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Abstract

The present paper concerns with peristaltic analysis of MHD viscous fluid in a
two dimensional channel with variable viscosity through a porous medium under the
effect of slip condition. Along wave length and low Reynolds number assumption is
used in the problem formulation. An analytic solution is presented for the case of
hydrodynamic fluid while for magneto hydrodynamic fluid a series solution is
obtained in the small power of viscosity parameter. The salient features of pumping
and trapping phenomena are discussed in detail through a numerical integration. The
features of the flow characteristics are analyzed by plotting graphs and discussed in

detail. When KL — o2,
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1. Introduction
Peristaltic pumping has been the object of scientific and engineering research in recent years. The
word peristaltic comes from a Greek word "peristaltikos" which means clasping and compressing. The
phenomenon of peristalsis is defined as expansion and contraction of an extensible tube in a fluid
generate progressive waves which propagate along the length of the tube, mixing and transporting the
fluid in the direction of wave propagation. The study of mechanism of peristalsis in both mechanical
and physiological situations has recently become the object of scientific research. Several theoretical

and experimental attempts have been made to understand peristaltic action in different situations. A
review of much of the early literature is presented in an article by Shapero A. H., Jaffrin M. Y., and
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Weinberg S. L. [2]. A summary of most of the experimental and theoretical investigation reported with
details of the geometry, fluid Reynolds number, wavelength parameter, wave amplitude parameter and
wave shape have been studied by Srivastava LM, Srivastava VP [3]. The studies of peristaltic flows of
Newtonian and non-Newtonian fluids have become important, not only because of biomedical and
engineering sciences but also in view of the interesting mathematical features presented by the
equations of governing the flow. The peristaltic flows and non-Newtonian fluids have been studied
due to their application in urine transport from the kidney to bladder, swallowing food through the
esophagus, chyme motion in the gastrointestinal tract, transport of spermatozoa, movement of ovum in
the female fallopian tube and vasomotion of small blood vessels. The importance of such flow has also
been recognized in transport of slurries, corrosive fluids and noxious fluids in the nuclear industry

Further, roller and finger pumps are widely operated under the mechanism. In most of the studies
which deal with the peristaltic flows, the fluid viscosity is assumed to be constant. This assumptions is
not valid everywhere. In general the coefficients of viscosity for real fluids are functions of space
coordinates, temperature, and pressure. For many liquids such as water, oil, and blood, the variation of
viscosity due to space coordinate and temperature change is more dominant than other effects.
Therefore, it is highly desirable the include of variable viscosity instead of considering the viscosity of
the fluid to be constant. Some important studies related to the variable viscosity are effect of variable
viscosity on the peristaltic transport of Newtonian fluid in an a symmetric channel studied by Hayat
T., Ali N. [4], peristaltic transport of a Jeffrey fluid with variable viscosity through a porous medium
In an a symmetric channel studied by Afsar Khan A., Ellahi R., Vafai K. [5] and slip effect on the
peristaltic transport of MHD fluid with variable viscosity studied by N. Ali, Q. Hussain, T. Hayat and
S. Asghar [1].

Flow through a porous medium has been of considerable interest in recent years particularly
among geophysical fluid dynamicists. Examples of natural porous media are beach sand, stand stone,
limestone, rye bread, wood, the human lung, bile duct, gall bladder with stones and in small blood
vessels. The first study of peristaltic flow through a porous medium is presented by Elshehawey E. F.,
Mekheimer Kh. S., Kalads S. F., Afifi N. A. S. [6], nonlinear peristaltic transport of MHD flow
through a porous medium is presented by Mekheimer Kh. S, Al-Arabi T. H. [7], Effect of porous
medium and magnetic field on peristaltic transport of a Jeffrey fluid is presented by Mahmoud S. R.,
Afifi N. A. S, Al-Isede H. M. [8], and peristaltic transport of conducting fluid through a porous
medium in an asymmetric vertical channel is studied by Rami Reddy G., Venkataramana S. [9].

This paper discuss the peristaltic transport of MHD fluid with variable viscosity through a porous
medium under the effect of slip condition. A regular perturbation method is used to so- . « -lve the
problem, and the solutions are expanded in a power series of viscosity parameter The obtained
expressions are utilized to discuss the influences of various emerging parameters.

