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Abstract  

     In this research, we introduce the concepts of 𝑃𝑖-module where (i=1,2,3), as 

proper generalizations of 𝐶𝑖-conditions, where (i=1,2,3). The relationships between 

these concepts and previous ones were explained, and a comprehensive description 

of each was provided. Additionally, by relying on 𝑃𝑖-module, new concepts were 

developed, such as supplement continuous and quasi-supplement continuous, which 

represent generalizations of continuous and quasi-continuous. Illustrative examples 

were provided, and the possibility of their inheritance was discussed.  

 

Keywords:  Extending Modules, Supplement Extending Modules, 𝑃1-Modules, 𝑃2-

Modules, 𝑃3-module, supplement continuous Modules, quasi-supplement continuous 

Modules. 

 

التكميلية المستمرة وشبه التكميلية المستمرة  المقاسات  
 

   مهدي صالح نايف *علي حسنساره 

 المستنصرية، بغداد، العراق  الجامعةالرياضيات، كلية التربية، قسم 
 

 ة الخلاص
مفاهيم        نقدم  البحث،  نمط   في هذا  )   𝑃𝑖 -المقاسات من  فعلية  )  i=1,2,3حيث  ، والتي تمثل تعميمات 

𝐶𝑖-لشروط   توصيف شامل لكل  ، وتم شرح العلاقات بينها وبين المفاهيم السابقة وتم تقديم  (i=1,2,3)حيث      
المقاسات من نمط  منها.  الى ذلك ومن خلال الاعتماد على  تقديم  (i=1,2,3)  حيث   𝑷𝒊بالإضافة  ، استطعنا 

والتي تمثل تعميمات فعلية   مقاسات المكملة المستمرة والمقاسات شبة التكميلية المستمرة، ال مفاهيم جديدة وهي
شبة   والمقاسات  المستمرة  المقاسات  هذه    المستمرة حول  نقل  إمكانية  ومناقشة  توضيحية  أمثلة  تقديم  تم  كما 

 المفاهيم بطريقة وراثية.  
1. Introduction 

     Throughout this paper all rings have an identity and the modules are unitary. A submodule 

S of an R-module H is said to be essential in H and denote by (𝑆 ≤𝑒  𝐻) if S ∩ 𝐷 ≠ (0), 

∀ (0) ≠  𝐷 ≤ H,[1], p. 15]. A module H is said to be uniform, if S ≤e  H, ∀  𝑆 ≤   H [2], p. 

37]. A submodule S of an R-module H is closed in H (denoted by 𝑆 ≤𝑐 H), if 𝑆 ≤𝑒 𝐷 ≤ H 

then 𝑆 = 𝐷, [1], p. 18]. A module H is called extending module if every submodule of H is 

essential in a direct summand of H [3]. There are many researchers who have made many 

generalizations about extending modules see [4]  and [5]. The submodule S is called a 

supplement submodule of N in H if S+N = H and S∩ N ≪ S, [6]. H is called a supplement 

extending module if every submodule of H is essential in a supplement submodule in H [7]. 

Also, H is said to be supplement simple if (0) and H are the only supplement in H [8]. 

              ISSN: 0067-2904 

mailto:Ssarah.hassanali@gmail.com


Ali and Nayef                                       Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5610-5616 

 

5611 

 R. Wisbauer mentioned and defined a local module H to be a module that has a proper 

submodule which contains all other proper submodules of H. Equivalently, H is called local if 

it is hollow and has a unique maximal submodule [[8], p.52]. An R-module H is said to be 

lifting if for every submodule S of H there exists a submodule A of S such that H = A⊕ D 

and S∩ D≪H, where D submodule of H [9]. It can be proving that every local module is 

lifting. An R-module H is said to quasi-injective if it is injective with respect to itself [10]. An 

R-module H is said to be continuous, if it satisfies the conditions (C1): Every submodule of H 

is essential in a direct summand of H; and (C2): Every submodule of H which is isomorphic 

to a direct summand of H is a direct summand of H. Also, an R-module H is quasi-continuous 

if it satisfies the conditions (C1) and (C3): If two direct summands of H have zero 

intersection, then their sum is a direct summand of H. There are a lot of researchers who dealt 

with these concepts and made many studies about them, for example[3], [11] and [12]. 

 

2. 𝑷𝟏-module, 𝑷𝟐-module and 𝑷𝟑-module 

Definition 2.1: An R-module H is said to be 𝑃1-module if every submodule of H is essential 

in a supplement in H. Actually, this definition is the same definition of supplement extending 

modules which introduced by M. Tawfeek [8].   

Definition 2.2: An R-module H is said to be 𝑃2-module if each submodule of H which is 

isomorphic to a direct summand of H is a supplement in H. 

Definition 2.3: An R-module H is said to be 𝑃3-module if two direct summands of H have 

zero intersection, then their sum is a supplement in H. 

Proposition 2.4: Every 𝑃2-module is  𝑃3-module. 

Proof: Suppose that H1and H2 are summands of P2-module H such that H1∩H2 = 0, we must 

show that H1⨁H2is supplement submodule in H. Now, since H1 ≤⨁H, so there exists a 

submodule H1
∗ of H such that H = H1⨁H1

∗. Also take π to be projection map from H 

ontoH1
∗ and π|H2

be the restriction map of π on H2, also by [[12], Proposition 2.2 we get H1 ⨁ 

H2= H1⨁ πH2and π|H2
 isomorphic to H1

∗, but H is P2-module. So, π(H2)supplement in H. 

