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Abstract   
      The present paper concerns with peristaltic analysis of MHD viscous fluid in a 
two dimensional channel with variable viscosity through a porous medium under the 
effect of slip condition. Along wave length and low Reynolds number assumption is 
used in the problem formulation. An analytic solution is presented for the case of 
hydrodynamic fluid while for magneto hydrodynamic fluid a series solution is 
obtained in the small power of viscosity parameter. The salient features of pumping 
and trapping phenomena are discussed in detail through a numerical integration. The 
features of the flow characteristics are analyzed by plotting graphs and discussed in 
detail. When  .  
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تأثير الانزلاق على الانتقال التموجي لمائع مغناطيسي هايدروديناميكي خلال وسط مسامي مع لزوجة 
 متغيره

 
 *احمد مولود عبد الهادي، آية هادي الحداد

 قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق
 

 الخلاصة
بتحليل التموج لمائع مغناطيسي هايدروديناميكي لزج في قناة ثنائية مع لزوجة متغيره هذا البحث يهتم       

خلال وسط مسامي تحت تأثير شرط الانزلاق. فرضية طول الطول الموجي وعدد رينولد صغير قد استخدمت 
سي في حالة المائع الهايدروديناميكي بينما للمائع المغناطي في هذه المسالة. قدم الحل التحليلي

الهايدروديناميكي قد حصلنا على سلسلة حلول لقوة صغيرة لعامل اللزوجة. السمات البارزه للضخ ومحاصرة 
الضواهر قد نوقشت بالتفاصيل من خلال تكامل عددي. حللنا ميزات خصائص الجريان بالرسوم ونوقشت 

  بالتفاصيل. عندما 
1. Introduction  
      Peristaltic pumping has been the object of scientific and engineering research in recent years. The 
word peristaltic comes from a Greek word "peristaltikos" which means clasping and compressing. The 
phenomenon of peristalsis is defined as expansion and contraction of an extensible tube in a fluid 
generate progressive waves which propagate along the length of the tube, mixing and transporting the 
fluid in the direction of wave propagation. The study of mechanism of peristalsis in both mechanical 
and physiological situations has recently become the object of scientific research. Several theoretical 
and experimental attempts have been made to understand peristaltic action in different situations. A 
review of much of the early literature is presented in an article by Shapero A. H., Jaffrin M. Y., and 

ISSN: 0067-2904 
GIF: 0.851 

mailto:ayaalhadad91@yahoo.com


Abdulhadi & Al-hadad                            Iraqi Journal of Science, 2015, Vol 56, No.3B, pp: 2346-2363 