2. The mathematical formulation of the problem

Consider the two-dimensional channel of uniform thickness 2a, which is filled with an
incompressible viscous fluid with an incompressible viscous fluid with variable viscosity through
porous medium. The walls of the channel are flexible and non-conducting. The sinusoidal wave trains
propagate on the channel walls with constant speed ¢ and propel the, the geometry of the wall surf-

()T, V)fluid along the walls. In rectangular coordinates system -ace is described by:
i 27 (—
h(X,t):a+bC057ﬂ(X—ct) 1)

is the velocity of c is the wave length, A is the wave amplitude,b In above equation is the
direction of wave propagation. A uniform magnetic field X is the time and propagation, is applied in
the transverse direction to the flow. The electric field is taken zero, the mag- B, -netic Reynolds
number is taken small so that the induced magnetic field is neglected.
In wave frame, the equations which govern the flow are ,

LA )

GO @0 (a0 v
(u—+v—j_ _+28Y(y(y)aij+ay{,u(y)(a)_(+ayD oBZ (U +¢) IZ(u+c) ©)
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ﬁ(y) is the pressure and P is the strength of the magnetic field, B, is the density, o where is the
viscosity function.

The flow is unsteady. However, if observed in a coordinates ()T ,\7) in laboratory frame it can be
treated as steady. The coordinate (Y, 7) system moving at wave speed ¢ (wave frame) frame are related
in the following:

p(x)=p(x,t) .wv=v u=U-c ,y=Y ,x=X-cf (5)
are the respective velocity components in the correspondingT,V and U,V In which coordinates

system.
To make the equations (2), (3), (4) non-dimensional, it is convenient to introduce the following
non-dimensional variable and parameters [1]:

2 — — — —
|"|:E 'tzE ,Szas 'pzap ,Vzl u:E y:l ,Xzi,
a A H,C CAu, co C a A
_M:\/Eapo 'Rezca_p 'K:% '5:2 ”u(y):‘u(y) , =E (6)
H Ho a A Ho a

In which M is the Hartman number, Re, is the Reynolds number, o is the electrical conductivity,
o ,is the wave number and ., is the constant viscosity.
Substituting eq. (6) into Egs. (2) - (4) can be simplified into the form

N Ny (7)
ox oy
2
Reol uM Ly __P o5 y(y)a—lzJ 2 uly PR Y_(u+1)
oXx o oy OX OX oy ox oy MK
~M?*(u+1) 8)
2
Reo®| uX 4y |2 P 052 (y)ﬁ—\zl 1520 uly Pl 9)
ox oy oy oy OX ox oy
In above equations and under the[u = ay/ :—%—l//jlntroducing the stream function as, we
X
have:l = i assumptions of long wavelength (5 <« 1}and low Reynnolds number, let
K Hy
2
0=-P, 9 ,u(y)a—l'/: A IV (10)
X oy oy K\ oy oy
O=—@ (11)
oy

3. Rate of volume flow and boundary conditions
Coordinates system is given ()T ,\7) the instantaneous volume rate of flow in the fixed by

h(xe)
[U(X. ¥, thav (12)
0

where £ and X is the function of h
The above expression in the wave frame equation (12) is given by
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h
q = [u(x.y)dy 43
0

where h is a function of X alone. Employing equations (5),(12) and (13), the two volume flow rates
can be related through the following relation

Q=q+ch. (14)

. - . o A . .
can be written as X at a fixed position T = — The time mean flow over a period
c

_ 1"
=—|Qdt . 15
Q== j Q (15)
Invoking eq. (14) into eq. (15) and integrating it, we arrive at
Q=q+ac. (16)
In the wave frame F in the fixed frame and @ defining the dimensionless time-mean flow one has
9 4 (17)
ac ac
the eq. (16) may be rewrittenas € =F +1 (18)
where
hay/
F :jady:w(h)—t//(O). (19)
0

