proposed methods of the example (3)

withn = 4.
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Figure 2: The absolute error values achieved by the proposed methods of the example (3)
withn =7

Example 4. Consider the time-dependent diffusion equation of the following form [14]:

(14 e?) u(x,t) — Uy (x, t) + ulx, t)

= e tx(—6+ 20x% + e*x%(—1 + x2) + 2et(6 — 21x% + x*)).  (81)
Subjected to the nonlocal boundary conditions:
u(x,0) = au(x, 1), 0<x<1,

u(0,t) =u(1,t) =0, 0<t<1l
Where the value of a = ﬁ and this problem's exact solution is u(x, t) = x3(x% — 1)(2 —
eb).

Turkyilmazoglu in [14] solved this problem for n = 5 using the efficient analytic approximate
method, namely ECM based on the standard polynomials, and produced the following
approximate solution:

(82)
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u(x,t) = 0.00000023x — 0.0000018x2 — 0.999994x3 — 0.0000065x* + x°
+t(0.0000085x — 0.0000378x2 — 0.999827x3 — 0.0001808x* + 1.00004x>)
+t2(—0.0000662x + 0.0003904x2 + 0.498235x3 + 0.0016908x*
—0.50025x%) + t3(0.0001787x — 0.0011697x% — 0.160948x3 — 0.0048825x*
+0.166822x>) + t*(—0.0002019x + 0.0013966x2 + 0.0335542x3
+0.0057011x* — 0.0404499x>) + t>(0.0000811x — 0.0005806x2
—0.0031315x3 — 0.0023327x* + 0.0059638x°>).

Furthermore, now we can use the same procedure in the previous examples to apply the

DECMs proposed methods to solve this problem as follows:

First: Applying the DECMs proposed methods based on the Bernstein polynomials.

By substituting the Egs. (15) and (16) into the Egs. (81) and (82), we convert the function

u(x, t) and its partial derivatives into matrices. Therefore, the following results are obtained:

(14 e2)AT. ¥(x).(Bn)T.Y(t) —AT.Bn*>. ¥(x) .Y(t) + AT . ¥(x) .Y(t)
= e tx(—6 + 20x?% + e*x?(—1 + x2) + 2e'(6 — 21x% + x*)), (83)
AT P(x).Y(0) =a(AT . ¥(x).Y (1)), 84)
AT . @(0).Y(t) =AT.w(1).Y(t) = 0.
The technique has been applied as it is shown in Eq. (13) which results in:
(Bin(X)Bj (1), (1 + e?)AT.¥(x) . (Bn)T.Y(t) — AT.Bn*. ¥ (x) .Y (t)
+AT W (X).Y(0)), (Bin(x)B;,(t), e tx(—=6+ 20x* + e**x*(—1 + x?)
+ 2ef(6 —21x% +x*)), 0<i,j <n. (85)

Moreover, we use the same procedure in the previous examples for solving Eg. (85). After

generating a linear algebraic system of equations for n =5, as solved in [14], we use

Mathematica®12 to determine the values of the coefficients A as follows:
A
—3.7999 x 1076 1.3231x 1077+ —3.7455x 10~7* 4.4131x 10774+ —2.2394x 10~7* 3.3249 x 10~75
16506 x 108 2.8813x 107  —3.2380x10~7  3.4019x10~7 —-12190x10~7  2.6939 x 10~8
_|-19728x10"®  15853x1077  2.0048x 1077 —1.9374x 1077  2.0082x 1077  —3.2198 x 1078
—0.10000 —0.12000 —0.13500 —0.14666 —0.15585 -0.16321 |
—0.40000 —0.48000 —0.54001 —0.58664 —0.62342 —0.65285
75998 x 10~76  —4.0417 x 10775 8.8780x 10”75 —1.0156 x 10~7*  6.0971 x 1075 —1.5545 x 10~75
Finally, by substituting the coefficients A in the Eqg. (15), we get the following approximate

