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Abstract

In this paper, we conduct an investigation into a novel subclass of bi-univalent
functions within the unit disk. The introduced subclass incorporates the generalized
Srivastava-Attiya operator and satisfies specific quasi-subordination conditions.
Through this study, the researchers determine the coefficient estimates |a,| and |as]|
for functions within these subclasses and unveil new results by applying the operator
to this particular subclass. The implications of these findings extend to complex
analysis, number theory, and other branches of mathematics. Overall, this research
significantly contributes to the theory of quasi-subordination of bi-univalent
functions and enhances the understanding of the diverse applications of the
Generalized Srivastava-Attiya Operator.

Keywords : Analytic functions, Bi-Univalent functions, subordinations, Univalent
functions.
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1. Introduction
Denote the class of normalized functions that meet the requirement F(0) = F'(0) —
1 = 0 by using the letter, A, and they are represented by the following Taylor expansion:

F(z)=z+2a%z”, z €. (D
n=2
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These functions possess the property of analyticity in the open unit disk U, which is
defined as the region in the complex plane Cwhere U = {z € Cand |z| <1 }.
Further, let 7 denote the class of all functions in A that are univalent in 1.

The image of U under each univalent function F € H comprises a circle of radius F~1
has inverse F, according to the Koebe one-quarter theorem [1] . Therefore, each univalent

function i is defined by
FY(F(3) =3 (€W

and
FET'w) =w (W< po(F); po(F) 2 5),
where
Gw) =F1(w) =w—a,w?+ (2a3 — az;)w3 — (5a3 — 5a,a; + a,)w* + ---. )

If both of functions F and F~lare univalent in, F € A is recognized as having bi-
univalent functions, , provide an indication of the class of normalized by (1) bi-univalent
functions in U denoted by X .

Let F and G be two analytic functions in . If there exists a Schwarz function n(z) in U
such that [n(z)|] < 1and n(0) = 0 (for z € U) satisfying the following criterion, then the
function F is said to be subordinate to G.

F(z)=G(n(z)), zeU,.

The symbolism of this subordination F <G, z€U.

If G is a univalent functionin ,thenF <G < F(0) =G(0) A FQU) c GQ).

Lewin [2] investigated the class ). of bi-univalent functions and discovered a coefficient
constraint given by |a,| < 1.51 for each F € ). . Building on Lewin's work [2] , Clunie and
Brannan[3] made the assumption that |a,| < 2 for all F € .. Furthermore, research on bi-
univalent and analytic functions has recently experienced a resurgence due to Srivastava et al.
[4], preceded by Bulut [5] , Guney et al. [6] , Wanas and Srivastava [7] , and other works
(refer to [8-16] ).

ForF € A InEqQ.(1)and G € A defined as follows:

6(z) =2+ ) b,5", (zeW). (3)
n=2
The form is known as the convolution between function F and G.
(FxG)(z)=3z+ Z a,b,z"™, (z€l). (4)
n=2

For F € A,the the generalized Srivastava - Attiya operator [17] Ja‘:')’l(#q)b:cﬂ - A Iis
defined by

s,a,A _ ssal
Tippugo? @ =80 (ug)p (D * F(2) ©
such that Zaﬁ(#q)'b () is defined by
vt 0 () T) A1 agsa]
@ = = M5 (4)

101,100 1) . o as
'I:CDXL...., e Mg (Z 'S, a; x’ ¢ > KF(S)A(a’ ¢ FSI)L):l
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_ o B (4201 (A(@+nbsd)\ [a+1)S 2"
=7+ Y= H?=1(1+uj)%_1 (A(a+1,b,s,/1)) (a’+n) '’ (6)
where
) -
A(a +n,b,s,2) = HZ [bZ(n + ) |(s, 1D, (0, %)] 7
Linking (5) and (6), we obtain
s,a,A _ n
J(Ap),(#q)‘bF(z) =z+ z W, o a,3". (8)
n=2
where

= TP, (1+2) Aa+mn,b,s, A a+1\°* 3"
Y,o =2+ = ]n—1<( )>( > n

“ H?=1(1 +“1')n—1 AMa+1,b,s,) ) \a+n n!
L ECG=1..,0)u€C2(=1,..,9;3€EU;P<q+1;
min{R(a),R(s)} > 0; 1 > 0 when R(b) > 0ands € C; a € C\zywhen b = 0.