(y = 0)1f we select the zero value of the stream line at the center line, (0)=0 is a stream line of

value y = hthen the wall at w(h)=F

The boundary conditions in dimensionless stream function will now take the following form
2

y=0at ,(Zyl/zl=0 Ww=0, (20a)
oy o’y
y=h=1+¢gCos(2mx)at ,—+fuly)—2-=-1 ,w=F . (20b)

oy oy*®
Is (gb:E(lJ is the dimensionless viscosity function, y(y) is the slip parameter, S where the
a

amplitude ratio and h is the dimensionless form of the peristaltic wall.
In the forthcoming analysis, we will use a((1for  u(y)=1—ay or u(y)=e* is the viscosity
parameter. o Where Solution of the problem Case (1) M = 0

0 0 0° 1(0
Pl uy) Y -2 Yo (21)
ox oy oy’ ) x\ oy
= _% (22)
oy
By differentiating equation (21) with respect to y, the resulting equation is:
0? 0? 102
o-Z {2t 12
oy ") Koy
For small parameter « ,we can write
l//=l//0+0(l//1+0(0£2) (24)
do 90 0P o(n2) (25)
dx dx dx
F=F +aF + O(az) (26)
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Using Egs. (24) — (26) and (20 a), (20 b) and then comparing the coefficient of like powers of &, we
have: The zero order system with its boundary conditions are

_ 0w, 10%,

— 27
't x oy’ 0
3
dpozal//o—l 8w0+1 ,y=0a, (28)
dx oy x| oy
2
aay'/’zo =0 ,y,=0 (29a)
oy o’y
y=hat ,FoJrﬂ ayzo:_l Wo=Fy . (29D)
The first order system with its boundary conditions are
2 2 2 2
0:62 81/;1_ 61//20 _181/;1 (30)
oy“\ oy oy K oy
%_i 82Wl _ 82‘//0 _lal//l (31)
dx oyl oy’ oy* ) x %
0?
v, =0, ay% 0, y=0at, (32a)
oy %y 0%y
y:hat s ay1+ﬂ(ay21—y6y20 =0 ,l//lel. (32b)
It is found that solution of zero order system is given by
h : h . y
=| F,W/KyCosh| — |+ y(K + F,8)Sinh| — |- (F, + h)KSinh| —= | |/
Vo (0 y [R} y( 013) {\/R} (0 ) {R}J
h . h
hvKCosh| — |+ (- K + hB)Sinh| — 33
[Roos] |+ | @
e e -neeonl |
= (F, +h) v/KCosh| — |+ fSinh| — | |/~ hK "2Cosh| — |+ K
R )( 7<) T N3
. h
K —hg)Sinh| — 34
(K=hg) { JE} (34)

And the solution of first order system is found to be of the form

v, = (— h(F, + hWKy? ﬂCosh{%} +4Fy(K + ﬁ)(h\/ECosh[%} +(-K+hp)
SlnhL/ED-i-h\/_(\/_( (F, +h)h—y)B +4F,(K —hB))+ h(- 4F,K +h

(F0+h)ﬂ)Coth{%DSmh{ \/ED {4hﬂ[h\/_ Cosh{ \/h_} +(-K+hp) Sinh{%DJ (35)

dp,
o F(K + 8)/hKp (36)

Summarizing the perturbation results, the expression of stream function and longitudinal pressure up
to order a are:
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Y=y, tay,

- [h\/? y(4(FO B+ FalK + ﬁ)ﬁosh{%} —(F, + h)yaﬂCosh[%D +4y(hpg
(K +F,8)-Fa(K + YK —hp) Slnh{ } WKWK (= (F, + )4 +ha - ya)

B+ 4F,a(K —hp))+ha(-4F.K +h(F, + h)ﬁ)Coth{ e DSmh{ \/y_D/(4hﬁ

h
h+/K Cosh K +h Slnh 37
( ik DJ e
And
dp _dp,  dp,
dx  dx dx
:_F0+hK+F1a_FIlBa+ F, +h h h (38)
K —hp —hyJ/KCoth| ——
/ L/E}

Case (2) (M = 0)

Again we start from equation (10)

®_0f ()W _L(ov i) _mefo¥

ax‘ay[”(y)ayzj K[ay +1J ! (ay +1] )

0=P (40)

oy

By differentiating equation (39) with respect to y, the resulting equation is:
0? 0? 10? 0?
0= O uly)ZY |- L2V 2y @
oy y°) Koy oy
N? = M2+ Let
K
Then equation (41) becomes

0? 0? 0?

