

Abdulrahmam H. Majeed, Haneen F.Ghalib*
Department of Mathematics, College of Science, Baghdad University, Baghdad,Iraq.

Abstract

Let $m \geq 1, n \geq 1$ be fixed integers and let R be a prime ring with char $(R) \neq 2$ and $(m+n)$. Let T be a $(m, n)(U, R)$-Centralizer where U is a Jordan ideal of R and $T(R)$ $\subseteq Z(R)$ where $Z(R)$ is the center of R,then T is (U, R) - Centralizer.

Keywords: Prime ring, Semiprime ring, Left (right) Centralizer, Left(right) Jordan Centalizer, (m, n)-Jordan Centralizer, Left(righ)(m,n)(U,R)-Centralizer, $(m, n)(U, R)$ Centalizer.
حول التمركزات- (U،R) من النوع (m‘n)

عبد الرحمن حميد مجيد ، حنين فلاح غالب ،
قسم الرياضيات ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق.

الخلاصة

Introduction

Throughout, R will represent an associative ring with center $Z(R)$. The characteristic of R is the smallest positive integer n such that $n a=0$ for all $a \in R$. As usual the commutator as follows $x y-y x$ will be denoted by $[x, y]$.We shall use the commutator identities $[x y, z]=[x, z] y+x[y, z]$ and $[x, y z]=[x, y] z+y[x, z]$, for all $x, y, z \in R$. Recall that a ring R is prim if for all $a, b \in R, a R b=\{0\}$ implies that either $a=0$ or $b=0$.Aring R is called semiprime if $a R a=\{0\}$ implies $a=0$. An additive subgroup U of R is said to be a Jordan ideal of R if $u r+r u \epsilon U$,for all $u \epsilon U$ and $r \epsilon R$. An additive mapping $D: R \rightarrow R$ is called a derivation if $D(x y)=D(x) y+x D(y)$ holds for all $x, y \epsilon R$ and is called a Jordan derivation if $D\left(x^{2}\right)$ $=D(x) x+x D(x)$ is fulfilled for all $x \epsilon R$. One can easily prove that every derivation is a Jordan derivation, but converse is in general not true. A classical result due to Herstein [1, Theorem 3.3] asserts that a Jordan derivation on prime ring of characteristic different from two is a derivation. A brief proof of Herstienś result can be found in [2], this result was extended to a characteristic different from two semi prime rings by Cusack [3] (see[2] for an alternative proof). An additive mapping $T: R \rightarrow R$ is called a left (right) Centralizer if $T(x y)=T(x) y(T(x y)=x T(y))$ holds for all pairs $x, y \epsilon R$ see[4].If R has the identity element, then $T: R \rightarrow R$ is left Centralizer if and only if T is of the form $T(x)=a x$ for all $x \in R$ where $a \epsilon R$ is a fixed element .An additive mapping $T: R \rightarrow R$ is called a left (right) Jordan Centralizer if $T\left(x^{2}\right)=T(x) x$ ($T\left(x^{2}\right)=x T(x)$) holds for all $x \in R$ see[5]. We call an additive mapping $T: R \rightarrow R a$ two sided Centralizer (a two-sided Jordan Centralizer) if T is both a left and right Centralizer (a left and right Jordan Centralizer).In [6] Zalar has proved that any left (right) Jordan Centralizer on a characteristic different from two semi prime ring is a left (right) Centralizer. In[7]Vukman defined an (m, n)-Jordan Centralizer as follows, an additive mapping $T: R \rightarrow R$ is called (m, n)-Jordan Centralizer if $(m+n) T\left(\mathrm{x}^{2}\right)=$
$m T(x) x+n x T(x)$ holds for all $x \epsilon R$. In the case when $m=n=1$ we have the relation $2 T\left(x^{2}\right)=T(x) x+$ $x T(x)$ for all $x \in R$, Vukman [5] has proved that every additive mapping $T: R \rightarrow R$, where R is a 2-torsion free semiprime ring ,satisfying the relation above is a two-sided Centralizer.Fošner [8]defined an generalized (m, n)-Jordan Centralizers as follows,an additive mapping $T: R \rightarrow R$ is called generalized (m, n)-Jordan Centralizer if there exists an (m, n)-Jordan centralizer $T_{o}: R \rightarrow R$ such that $(m+n) T\left(x^{2}\right)=$ $m T(x) x+n x T_{o}(x)$ holds for all $x \epsilon R$.