Robertson established the notion of quasi-subordination in 1970 [18]. Furthermore, if
F(z)and G(z)be two analytic function , a function F(3z) is quasisubordination to a
function G (z) in U and may be expressed as the form
F(z) <q G(2) (z el),
if there is n(z) and 7 (z) a function analytic with 1n(0) =0, In(2)| < 1and |7 ()| <
1 such that
7(2)G(n(2)) = F(z) (z €W).

We can note that , when #-(z) = 1, then G(n(z)) = F (), S0

F(z) < G(z) in .
Furthermore, if we replace F(z) = z, we obtain F(z) = G(z)r(z). In this case, F(z) is
referred to as being majorized by G (z), which can be written as:

F(z) <K G()In .
In case, F(3) <q G(z) = F(2) = r(3)G(3) = F(z) < G(2).3 € U
As a result, quasi-subordination is evidently an extension of both subordination and
majorization (see [19, 20]).
Orhan H, magesh N, Yamini J.[21] established the classes of biunivalent given by quasi
subordination in 2017, and the coefficient boundaries were determined. Minda and Ma
introduce and investigate the unified classe in [22] .

zF'(2) _
T(®) = {F €A : (o) <0(z):z € ll}, (9
S(0) ={Fedq : 1+Z}f'(g) <®(z):z€u}. (10)

Assuming that U is a region in the complex plane , and 0(z) is an analytic and univalent
function in U, which satisfies the following conditions:
1- The real part of ©(z) in U is positive.
2- O(W) is a starlike area with respect to 1 and symmetric with respect to the real axis.
3- 0(0)=1,0'(0) > 0.
4-  The function T(®) and S(®) classes are symmetric with respect to the real axis and have
a starlike area with respect to 1.
5- The function T(0) and S(©) classes are , respectively starlike of Minda-Ma type and
convex of Minda-Ma type [22].
These conditions will be used in this research.
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h(z) = hy + hyz + hy3% + hyz3 + - (11)
and
0(z) =1+ B1z + Byz% + B33 + - (12)
s s s,a,d
2. Coefficient bounds for the class Z(z,,),(uq),b(& Y, B,0)
Definition 2.1: Let F € ), be a function given in (1) in the class ZS'“'A 6,v,B,0) and

(Ap).(uq) b
fulfills the following quasi subordination:
2G5 (g P @) S RTC)
5 p)\Hq)s 1 — p)\Kq)s Ms,a,/l F /
{ T I PO s
+ yz(M(S/{:’)fl(#q)’bF(z))”} -1<,0(z)—-1, (13)
and
WM G M G
(Ap)r(llq)rb _ (lp)r(“q)’b s,a,A ’
{6 MG ) 6OV ra=p w FBOG, (ug)n 6 WD)
+ YW )06 (WD”} ~1<,0w) -1, 149

where (wandz €U, 6§ =21, y=>0andf =1).
For specific values of the parameters y, 6, 8, s, a, A, (Ap), (,uq) and b we obtain new class.

Remark 2.2: For § = 1 a functionF €) , given in (1) is namely be in the
A
ClaSSfo;),(Mq),b v, B,0)
s,al ’ s,a,d
{Z(Mup).wq),bF (2)) (M) (uq) o7 (B

s,a,A + (1 -
(MG ()0 (2D

OGS )P B

* VZW&Z’)?(M),DF(@)"} ~1<,0() -1,

and
(MG 1) 0 G W)

+(1-

WM G
{ o DO a0

s,a,A
(M), (1) G W)

s,a,A n{ _ _
+ yW(M(/lp),(uq),bG(W)) } 1 <q @(W) 1 ,
wherewand z € U, y = 0 and f = 1with G is inverse function ofF .