0= 2w 2% w2 @)
oy oy oy

For small parameter «, we can write

W=y, +ay, + O(az) (43)

do 0P 0Py o(y2) (44)

dx  dx dx

F =F, +aF, +0(a?) (45)

Using egs. (43) — (45) and (20 a), (20 b) and then comparing the coefficient of like powers ofz, we

have:
The zero order system with its boundary conditions are

4 2
0= a@y‘/{lo N2 5ay‘//20 (46)
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3
dde - a@y‘? N 2(88";0 +1J (47)
X
o’y
y=0at 8y2°=0 We=0, (48a)
oy, v,
y=hat f——+ﬁ_7T:4-aWo:ﬁ- (48b)
oy oy
The first order system with its boundary conditions are
0= 0° (%, _ 0%y, _N?2 %y, (49)
oy*loy* T oy oy*
2 2
2
y =Oat ,W;=o v, =0, (51a)
oy, 0%y, 0w,
y=hat '8y+'3 Y —y@y2 =0 ,y,=F. (51b)

It is found that the solution of zero order system is given by

wo = (F,NyCosh[nN ]+ y(L+ F,N28)sinh[hN ] (F, + h)Sinh[Ny])/(hNCosh[hN ]
+(~1+hN?g)sinh[hN]) (52)

9o _ _(F, +h)N®(Cosh[nN]+ Nsinh[hN])/ hNCosh[iN ]+ (~1+ hN 2 8)Sinh[hN ] (53)

dx
And the solution of first order system is found to be of the form

v, = (y(h(~1+4F,N? )+ Fy(-1+ 2h*N? )+ 2N ?(h® + 2F, 8 — 2F,hN? 82 )+ y(F;h
+4F,hN2 —4F,N? 5+ 4F,hN* B2 ICosh[2hN |- 2Ny(h(F, + h)+ F,(2— 4hN?8))
Sinh[2hN ]+ 2hNCosh[hN |- (F, + h)Ny2Cosh[Ny]+ (- 4F, + (F, +h)y + h*N2))
sinh[Ny])+ 2Sinh[hN J~ (F, + h)Ny?(~1+ hN ? 8)cosh[Ny]+ (F, (4 — 4hN? 8) +
(F, +h)= y+hNZ(h? —hg + yp))sinh[Ny]))/8(hNCosh[hN]+(~1+ hN?3)

sinh[hN ])° (54)
% =(N?(F, + h—4F,AN? —2F,h?N? = 2h®N? —4F,N?3 + 4F,hN* 2 — (F, +
h+4F,hN? —4F,N28 + 4F,hN“ 52 JCosh[2hN ]+ 2N (2F, + h(F, +h)—4F;h
N 2ﬁ)smh[zm\l]))/(s(th:osh[hN]+(—1+ hN 2/3)Sinh[hN])2) (55)

Summarizing the perturbation results, the expression of stream function and longitudinal
pressure up to order @ are: y =y, +ay,

— (8(NCosh[hN ]+ (~ 1+ hN 2 8)sinh[hN ])(F,NyCosh[hN ]+ y(1+F, N 24)sinh[hN ]
— (Fy +h)sinh[Ny])+ a(y(h(~1+ 4F,N? )+ Fy(=1+ 2h*N? )+ 2N2(h® + 2F, B -
2F,hN?2))+ y(F, + h+ 4F,hN? + 4F,N 23 + 4F,hN * 82 JCosh[2hN |- 2Ny(h
(F, +h)+ F,(2—4hN?8))sinh[2hN ]+ 2hNCosh[hN (- (F, + h)Ny2Cosh[Ny]+
(- 4F, +(F, +h)y + hN?))sinh[Ny])+ 2Sinh[AN ]~ (F, + h)Ny?(~1+hN )
Cosh[Ny]+ (F, (4 — 4hN?8)+ (F, +h)— y + hN ?(h? —hs + yB)))sinh[Ny]))/