solution for n = 5:
u(x, t) =~ —7.34074 x 1077> 4+ 8.25281 x 10 8x — 5.27392 x 10~7x2% — 0.999998 x?3
—2.17806 x 107 6x* + 1. x5
+ t2(—2.10904 x 1072 — 0.0000441777 x + 0.000163079 x?
+ 0.498926 x3 + 0.000878309 x* — 0.499923 x°)
+ t*(—6.67995 x 10772 — 0.000114037 x + 0.000532387 x?
+ 0.0361264 x3 + 0.0027073 x* — 0.039252 x°)
+ t5(2.70538 x 10772 + 0.0000435023 x — 0.00021567 x?
—0.00421196 x3 — 0.00107865 x* + 0.00546277 x°)
+ t3(5.8213 x 10772 4+ 0.000107974 x — 0.000461881 x? — 0.163071 x3
—0.00240194 x* + 0.165827 x°)
+t (2.80071 x 10773 + 6.79056 x 10~ %x — 0.0000182492 x?
—0.999889 x3 — 0.000106406 x* + 1.00001 x>).
Second: Using the DECMs proposed methods based on the Legendre polynomials.
By substituting Egs. (18) and (19) into Egs. (81) and (82), this yields the following:
(1+e)AT.W(x).(LHT.Y() —AT. L. ¥(x) .Y(t) + AT . ¥(x).Y(t)
=e tx(—6 + 20x% + e**x?(—1 + x%) + 2e'(6 — 21x%* + x*)),  (86)
AT ¥ (x).Y(0) =a(AT . ®(x).Y(1)), 87)
AT ¢(0).Y(t) =AT.¢(1).Y(t) = 0.
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Also, the technique has been applied as it is shown in Eq. (13) which results in:
(P;(0)P;(t), (1 +eX)AT.®(x) . (LHT.Y() — AT.L"*. ¥ (x) .Y (t)
+AT W(x) . Y1), (Pi(x)P;(t), e tx(—6+ 20x? + e**x?(—1 4 x?)
+2ef(6 — 21x% + x*))), 0<1i,j
<n. (88)
Moreover, we use Mathematica®12 to solve Eq. (88), and determine the values of the
coefficients A as follows:

A
[ 1.0162 % 107® —9.4949 x 107® 0.000026001 —0.000035923 0.000028370 —0.000012166]
—0.14157 —0.18875 0.060792 —0.011615 0.0014319  —0.000080776
_|~-0.000014155 —0.000052985 0.000098833 —0.00011590 0.000084470 —0.000034427
B 0.036687 0.048989 —0.015859 0.0031237 —0.00045230 0.000053748 |
l 0.000016163 —0.000045327 0.000062440 —0.000058737 0.000036974 —0.000013458j
0.10485 0.13987 —0.045121 0.0087019 —0.0011294  0.000087080

Finally, by substituting the coefficients A in the Eqg. (18), we get the following approximate
solution for n = 5:
u(x,t) ~ (4.99066 x 1078 — 1.21941 x 107t — 4.74508 x 10~°t? + 0.0000221306 t3
—0.0000320084 t* + 0.0000147764 t>)x
+ (—9.09067 x 107 + 0.0000186785 t — 0.0000840553 t>
+ 0.000126286 t3 — 0.0000522606 t* — 9.22353 x 107°t>)x?
+ (—0.999996 — 1.00004 t + 0.499919 t? — 0.16534 t3 + 0.0382885 t*
—0.00494216 t°)x3
+ (—5.21355 x 107® + 0.0000767543 t — 0.000196836 t2
—0.000127227 t3 + 0.000707697 t* — 0.000463683 t>)x*
+ (1.40.999948 t — 0.499634 t? + 0.165319 t3 — 0.038912 t*
+ 0.00540029 t>)x°.
Third: Implementing the DECMs proposed methods based on the Chebyshev polynomials of
the first kind.
By inserting the Egs. (21) and (22) into the Egs. (81) and (82), we obtain:
(1+e2)AT.W(x) . (VHT.Y(t) —AT.V2 W (x) .Y () + AT . W(x).Y(t)
=e tx(—6 + 20x% + e?*x?(—1 + x?) + 2e'(6 — 21x2 + x*)),  (89)
AT ®P(x).Y(0) = a(AT . ¥(x).Y(1)), (90)
AT . w(0).Y(t) =AT.¥(1).Y(t) = 0.
Also, the technique has been applied as shown in Eq. (13), which results in:
(T;(O)T;(), (1 +e*)AT. ¥ (x).(V)".Y () - AT. V2 W(x).Y(t)
+AT W) .Y(t)), (T;()T;(t), e tx(—6 + 20x* + e**x*(—1 + x?)
+2ef(6—21x% +x%)), 0<1i,j
<n 91)
Additionally, we use Mathematica®12 to solve Eq. (91), and determine the values of the
coefficients A as follows:

A
0.000015189 —0.000036502 0.000043851 —0.000042323 0.000026281 —0.000010382
[ —0.092001 —0.14080 0.033547 —0.0052813 0.00055220 —0.000021205 ]
_1.,0.000031428 —0.000067963 0.000070804 —0.000061758 0.000036349 —0.000013799
B 0.045963 0.070484 —0.016860 0.0027166 —0.00032104 0.000027738
0.000016238 —0.000031461 0.000026952 —0.000019435 0.000010068 " —3.4168"x 107°
l 0.045975 0.070456 —0.016829 0.0026882 —0.00030386 0.000021066

Finally, by substituting the coefficients A in the Eqg. (21), we get the following approximate
solution for n = 5:
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u(x,t) ~ (4.64891 x 1078 — 8.8072 x 1078t — 4.81882 x 107°t2 + 0.0000220878 t3
—0.0000317708 t* + 0.0000146193 t°)x
+ (—8.83322 x 1077 4+ 0.0000185412 t — 0.0000852805 t2
+0.000133145 t3 — 0.0000627425 t* — 4.22163 X 107°¢>)x?
+ (—0.999996 — 1.00004 t + 0.499932 t%? — 0.165384 t3 + 0.0383442 t*
—0.00496603 t°)x3
+ (—5.17053 x 107° + 0.0000780914 t — 0.000213084 t>
—0.0000752439 t3 + 0.000644322 t* — 0.000437353 t>)x*
+ (1.4+0.999948 t — 0.499629 t2 + 0.165304 t3 — 0.038894 t*
+ 0.00539298 t°>)x>.
Fourth: Utilizing the DECMs proposed methods based on the Hermite polynomials.
The following findings are obtained by inserting the Egs. (24) and (25) into the Egs. (81) and
(82):
1+ e*)P(x).AAR).(NMT.(EDT —AX). N2 . (ETDHT.A.Y(®) +P(x) . A.Y(t)
= e tx(—6 +20x% + eP*x2(—1 + x2) + 2et(6 — 21x? + x*)),  (92)
P(x).A.Y(0) = a(P(x).4.Y(1)), 93)
Y(0).4.Y(t) =¥(1).A.Y(t) = 0.
Moreover, the technique has been applied as it is shown in Eg. (13) which results in:
(H;(OH;(t), (1 + e*)¥(x) .A.A®).(N)T.(E™)" = A(x).N* .(E)".A.Y (1)
+¥(x).A.Y(), (H;(x)H;(t), e "x(—6 + 20x? + e**x?(—1 + x?)
+2et(6 —21x% + x1))), 0<i,j<n. (94)
Furthermore, we use Mathematica®12 to solve Eq. (94), and determine the values of the

coefficients A4 as follows:
A

0.00012616  —0.00040435 0.00018824  —0.00015998  0.000020509 —8.6775 % 10~°
[ 0.81110 0.71361 —0.17346 0.027172 —0.0027504 0.00019748 ]
_ |, 0.00015340 —0.00043748 0.00020977 —0.00016563  0.000021844 —8.7283 x 107¢|
0.36051 0.31706 —0.077046 0.012033 —0.0012170 0.000085366 |

l 0.000015054 —0.000039218 0.000019275 —0.000014273 1.9316 x 10°® —7.3160 x 1077

0.022533 0.019813 —0.0048138 0.00075056  —0.000075880  5.2491 x 10~¢

Consequently, by substituting the coefficients A in the Eq. (24), we get the following
approximate solution for n = 5:
u(x,t) = (413292 x 1078 — 3.56961 x 1078t — 4.94814 x 10~%t% + 0.0000221775 t3
—0.0000317107 t* + 0.0000145432 t>)x
+ (—8.33215 x 1077 + 0.0000182897 t — 0.0000881145 t>
+0.000148243 t3 — 0.0000854539 t* + 6.50886 x 10~°t>)x?
+ (—0.999996 — 1.00005 t + 0.499961 t? — 0.165484 t3 + 0.0384733 t*
—0.00502154 t>)x3
+ (—5.06971 x 107° + 0.0000808576 t — 0.000249877 t>
+ 0.0000458956 t3 + 0.000494497 t* — 0.000374578 t>)x*
+ (1.40.999947 t — 0.499618 t% + 0.165268 t> — 0.0388506 t*
+ 0.00537507 t>)x>.
Fifth: Applying the DECMs proposed methods based on the Bernoulli polynomials.
By substituting the Egs. (27) and (28) into the Egs. (81) and (82) produce the following
results:
(14 e)AT. W (x) . (Bi)T.Y(t) — AT.Bi*>. ¥(x) .Y (t) + AT .¥(x) .Y (t)
= e 'x(—6 + 20x% + e**x%(—1 + x%) + 2e*(6 — 21x% + x*)), (95)
AT P(x).Y(0) =a(AT . ¥(x).Y (1)), (96)
AT . w(0).Y(t) =AT . ¢(1).Y(t) = 0.
Then, the technique has been applied as it is shown in Eq. (13) which results in the:
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(B;(x)B;(t), (1 + e*)A". ¥ (x) .(Bi*)".Y(t) — A. Bi*>. ¥ (x).Y(t)
+AT P (x).Y(t)), (Bi(x)B;(t), e tx(—6+ 20x* + e**x*(—1 + x?)
+ 2et(6 — 21x% + x*))), 0<1i,j
<n. 97)
Moreover, we use Mathematica®12 to solve Eq. (97), and determine the values of the
coefficients 4 as follows,