Remark 2.3: Forf =1 and = 0 , a function F € ), Given in Eq.(1) is namely be in the

class Za";i(uq)'b(& ®) then the next condition is met.

Z(M(S’izjl(uq)bF ()’ .
. + (M5 pF@) (—1<40(2) -1,
(M(’{p’));(ﬂq),bF(Z)) (4p).(uq). q
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and

w(MES L Gw))
(Ap).(uq) b n (Ms,a,l GWw) ' r—1<,0w)—1,

(M(S"izl)/}(uq),b G(w)) (4p).(uq).

wherewand z € U,6 > 1.

Remark 2.4: For=1, § = Oandy = 0, afunction F € Y, given by Eq.(1) is namely be in
the class ¥'5%% (®) then the following condition is met.

(Ap).(nq)b )
Z(M(S’{Z‘)'(uq),bF (2))’ )
s,a,A + (M(‘;’La‘),( )‘bF(Z)), 1 <q O(Z) 4 |
(M(’lp)'(#q),bF (2)) p)(kq

and

)

s,a,A

M(lp),(ﬂq),bG(W)> IL -1 <q G)(W) -1 B
)

s,a,l
| (Mup).(uq).bG (W)>

wherew and z € U

Remark 2.5: For s=0,a=0,4=0,(4,)=0,(y;) =0,andb =0 a functionF € Y,
given by Eq.(1) is called }.(8,v, B, ®), if meeting the next quasi-subordination requirements

ZF’(Z) F(Z) ’ 17
{6 ) +(1—,8)7+ﬁF (z) + yzF (z)}—l <4 0(z) -1,

and

s2EM) 1 S L 6wy + ywe 1<, 0(w) -1
where (z,w €U, 0< <1 and0<y<1).
To discover the estimated coefficient |a,| and |as|, the following Lemma must be
investigated:

Lemma 2.6 :[9]. If A € P, then |A;| < 2 for each i , where P is the collecation of each 1
function analytic in U, for which R, (z € W), whereA(z) = 1+ 1,2 + 1,22 + A333+...,,
(z €N).

Theorem 2.7: If F(z) given by Eq.(1) belongs to the classy:5*? (8,v,B,0), then

(A4p).(uq)b
h,|B 4\hy|(By + |(B, — B
| < min |ho|B1 ’ |hol(B1 + |(B; — B1)| — (15)
|2+ B +27)Wou| "JI(L+ 26 + 2B + 6y)¥34 — 6¥5,
|as|
in{ 2B, |ho + by N |h3|B? 2B, |ho + Iy
T @+ 28 4B+ 60 Wsa| |2+ B+ 20)2W| T [(1 426 + 4B + 67) W3 4
8lhol(By + |(B; — By)| } (16)
|(1+26 + 28 + 6y)¥s 0 — 5%, |)

where
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_ ?:1(1 + Aj)z_l <A(a +2,b,s, /1)) (a + 1)5 z?
2

Wy, = —
M, (+w),  \Ma+1bsD) \a+2) 2
and
. H?=1(1+/1')3_1 Ala+3,b,51)\ (a+1\5 73
\{13'(1 - H§=1(1+uj-)3_1 (A(a+1,b,s,l)) (m) 373
Proof.
Since F € Zaﬁ(uq)’b(& v,B,0) and = F~1. Then there is analytic function v,u € A such
that u:U - Uand v : U - Usuchthat (0) = u(0) = 0, satisfying
Z(Maaf(# )'bF(Z)), (M(Sia‘)):(ﬂ )'bF(Z)) s,a ’
o pay T Tz B P (D)
(Ap).(1q).b
T VZ(M(S}ZZ')],L(M),;,F(Z))”} —1<4h(x)(0OWH)) - 1), (17)
and
s,a,d ’ s,a,l
5L OO M n WD s
TR e
+ yw(M(j;‘f(uq),bcxw))”)} — 1 <4 h(w)(@(u(w)) - 1). (18)
Define the functions A and r by
_1+v(z) 5 3,
r(z) = T=v(z) 1+n(2)+rz°+rz°+ . (19)
1+
Alw) = 1_—% =14+ A4 W) + ,w? + ;w3 + - . (20)
or equivalently
r@-1_1 r2 X
v(z)—r(z)+1—§<rlz+<r2—7>z +> (21)
AW +1 1 A\,
u(W)—m—§<ﬂ.1W+<lz—?>W +> (22)