2352



Abdulhadi & Al-hadad Iragi Journal of Science, 2015, Vol 56, No.3B, pp: 2346-2363

l8(hNCosh[nN ]+ (~1+ AN g)sin[nN ]F ) (56)
And
dp _dp, dp,
dx dx dx
— (N?(~8(F, +h)N(Cosh[hN ]+ Nasinh[hN J)(hNCosh[hN ]+ (- 1+ hN 2 8)sinh[hN ])
+a(F, +h—4FhN? —2F h®?N? - 2h*N? —4F,N°f +4F,hN*B* — (F, + h +
AF,hN? — 4F,N? 8+ 4F,hN* 2 ICosh[2hN ]+ 2N (2F, + h(F, +h)—4F,hN?3)

sinh[2hN ])))/(8(hNCosh[nN ]+ (= 1+ hN 2 g)sinh[nN ])?) (57)
The pressure rise and friction force

h
0= [P =

F, :j—hd—pdx. (59)

whered—p is defined in equation(57) and F =6 —1.

dx
4. Results and discussion
A. stream line
The formation of an internally circulating bolus of fluid by closed stream lines is called trapping

and this trapped bolus is pushed ahead along with the peristaltic wave, the effect of 5, M, ¢, &, K on

trapping can be seen through figures. We observe that an increase in slip parameter ﬁ' decreases the
size of trapped bolus. This observation is true for the effect of M when increase M decrease the

trapped bolus. To see the effect of €2 on trapping we note that increase in the amplitude ratio increases
the size of trapped bolus. The effect of viscosity parameter & when increase a increase the size of

trapped bolus and the effect of K we note that when increase K does not effect on the size of trapped

bolus.
B. variation of pressure

dp
The variation of —— versus x is shown for a different values of B, M, ¢, a, K by keeping the

. . . . dp o
other parameter at a fixed values. It is noticed with increase /5 decrease P where it resists the flow,
dp

with increase M increase e

. . . d . . .
, With increase ¢ increase ﬁ and meets the maxima in the interval

dp dp

x € [0.3,0.7], with increase K decrease 4 and with increase & increase — ~and meets the maxima
in the interval x € [0.2,0.8].
C. pressure rise and friction force

The pressure rise has been plotted in figs. (11-15). Here the upper right-hand quadrant (1) denotes
the region of peristalsis pumping, where & = 0 (positive pumping) and Ap = 0 (adverse pressure
gradient). Quadrant (2), where Ap = 0 (favorable pressure gradient) and & = 0 (positive pumping), is
designated as augmented flow (copumping region). Quadrant (3), such that Ap = 0 (adverse pressure
gradient) and & = 0, is called retro-grade or backward pumping. In figure-11 it is observed the
pressure rise increase in quadrant (3) and decrease in quadrant (2),in figure- 12 the pressure rise

decrease in quadrant (3) and increase in quadrant (2), in fig. 13 the pressure rise decrease in quadrant
(3) and increase in quadrant (2), in fig. 14 the pressure rise decrease in quadrant (3) and increase in
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quadrant (2) and in fig. 15 the pressure rise decrease in quadrant (3) and increase in quadrant (2). To
discuss the behavior of friction force F; with & for various values of , M, ¢, &, K, § , we have plotted
in figures (16-20), figure - 16 illustrate variation of F; with & for different values of M. It reveals that
friction force increase when increaseM, fig. 17 illustrate variation F; with & for different values of a
when increase a decrease F;, fig. 18 illustrate variation F, with & for different values of 5 when
increase 7 decrease F;, fig. 19 illustrate variation F, with & for different values of K when increase

K decrease F; and fig. 20 illustrate variation F, with & for different values of ¢ when increase ¢
increase F;.

(a) (b)

30 30

10
[0.60 [0s5 [050 [045 [D40

X

Figure 1- Stream lines for different values of £ (a)g = 0.1,(b)5 =0.3,{(c)f = 0.6 and the other
parametersM = 5, & = 0.5,k = 10, ¢ = 0.6.
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@ | | | | ®)

10f°

0 \g/
(060 % ) (045 040 (08 (05 (050 3 (040
X X

1 \g_/
(060 D055 050 D045 (040
X

Figure 2- Stream lines for different values of M (a)M = 0,(b)M = 0.5,(c)M = 0.8 and the other
parameters @ = 0.5, = 0.1,k = 10, ¢ = 0.6.
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(a) (b)