In the following we define $(m, n)(U, R)$-centralizer where U is a Jordan ideal of R. Thes definition has no related with (m, n)-jordan Centralizer.
The following example illustrates the above definition

DEFINITION

Let $m \geq 1, n \geq 1$ be fixed integers and let R an arbitrary ring .An additive mapping ($m+n$)T(ur+ru) $=2(m+n) T(r) u((m+n) T(u r+r u)=2(m+n) u T(r))$
holds for all $r \in R, u \in U$.
We call an additive mapping $T: R \rightarrow R$ is $(m, n)(U, R)$-Centralizer if T is both a left and right $(m, n)(U, R)$ Centralizer for all $r \in R, u \epsilon U$.
The following example illustrates the above definition.

Example 1:

Let $\mathrm{R}=\left\{\left(\begin{array}{ll}0 & a \\ 0 & b\end{array}\right) ; \mathrm{a}, \mathrm{b} \in \mathrm{S}\right\}$ be the ring of 2×2 matrices over a commutative ring S of characteristic two.
Let $\mathrm{U}=\left\{\left(\begin{array}{ll}0 & a \\ 0 & b\end{array}\right) ; \mathrm{a}, \mathrm{b} \in \mathrm{S}\right\}$. It is clear that U is a Jordan ideal of R .
Define $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ by $\mathrm{T}\left(\left(\begin{array}{ll}0 & a \\ 0 & b\end{array}\right)\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & b\end{array}\right)$, it is clear that Tis left $(\mathrm{m}, \mathrm{n})(\mathrm{U}, \mathrm{R})$-Centralizer.

Example 2:

Let $\mathrm{R}=\left\{\left(\begin{array}{ll}0 & 0 \\ a & b\end{array}\right) ; \mathrm{a}, \mathrm{b} \in \mathrm{S}\right.$ \}be the ring of 2×2 matrices over a commutative ring S of characteristic two.
Let $U=\left\{\left(\begin{array}{ll}0 & 0 \\ a & b\end{array}\right) ; \mathrm{a}, \mathrm{b} \in \mathrm{S}\right\}$. It is clear that U is a Jordan ideal of R.
Define $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ by $\mathrm{T}\left(\left(\begin{array}{ll}0 & 0 \\ a & b\end{array}\right)\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & b\end{array}\right)$, it is clear that Tis Right (m,n)(U,R)-Centralizer.

Example 3:

Let $\mathrm{R}=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right) ; \mathrm{a}, \mathrm{b} \in \mathrm{S}\right\}$ be the ring of 2×2 matrices over a commutative ring S of characteristic two.
Let $U=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right) ; \mathrm{a}, \mathrm{b} \in \mathrm{S}\right\}$. It is clear that U is a Jordan ideal of R .
Define $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ by T $\left(\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\right)=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$, it is clear that Tis $(\mathrm{m}, \mathrm{n})(\mathrm{U}, \mathrm{R})$-Centralizer.
In this paper R will denote an associative prime ring of characteristic defferent from 2 and $(m+n), U$ will denote a Jordan ideal of R and T is $(m, n)(U, R)$-Centralizer.
Put $(U)^{r}=T(u r)-u T(r) \quad$ for all $r \in R$ and $u \epsilon U$.
And $(r)^{u}=T(r u)-u T(r) \quad$ for all $r \in R$ and $u \epsilon U$.
So we can show by using equation $\left(^{*}\right)$ that $:(u)^{r}=-(r)^{u}$.
In this paper we went to proved that an additive mapping $T: R \rightarrow R$, where R is a characteristic different from two and $(m+n)$ prim ring, satisfying the relation $\left(^{*}\right)$ and $T(R) \subseteq Z(R)$, where $Z(R)$ is center of R, then T is (U, R)-Centralizer.
Theorem 1 .Let R be prime ring of characteristic different from 2 and $(m+n), U$ be a Jordan ideal of R and T be $(m, n)(U, R)$-Centralizer and $T(R) \subseteq Z(R)$ where $Z(R)$ is a center of R,then T is (U, R) Centralizer.
In the proof of the above theorem we will need the next lemmas.
Lemma 1. For all $r \in R$ and $u \epsilon U$,
$T(u r u)=u T(r) u$.
Proof. In(*),replace r by $u 2 r+2 r u$, then we get
$(m+n) T(u(u 2 r+2 r u)+(u 2 r+2 r u) u)=2(m+n) u T(u 2 r+2 r u)$
Since the characteristic of R is different from $(m+n)$ we get
$T(u(u 2 r+2 r u)+(u 2 r+2 r u) u)=2 u T(u 2 r+2 r u)$
$T\left(\left(u^{2} 2 r+2 u r u\right)+\left(2 u r u+2 r u^{2}\right)\right)=4 u T(u r)+4 u T(r u)$
$2 T\left(u^{2} r\right)+4 T(u r u)+2 T\left(r u^{2}\right)=8 u^{2} T(r)$
$4 u^{2} T(r)+4 T(u r u)=8 u^{2} T(r)$
$4 T(u r u)=4 u^{2} T(r)$
Since the chcaracteristic of R is different from 2 and $T(R) \subseteq Z(R)$ we get
$T(u r u)=u T(r) u$
For all $r \in R$ and $u \in U$.This completes the proof.
Lemma 2. For all $v \epsilon U$ and $r \in R$,
$\left[v^{2}, r\right]\left(v^{2}\right)^{r}=0 \quad$ and $\left(v^{2}\right)^{r}\left[v^{2}, r\right]=0$.
Proof.Since $(m+n) T(u r+r u)=2(m+n) u T(r)$,for all $u \epsilon U$, and $r \in R$, and characteristic of R is different
from $(m+n)$ we get
$T(u r+r u)=2 u T(r)$
$2 T\left(u^{2}\right)=2 u T(u)$, for all $u \in U$ then by[9, Theorem 1.1.13],T is Centralizer on U.
i.e $\quad(T(u v)-T(u) v)=0, \quad$ for all $u, v \epsilon U$.
i.e $\quad(u v-v u)(T(u v)-T(u) v)=0$.

Replace u by $2 v r+2 r v$, for all $r \in R$, we get
$((2 v r+2 r v) v-v(2 v r+2 r v))(T((2 v r+2 r v) v)-T(2 v r+2 r v) v)=0$.
$\left(2 v r v+2 r v^{2}-2 v^{2} r-2 v r v\right)\left(2 T(v r v)+2 T\left(r v^{2}\right)-4 v T(r) v\right)=0$.
By using lemma 1, we have
$\left(2 r v^{2}-2 v^{2} r\right)\left(2 T\left(r v^{2}\right)-2 v T(r) v\right)=0$.
By using the relation $(u)^{r}=-(r)^{u}$ for all $u \epsilon U$ and $r \in R$, we get
$\left(2 v^{2} r-2 r v^{2}\right)\left(2 T\left(v^{2} r\right)-2 v^{2} T(r)\right)=0$
i.e $\quad\left[v^{2}, r\right]\left(v^{2}\right)^{r}=0 \quad$ for all $v \epsilon U$ and $r \in R$.
similarly, we can prove $\left(v^{2}\right)^{r}\left[v^{2}, r\right]=0$.

Corollary.