Then r(z) and A(w) analytic inU, with r(z) = A(w) = 1. Since A(w) and r(z) have
positive real part inll, 4;(z) < 2anduy;(w) < 2,i = 1,2, ...
Substitute (21),(22) in (17), and (18), we have

2 P ()’ (Moo (ug) 0 F @)
oy +(1-p—=F + B ) F (@)
MG P @) (1p) (g
-1
+ YZW&Z')?(M),DF(@)"} -1<n@e(FGTp-1) @)

and
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WM ) p G W)’

(M(S,la)ﬂ(” ), bG(W))

s,a,A
(M3, (1) ¢ WD)

+1-p)

WM 60

1 b 0 Alw) +1 1
— 1 <4 h(w)( (W)_ )

+BOUGS SO’

(24)

Using (21) and (22) with each other accompanied by (11)and (12), it is obvious that

r(z)—1
h(z )(G)( G )+1) 1)

1 1 1
= EhorlBlz + (E hlrlBl + EhOBl (rz

hewyco (2~ 4

2

2

2
+ - (26)
From (23), (24) , (25) and (26), we get

1
2+p+ ZV)Wz,aaz = EhoBﬂH )
(1-+25-+2ﬁ-+6y)wgaa3 6W§aa§

r1
h1r181+ hoB1 r, — >

1 2
+ Z hoBzrl K

1
—2+p+2y)¥,qa, = EhoBMl )

and

—(1+ 28+ 2B + 6y)Ws4a3 — 6WZ,a5 + (2 + 46 + 4B + 12y)¥; 4a5 =
/12

_hOBl (Az - _) +

;hoBz)@ ,

from (27) and (29), we get
hoB1my hoB14

a/2=

it follows that
r=-1
and

2+ B +2y)*¥ a5 = —hZB1 (r¢ + 22).

Adding (28) and (30), we get

1 1 1 2\ 1 N\
:_hollB:lW"" Ehl/’llBlzhOBl ){2_7 +Zh0B2&1 W

22+ B+ 2120 2+ [ +20)Vag’

1
—ri) +Zh032r12> W2+ -, (25)

(27)

(28)

(29)

~hi 4By +

(30)

(31)

(32)

(33)

[(24 46 + 4B + 12y)W5 4 — 26¥2,]a% = 2hoBy(1y + A3) + ho(B, — By (£ + 22).  (34)
Applying Lemma2.6 , for the coefficients r;1,, A, and A,its follows from (32) and

(33),getting

4474



Hameed and Shehab Iragi Journal of Science, 2024, Vol. 65, No. 8, pp: 4468-4477

"y lhol B,
TN@+ B+ 2ol

4|ho|(B1 + [(B; — By
|a’2| < 2
(1426 +28 +6y)¥;5, — 6¥s,|
a yield coefficient that|a,| in (15).
Subtracting(30) from (28) , we get
2(1 + 26 + 2,8 + 6]/)'1”3‘(1(@3 - d%) = ZhoBlrl + hoBl(rz - ).2)

(35)

and

(36)

(37)

Finding that by replacing from(33) and (34) and inserting (37) and using Lemma 2.6

2B, |ho + hyl |hg|B?
las| < + T L
|(1+25 + 48 + 6Y)¥3q| 12+ B +2y)2¥7,]
P 2B;|ho + hy| 4|ho|(By + [(Bz — B1)|
3

<

T A+ 28 +48 +67)Wsq| (L4264 2B 4 6y)W5, — WLl
Eqg. (38) and (39) yields the estimatein(16).