25

20

15
D60 D55 050 046 040

X

Figure 3- Stream lines for different values of ¢ (a)g = 0.5,(b)a = 0.6, (c)a = 0.7 and the other
parameters M = 5,&¢ = 0.5, § = 0.1, k = 10.
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(b) (a)

060

20

040 045 050 055 060
X

Figure 4- Stream lines for different values of & (a@)a = 0.5, {b)a = 0.6,(c)a = 0.8 and the other
parameters M = 5,5 = 0.1,k = 10,9 = 0.6.
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(a) (b)

30 30

20

18

16

(060 05 [050 [045 D40

Figure 5- Stream lines for different values of K (@)K = 1,(B)K = 2, (c)K = 3 and the other parameters
M=5a=05p8=01¢=06
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W

’_,J-’a's o4 25 25 :n\____ilz g

Figure 6- Variation of dp/dx with x for different values of § at K=10, M = 2, & = 0.2 ,¢ = 0.6.
dp
dx

5
| /A\
——="03 04 05 25 9“’%‘5 *

Figure 7- Variation of dp/dx with x for different values of M at @ = 0.2, = 0.06,k = 10, ¢ = 0.56.

dp

dx

15}
ol /\
. . . . Cox
,‘__/4@" 04 e 0.8 N&

Figure 8- Variation of dp/dx with x for different values of grat M = 2, & = 0.2, § = 0.06, k = 10.

do
dx

wf
5L
1w}
. . . . Cox
%ﬁ’ 0.4 03 s 0 0.8

Figure 9- Variation of dp/dx with x for different valuesof kat M = 2, ¢ = 0.2, § = 0.06, ¢ = 0.
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B

S0

400

53 04 os 05 T
Figure 10- Variation of dp/dx with x for different values of wat M = 2, § = 0.06, k = 10,¢ = 0.6.
o,

-1 o 1 2

Figure 11- The pressure rise versus the flow rate for « = 0.2, 5 = 0.02,k = 10, ¢ = 0.6.

a2y

10

-1 -1 0 1 1

Figure 12- The pressure rise versus the flow rate for M = 2, 50.0 = 2,k = 10, ¢ = 0.6.

&y

10F

—1ofF

~15F

-1 0 1 2

Figure 13- The pressure rise versus the flow rate for M = 2, & = 0.2, k = 10, ¢¢ = 0.6.
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-1 0 1 2

Figure 14- The pressure rise versus the flow rate for M = 2, # = 0.2, § = 0.02, ¢ = 0.6.

-1 0 1 2

Figure 15- The pressure rise versus the flow rate for M = 2, = 0.2, § = 0.02, k = 10,

L

3 -1 o 1 1

Figure 16- Friction force at the wall verses the flow rate for ¢ = 0.2, 5§ = 0.02,k = 10, ¢ = 0.6.
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Figure 17- Friction force at the wall verses the flow rate for M = 2, 5§ = 0.02, k = 10,¢ = 0.6.
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Figure 18- Friction force at the wall verses the flow rate for M = 2, & = 0.2, k = 10, ¢ = 0.6.
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Figure 19- Friction force at the wall verses the flow rate for M = 2, & = 0.2, § = 0.02, ¢ = 0.5.
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Figure 20- Friction force at the wall verses the flow rate for M = 2, & = 0.2, 5§ = 0.02, k = 10

5. Conclusion

The influence of the slip condition on the peristaltic transport of MHD fluid through a porous
medium with variable viscosity has been analyzed. The analytical expressions are constructed for the
stream function, pressure gradient, pressure rise and fractional force. The main findings of the present
study are given in following points:

1- Decrease the size of the trapped bolus when increase in slip parameter 5 and M.
2- Increase the size of the trapped bolus when increase in the amplitude ratio ¢ and the viscosity

parametere.
3- The size of trapped bolus does not effect when change in value of K.

4- Decrease the pressure gradient when increasefs, K.
5- Increase the pressure gradient when increase M, ¢ andK.
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6

7

8-
9-

Increase the pressure rise in backward pumping and decrease in co pumping region when
increase M.
The pressure rise decrease in backward pumping and increase in co pumping region when increase

e, 3, Kand ¢.
Increase the fractional force when increase Af and .
Decrease the fractional force when increase a, 5 and K.
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