2347 

Weinberg S. L. [2]. A summary of most of the experimental and theoretical investigation reported with 
details of the geometry, fluid Reynolds number, wavelength parameter, wave amplitude parameter and 
wave shape have been studied by Srivastava LM, Srivastava VP [3]. The studies of peristaltic flows of 
Newtonian and non-Newtonian fluids have become important, not only because of biomedical and 
engineering sciences but also in view of the interesting mathematical features presented by the 
equations of governing the flow. The peristaltic flows and non-Newtonian fluids have been studied 
due to their application in urine transport from the kidney to bladder, swallowing food through the 
esophagus, chyme motion in the gastrointestinal tract, transport of spermatozoa, movement of ovum in 
the female fallopian tube and vasomotion of small blood vessels. The importance of such flow has also 
been recognized in transport of slurries, corrosive fluids and noxious fluids in the nuclear industry  
      Further, roller and finger pumps are widely operated under the mechanism. In most of the studies 
which deal with the peristaltic flows, the fluid viscosity is assumed to be constant. This assumptions is 
not valid everywhere. In general the coefficients of viscosity for real fluids are functions of space 
coordinates, temperature, and pressure. For many liquids such as water, oil, and blood, the variation of 
viscosity due to space coordinate and temperature change is more dominant than other effects. 
Therefore, it is highly desirable the include of variable viscosity instead of considering the viscosity of 
the fluid to be constant. Some important studies related to the variable viscosity are effect of variable 
viscosity on the peristaltic transport of Newtonian fluid in an a symmetric channel studied by Hayat 
T., Ali N. [4], peristaltic transport of a Jeffrey fluid with variable viscosity through a porous medium 
In an a symmetric channel studied by Afsar Khan A., Ellahi R., Vafai K. [5] and slip effect on the 
peristaltic transport of MHD fluid with variable viscosity studied by N. Ali, Q. Hussain, T. Hayat and 
S. Asghar [1].  
      Flow through a porous medium has been of considerable interest in recent years particularly 
among geophysical fluid dynamicists. Examples of natural porous media are beach sand, stand stone, 
limestone, rye bread, wood, the human lung, bile duct, gall bladder with stones and in small blood 
vessels. The first study of peristaltic flow through a porous medium is presented by Elshehawey E. F., 
Mekheimer Kh. S., Kalads S. F., Afifi N. A. S. [6], nonlinear peristaltic transport of MHD flow 
through a porous medium is presented by Mekheimer Kh. S, Al-Arabi T. H. [7], Effect of porous 
medium and magnetic field on peristaltic transport of a Jeffrey fluid is presented by Mahmoud S. R., 
Afifi N. A. S., Al-Isede H. M. [8], and peristaltic transport of conducting fluid through a porous 
medium in an asymmetric vertical channel is studied by Rami Reddy G., Venkataramana S. [9].  
      This paper discuss the peristaltic transport of MHD fluid with variable viscosity through a porous 
medium under the effect of slip condition. A regular perturbation method is used to so- . α -lve the 
problem, and the solutions are expanded in a power series of viscosity parameter The obtained 
expressions are utilized to discuss the influences of various emerging parameters.  
2. The mathematical formulation of the problem  
      Consider the two-dimensional channel of uniform thickness 2a, which is filled with an 
incompressible viscous fluid with an incompressible viscous fluid with variable viscosity through 
porous medium. The walls of the channel are flexible and non-conducting. The sinusoidal wave trains 
propagate on the channel walls with constant speed c and propel the, the geometry of the wall surf-   
( )yx, fluid along the walls. In rectangular coordinates system -ace is described by:  

( ) ( )tcXbCosatXh −+=
λ
π2,                                                                                                          (1) 

       is the velocity of c  is the wave length, λ  is the wave amplitude,b   In above equation  is the 
direction of wave propagation. A uniform magnetic field X is the time and t propagation, is applied in 
the transverse direction to the flow. The electric field is taken zero, the mag- 0B  -netic Reynolds 
number is taken small so that the induced magnetic field is neglected.  
In wave frame, the equations which govern the flow are , 

0=
∂
∂

+
∂
∂

y
v

x
u

                                                                                                                                         (2) 

( ) ( ) ( )−+−















∂
∂

+
∂
∂

∂
∂

+







∂
∂

∂
∂

+
∂
∂

−=







∂
∂

+
∂
∂ cuB

y
u

x
vy

yx
uy

xx
p

y
uv

x
uu 2

02 σµµ ( )cu
K

+
ν

     (3) 



Abdulhadi & Al-hadad                            Iraqi Journal of Science, 2015, Vol 56, No.3B, pp: 2346-2363 

2348 

( ) ( ) 















∂
∂

+
∂
∂

∂
∂

+







∂
∂

∂
∂

+
∂
∂

−=







∂
∂

+
∂
∂

y
u

x
vy

xy
vy

yy
p

y
vv

x
vu µµρ 2                                               (4) 

( )yµ  is the pressure and p  is the strength of the magnetic field, 0B  is the density, ρ where is the 
viscosity function. 
      The flow is unsteady. However, if observed in a coordinates ( )YX ,  in laboratory frame it can be 
treated as steady. The coordinate ( )yx, system moving at wave speed c (wave frame) frame are related 
in the following: 
( ) ( )txpxp ,=      , Vv =      , cUu −=      , Yy =      , tcXx −=                                                  (5) 

 are the respective velocity components in the corresponding vu ,  and VU ,         In which coordinates 
system. 
      To make the equations (2), (3), (4) non-dimensional, it is convenient to introduce the following 
non-dimensional variable and parameters [1]: 
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In which M  is the Hartman number, Re , is the Reynolds number, σ  is the electrical conductivity, 
δ ,is the wave number and 0µ is the constant viscosity. 
Substituting eq. (6) into Eqs. (2) - (4) can be simplified into the form  
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 In above equations and under the 
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3. Rate of volume flow and boundary conditions 
      Coordinates system is given  ( )YX ,   the instantaneous volume rate of flow in the fixed by  