The evidence now is completed.

Corollary 2.8: Let F be in classz‘,a‘:;(uq)'b (y,,0) . Then

|holBy j 4ho|(By + |(B — By
|2+ B +27)¥,0| " [IB+2B +67)¥s0 — Vol
2B1|hg + hy| |h§|B? 2B;|hg + hy]

la,| < min

)

las] < min{ + =1
|B+48 +67)Ws4| |2+ B +21)2W| " |(B+4B + 6V)¥Ws,|

8|ho|(By + |(B; — By)| }
|3+ 28 + 67)¥s0 — 5¥2,|)

where
W - 5-]=1(1 + /1]')2_1 Ala +2,b,s,1) (a + 1)5 %
T+ w), , \Ma+Lbsh) \a+2) 2
and
_ H§=1(1+’11')3_1 Ala+3,b,5,2)\ (a+1\° 33
lp?"a - H?=1(1+/.Lj)3_1 (A(a+1,b,s,)t)) (E) 33

Corollary 2.9: LetF be in classY¢ (8, ©).Then

|a«2| < min |h0|Bl ’\/ 4IhOI(B1 + I(Bz - B1)| ’
|2+ B+ 27)W0| " JI(A+26+ 28+ 6y)¥;34 — S¥7,|
las| < min{ 2B |ho + M| Ih(Z)IBlz ’ 2Bi|hg + h4|
|(5+28)W3,|  |(3)2WE,| "|(5+28)¥s4]
8|ho|(B; + |(B; — By)|
|3+ 28)¥5, — 5‘1’22,a|}'
where
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L1+, <A(a +2,b,s, /1)) (a + 1)5 72
2

y, = 22
2, H?:l(l + 'uj)z—l A(CK + 1' b, S, A) a—+ 2 21
and
W _ 5')=1(1 + Aj)3_1 <A(af + 3, b,S, A)) (a + 1>S . Z_3
e l_[;?=1(1 + ﬂj)3_1 Aa+1,b,s,1)) \a+3 3731

Corollary 2.10: Let F be in classY,¢ (©).Then

|ho|By 4lho|(By + |(B; — By)|
|(3)l1U2,a , |(5)l‘y3,a - l‘Uzz,

)

ol

2| < mi {231|ho + hy| + |h§|Bf ,2B1|h0 + hy|  8|ho|(By + |(B, — Bl)l}’
(D] G2PR] [(D¥aa] ((5)¥sa — 5%2,|
where
W, , = l_[2';1(1 + Aj)z_l <A(a +2,b,s, /1)) (a + 1>S azz—z
szl(l + /,tj)z_l Ala+1,b,s,4)) \a+ 2 2!
and

. (1+4), <A(a +3,b,5, ,1)> (a N 1>s 3
= L2
3,a l_[?=1(1 + uj)3_1 Ala+1,b,5,2)) \a +3 33

Corollary2.11: Let F be in class }.(8, 58,7, ©) .Then
|holBy jM%K&+K&—Bm

a,| < min , ,
2] @+ B2’ 1A +o+26+ 6
\as| < min 2Bq|hy + hy| |h3|B? 2Bq|hy + 4|
3t = [(1+254+4B8 +6y) |2+ B +2y)?| ' |(1+ 25 + 48 + 67)|

8|ho|(By + |(B2 — B1)|
|[(1+6+28+6y)] )

3. Conclusions

The study proposes is for understanding the properties and behavior of bi-univalent
functions by utilizing the generalized Srivastava-Attiya operator and quasi-subordination
principles. The determination of |a,| and |as| for all bi-univalent functions using this new
class of bi-univalent functions based on these operators, along with several new findings,
further emphasizes the significance of this research. The obtained results hold potential for
practical applications in mathematical physics, electrical engineering, and computer science.
In conclusion, this study offers valuable insights into the behavior of bi-univalent functions
and presents novel approaches to studying functions under quasi-subordination .
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