A
1.0162 x 107 —0.00011517 0.00072341 —0.0024218 0.0019859 —0.0030660
—0.000062668  0.0015137  —0.0082398  0.025237 —0.020974  0.030266 ]
:| 0.00040819 —0.0071406 0.035977 —0.10400 0.087241 —0.11988 |
15.412 43.710 —43.148 27.472 —-11.702 33431 |
l 0.0011314 —0.016453 0.077988 —0.21412 0.18117 —-0.23741 |
l 26.422 74.923 —73.915 46.930 —19.923 5.5299 J

Thus, by substituting the coefficients 4 in the Eq. (27), we get the following approximate
solution forn = 5:
u(x, t) =~ (499066 x 1078 — 1.21941 x 10~7t — 4.74508 x 107°t2 + 0.0000221306 t3
—0.0000320084 t* + 0.0000147764 t>)x
+ (—9.09067 x 10~7 + 0.0000186785 t — 0.0000840553 t>
+ 0.000126286 t3 — 0.0000522606 t* — 9.22353 x 107°t>)x?
+ (—0.999996 — 1.00004 t + 0.499919 t? — 0.16534 t3 + 0.0382885 t*
—0.00494216 t°)x3
+ (—5.21355 x 107® + 0.0000767543 t — 0.000196836 t>
—0.000127227 t3 + 0.000707697 t* — 0.000463683 t>)x*
+ (1.4+0.999948 t — 0.499634 t? + 0.165319 t3 — 0.038912 t*
+ 0.00540029 t°)x>

Furthermore, the MAbsR,, is calculated to demonstrate the accuracy and reliability of the
suggested approaches for solving the problem given in Egs. (81) and (82).

Table (3) presents the values of MAbsR,, corresponding to the approximate solution derived
from the ECM technique delineated in [14], and the DECMs proposed methods, with an
approximation order of n = 6, as expounded in [14]. Furthermore, it can be demonstrated
that the accuracy of the DECMSs' proposed techniques slightly surpasses that of the ECM
approach.

Table 3: The comparison between the MAbsR, for the example (4) by the ECM [14], and by
the DECMs proposed methods.

ECM DECMs DECMs DECMs DECMs DECMs
Standard [14] Bernstein Legendre Chebyshev Hermite Bernoulli
3.64035 3.13369 3.17874 3.40491 3.13369
-9
3.6391x 10 X 107 X 107° X 10~° x 107 X 107°

Furthermore, Figures (3) and (4) demonstrate the absolute error values for the interval
0 <x,t <1, obtained from the proposed techniques with approximation orders of n =
4 and 6, respectively. In reality, the precision of the solution improves, and the error is less
with the ascending value of n.
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Figure 3: The absolute error values obtained using the proposed techniques of the example

(4) with order approximation n = 4.
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AbsR:

DECMs Bernstein DECMs Legendre

AbsRy

AbsRe

DECMs Chebyshev DECMs Hermite

AbsRg

DECMs Bernoulli
Figure 4: The absolute error values obtained using the proposed techniques of the example
(4) with order approximation n = 6.

5. Conclusions

This paper introduces and implements a new class of computational techniques (DECMs)
for solving parabolic partial differential equations based on suitable orthogonal polynomials
such as the Bernstein, the Legendre, the Chebyshev, the Hermite, and the Bernoulli
polynomials. In this work, we develop and extend the ECM-described double power series
expansion technique to get novel analytic approximate solutions to the problem. The time-
dependent diffusion equations have been reduced to a linear algebraic system which is solved
by Mathematica®12. The proposed procedures are straightforward, and it is demonstrated
with examples that the methods can produce exact solutions when the solutions are expressed
as polynomials. Otherwise, highly accurate solutions are obtained with small approximation
orders for some nonlocal problems. Furthermore, the results demonstrate that the proposed
approaches improve ECM in terms of accuracy and error rate.
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