(i) $\left[u^{2, r}\right]\left(u^{2}\right)^{s}+\left[u^{2}, s\right]\left(u^{2}\right)^{r}=0$, for all $u \epsilon U$ and $r, s \in R$.
(ii) $\quad\left(u^{2}\right)^{r}\left[u^{2}, r\right]+\left(u^{2}\right)^{r}\left[u^{2}, s\right]=0$, for all $u \epsilon U$ and $r, s \in R$.

Proof of theorem 1.

Replace r by $u r$ in equation (*), then we get
$(m+n) T(u u r+u r u)=2(m+n) u T(u r)$.
Since the characteristic of R is different from $(m+n)$ we get
$T(u u r+u r u)=2 u T(u r)$.
So,
$T(u u r+u r u)=T\left(u^{2} r+u r u\right)$
$=T\left(u^{2} r\right)+u T(r) u$.
But, by [9,Lemma (2.2.6)]
$\left(u^{2}\right)^{r}=0=T\left(u^{2} r\right)-u^{2} T(r)$, for all $u \epsilon U$ and $r \in R$,
$T\left(u^{2} r\right)=u^{2} T(r)$
so,equation (2) becomes
$T\left(u^{2} r+u r u\right)=u^{2} T(r)+u T(r) u$.
By comparing equation (1) and (3), we get
$u^{2} T(r)+u T(r) u=u T(u r)+T(u r) u$.
$u(u T(r)-T(u r))=(T(u r)-u T(r)) u$.
$u(T(u r)-u T(r))=-(T(u r)-u T(r)) u$.
$u(u)^{r}+(u)^{r} u=0$, for all $u \epsilon U$ and $r \in R$
lineaizing the a bove equation on u,we get
$u(v)^{r}+v(u)^{r}+(u)^{r} v+(v)^{r} u=0$.
Replace v by $2 v^{2}$ and use[9, Lemma (2.2.6)], we get
$2 v^{2}(u)^{r}+2(u)^{r} v^{2}=0$.
i.e
$v^{2}(u)^{r}+(u)^{r} v^{2}=0$, for all $u, v \epsilon U, r \in R$.
And so by [9, Lemma (2.2.3)] we get
$(u)^{r}=0$, for all $u \epsilon U$ and $r \in R$.
i.e
$T(u r)=u T(r)$, for all $u \epsilon U$ and $r \epsilon R$.

CONJECTURE

Let $m \geq 1, n \geq 1$ be some fixed integer s , let R be a prime ring with suitable torsion restrictions, and $T: R \rightarrow R$ be a $(m, n)(U, R)$-Centralizer. Then T is (U, R)-Centralizer.

REFERENCES

1. Herstein,I.N.1957. Jordan derivation of prime rings. Bull. Austral. Math, 8, pp:1104-1110.
2. Brešar,M. Vukman,J.1988. Jordan derivation on prime rings. Bull. Austral. Math, 37, pp:321-322.
3. Cusack,J.1975. Jordan derivations on semiprime rings. Proc. Amer. Mathematic, 53, pp:321-324.
4. Zalar,B.1991.On centralizers of semiprime rings. Computer Mathematic University Carolina, 32, pp:609-614.
5. Vukman,J.1999.An identity related to Centralizers in semiprime rings. Comm. Mathematic University Carolinae, 40, pp:447-456.
6. Zalar,B.1991. On Centralizers of semiprime rings and algebras. Comment. Math. Univ. Corolin,32, pp:609-614.
7. Vukman, J.2010.on (m,n)-Jordan Centralizer in ring and algebras. Glas. Mathematic, 45(1) , pp:4353.
8. Fošner, A.2013.A note on generalized (m,n)-jordan centralizers.Demo.Math, 18 (2), pp: 257-263.
9. Shaker, H.A.2005. Centralizers on prime and semiprime rings. Ms.C. Thesis. Department of mathematics, College of science, University of Baghdad. Baghdad, Iraq.