( )
( )

∫=
tXh

YdtYXUQ
,

0

,, ,                                                                                                                 (12) 

where t  and X  is the function of h   
The above expression in the wave frame equation (12) is given by  



Abdulhadi & Al-hadad                            Iraqi Journal of Science, 2015, Vol 56, No.3B, pp: 2346-2363 

2349 

( )∫=
h

ydyxuq
0

,                                                                                                                                   (13) 

where h  is a function of x   alone. Employing equations (5),(12) and (13), the two volume flow rates 
can be related through the following relation  

chqQ += .                                                                                                                                         (14) 

can be written as X  at a fixed position 
c

T λ
= The time mean flow over a period 
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Invoking eq. (14) into eq. (15) and integrating it, we arrive at  
acqQ += .                                                                                                                                        (16) 

 In the wave frame F   in the fixed frame and θ defining the dimensionless time-mean flow one has  
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the eq. (16) may be rewritten as  1+= Fθ                                                                                         (18) 
where  
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( )0=y If we select the zero value of the stream line at the center line,  ( ) 00 =y  is a stream line of 
value hy = then the wall at   ( ) Fh =y   
The boundary conditions in dimensionless stream function will now take the following form 
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a
bφ  is the dimensionless viscosity function, ( )yµ  is the slip parameter,β where the 

amplitude ratio and h is the dimensionless form of the peristaltic wall.   
In the forthcoming analysis, we will use 1〈〈α for     ( ) yy αµ −= 1   or   ( ) yey αµ −=  is the viscosity 
parameter.  α Where Solution of the problem Case (1)   
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By differentiating equation (21) with respect to y, the resulting equation is:    
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For small parameter α ,we can write   
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Using Eqs. (24) – (26) and (20 a), (20 b) and then comparing the coefficient of like powers of , we 
have: The zero order system with its boundary conditions are 
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The first order system with its boundary conditions are    
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It is found that solution of zero order system is given by   
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And the solution of first order system is found to be of the form  
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Summarizing the perturbation results, the expression of stream function and longitudinal pressure up 
to order  are: 
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Case (2)   
Again we start from equation (10)  
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By differentiating equation (39) with respect to y, the resulting equation is:  
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For small parameter , we can write 
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Using eqs. (43) – (45) and (20 a), (20 b) and then comparing the coefficient of like powers of , we 
have:     
The zero order system with its boundary conditions are  

2
0

2
2

4
0

4

0
y

N
y ∂

∂
−

∂
∂

=
yy

                                                                                                                        (46) 



Abdulhadi & Al-hadad                            Iraqi Journal of Science, 2015, Vol 56, No.3B, pp: 2346-2363 

2352 









+

∂
∂

−
∂
∂

= 102
3

0
3

0

y
N

ydx
dp yy

                                                                                                          (47) 

0=y at        , 02
0

2

=
∂
∂

y
y

     , 00 =y  ,                                                                                               (48a) 

hy = at        , 12
0

2
0 −=

∂
∂

+
∂
∂

yy
y

β
y

     , 00 F=y  .                                                                          (48b) 

The first order system with its boundary conditions are        
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It is found that the solution of zero order system is given by 
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Summarizing the perturbation results, the expression of stream function and longitudinal  
pressure up to order  are:  10 αyyy +=  
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[ ] ( ) [ ]( )( )2218 hNSinhhNhNhNCosh β+−+                                                                                      (56) 
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The pressure rise and friction force   
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∫ −=
h

dx
dx
dphF

0
λ .                                                                                                                               (59) 

where
dx
dp

  is defined in equation(57)  and 1−= θF . 

4. Results and discussion 
A. stream line 
      The formation of an internally circulating bolus of fluid by closed stream lines is called trapping 
and this trapped bolus is pushed ahead along with the peristaltic wave, the effect of   on 

trapping can be seen through figures. We observe that an increase in slip parameter  decreases the 
size of trapped bolus. This observation is true for the effect of  when increase  decrease the 

trapped bolus. To see the effect of  on trapping we note that increase in the amplitude ratio increases 

the size of trapped bolus. The effect of viscosity parameter  when increase  increase the size of 

trapped bolus and the effect of  we note that when increase  does not effect on the size of trapped 
bolus.                                               
B. variation of pressure 

      The variation of    versus x is shown for a different values of  by keeping the 

other parameter at a fixed values. It is noticed with increase  decrease   , where it resists the flow, 

with increase  increase   , with increase  increase   and meets the maxima in the interval  

, with increase  decrease , and with increase  increase  and meets the maxima 

in the interval .      
C. pressure rise and friction force  
      The pressure rise has been plotted in figs. (11-15). Here the upper right-hand quadrant  denotes 
the region of peristalsis pumping, where  (positive pumping) and  (adverse pressure 
gradient). Quadrant (2), where  (favorable pressure gradient) and  (positive pumping), is 
designated as augmented flow (copumping region). Quadrant (3), such that  (adverse pressure 
gradient) and , is called retro-grade or backward pumping. In figure-11 it is observed the 
pressure rise increase in quadrant (3) and decrease in quadrant (2),in figure- 12 the pressure rise 
decrease in quadrant (3) and increase in quadrant (2), in fig. 13 the pressure rise decrease in quadrant 
(3) and increase in quadrant (2), in fig. 14 the pressure rise decrease in quadrant (3) and increase in 
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quadrant (2) and in fig. 15 the pressure rise decrease in quadrant (3) and increase in quadrant (2). To 
discuss the behavior of friction force  with  for various values of  , we have plotted 
in figures (16-20), figure - 16 illustrate variation of  with  for different values of  . It reveals that 
friction force increase when increase , fig. 17 illustrate variation  with  for different values of  
when increase  decrease , fig. 18 illustrate variation  with  for different values of  when 
increase  decrease , fig. 19 illustrate variation  with  for different values of   when increase 

 decrease  and fig. 20 illustrate variation  with  for different values of  when increase  
increase .  
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Figure 1- Stream lines for different values of  and the other 
parameters . 
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Figure 2- Stream lines for different values of  and the other 
parameters . 
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Figure 3- Stream lines for different values of  and the other 
parameters . 
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Figure 4- Stream lines for different values of  and the other 
parameters . 
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Figure 5- Stream lines for different values of  and the other parameters 
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Figure 6- Variation of dp/dx with x for different values of   at K=10, . 

    
Figure 7- Variation of dp/dx with x for different values of  at . 
 

 
Figure 8- Variation of dp/dx with x for different values of  at . 
 

 
Figure 9- Variation of dp/dx with x for different values of k at  
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Figure 10- Variation of dp/dx with x for different values of  at . 

 
Figure 11- The pressure rise versus the flow rate for . 
 

 
Figure 12- The pressure rise versus the flow rate for . 
 

 
Figure 13- The pressure rise versus the flow rate for . 
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Figure 14- The pressure rise versus the flow rate for . 

 
Figure 15- The pressure rise versus the flow rate for . 
 

 
Figure 16- Friction force at the wall verses the flow rate for . 
 

 
Figure 17- Friction force at the wall verses the flow rate for . 
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Figure 18- Friction force at the wall verses the flow rate for . 

 
Figure 19- Friction force at the wall verses the flow rate for . 
 

 

 
Figure 20- Friction force at the wall verses the flow rate for  
 
5. Conclusion 
      The influence of the slip condition on the peristaltic transport of MHD fluid through a porous 
medium with variable viscosity has been analyzed. The analytical expressions are constructed for the 
stream function, pressure gradient, pressure rise and fractional force. The main findings of the present 
study are given in following points:  
1- Decrease the size of the trapped bolus when increase in slip parameter  and .       
2- Increase the size of the trapped bolus when increase in the amplitude ratio  and the viscosity 

parameter .  
3- The size of trapped bolus does not effect when change in value of .     
4- Decrease the pressure gradient when increase .  
5- Increase the pressure gradient when increase  and .  
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6- Increase the pressure rise in backward pumping and decrease in co pumping region when 
increase .  

7- The pressure rise decrease in backward pumping and increase in co pumping region when increase 
 and .  

8- Increase the fractional force when increase  and .  
9- Decrease the fractional force when increase  and .  
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