Now, since π(H2) ≤  H1
∗ implies H1

∗ =  π(H2) +H1
∗ ,and since we have H =H1⨁H1

∗ then H= 

H1⨁( π(H2)+H1
∗) = (H1⨁ π(H2)) + H1

∗. Now since H1 ∩ H2 = 0 and H1 ∩ H1
∗ = 0, then we 

get (H1⨁H2) ∩ H1
∗ =0 it flows   that H = ( H1⨁H2)⨁H1

∗. that means H1⨁H2is direct 

summand of H and by the fact that every direct summand is supplement then we get H1⨁H2is 

supplement in H. Therefore, H is  P3-module. 

 

Remarks and examples 2.5: 

1. If an R-module H has (C1) condition then it is 𝑃1-module, since every summand is 

supplement. But the converse argument is not generally true for example H=Z8⨁Z2 it is P1-

module but not (C1) condition. 

2. If an R-module H has (C2) condition then it is P2-module. 

Proof: Let S ≤H such that S≅D where D≤⨁ H. Since H has (C2) then S≤⊕ H and by every 

summand is supplement, we get that S is supplement submodule in 𝐻. 

3. Clearly if an R-module H has (C3) condition then it is P3-module. 

4. The converse of Proposition 2.4, does not generally hold, for example, Z as Z- module is 

P3-module but not P2-module. Since, 2Z≅Z and Z is a direct summand of Z. But 2Z is not 

supplement of Z. 

5. Clearly every semisimple module is Pi-module, (𝑖 = 1,2,3). but the converse argument 

does not generally hold. For example, let H=Z8⨁Z2 as Z-module is P1-module, Q as Z-

module is 𝑃2-module and, Z as Z-module is P3-module, but they are not semisimple 

6. Every uniform is Pi-module, (𝑖 = 1,3). 
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Proof: Since every uniform module satisfies(C1) and(C3) conditions, by [[12] Proposition 2.5. 

P.20] and by (1) and (3), we get the required. But the converse argument is not generally true. 

For example, H=Z6⨁Z3 by (5) it is 𝑃1-module and 𝑃3-module but not uniform. 

 Now we will set some sufficient conditions to make the relation between the concepts 

are equivalent 

Proposition 2.6: Let H be a lifting R-module, then H is (Pi)-module iff H has (Ci) 

condition.(i = 1,2,3). 

Proof:⟹) Case one: it is clear by  [7]. 

Case two: Let S ≤H such that S≅D where D≤⨁ H. Since H is 𝑃2-module then S is 

supplement in H, since H is lifting, we get that S≤⊕ H. 

Case three: By using same technique in case two we complete the proof in Case three 

⟸)By Remarks and examples 2.5, (1), (2) and (3). 

Corollary 2.7: Let H be a local R-module. Then H is (𝑃𝑖)-module iff H has (C𝑖) 

condition.(𝑖 = 1,2,3). 

Proof: Since every local is lifting module by [[8], Remark 2.2.7], then by Proposition 2.6 the 

result is verified. 

Proposition 2.8: Let H be a semisimple R-module, then H is (𝑃𝑖)-module iff H has (C𝑖) 

condition, where (𝑖 = 1,2,3). 

Proof: Since every submodule of H is direct summand and supplement then the proof hold. 

The next results are partial answer about the question: when do 𝑃𝑖-modules, (𝑖 = 1,2,3) have 

properties inherited by a submodule?  

Proposition 2.9: Any direct summand of a 𝑃1-module is again a 𝑃1-module. 

Proof: By [7]. 

Proposition 2.10: Any direct summand of a 𝑃2 -module is again a 𝑃2-module. 

Proof: Let H be a 𝑃2-module and S ≤⨁  H. Now let D and L are two isomorphic submodules 

of S such that D ≤⨁ S, then by [[13], Lemma 1.1.14], we get D ≤⨁  𝐻, and since 𝐷 ≅ 𝐿 and 

𝐷 ≤⊕ 𝐻, then by 𝑃2 -module properties we get L is supplement submodule in H, hence, by 

[[9], p.235], we get L is supplement submodule in S. Therefore, S is 𝑃2-module. 

Proposition 2.11: Any direct summand of a 𝑃3-module is again a 𝑃3-module. 

Proof: Let H be P3-module and let S ≤⨁  H, and D ≤⨁  S and L ≤⨁  S  such that 𝐷 ∩ 𝐿 = 0. 

Now by [ [13], Lemma 1.1.14], we get  𝐷 ≤⊕ Hand 𝐿 ≤⊕ H. Since H is 𝑃3-module, thus 

𝐷 ⊕ 𝐿 is supplement submodule in H. Now, with the same previous technique demonstrated 

in Proposition 2.10, the proof is done. 

Proposition 2.12: If H =  H1 ⨁ H2, where H1 and H2 are submodules of H where H is P3-

module, and g is Homomorphism from H1into H2with ker g ≤⨁  H1, then Im g ≤sup H2. 

 Proof: Let g: H1 ⟶ H2 be homomorphism  

Case one: If g is monomorphism, then Ker g=0 implies Ker g ≤⊕ 𝐻1. Now to prove that Im g 

is supplement inH2. For this let S={ h1 + g (h1): h1 ∈ H1}.  We claim that H = S ⊕  H2, if 

m ∈ H , then m = h1 + h2 where h1 ∈ H1 and h2 ∈ H2. Therefor m = h1 + g(h1) − g(h1) +
 h2  ∈ S + H2, and so H = S +  H2. Now, we show that  S ∩ H2 = {0}, let m ∈ S ∩ H2 where 

m = h1 + g(h1), for some h1 ∈ H1, hence h1 =  m − g(h1) ∈ H1 ∩ H2 = {0}, thus m = 0. 

Then H = S ⨁ H2 and S ≤⨁ H. Moreover, to show that S ∩ H1 = {0}, if m∈ S ∩ H1, then  

m = h1 + g(h1)  for some h1 ∈ H1. Consequently g(h1) =  m − h1 ∈ H1 ∩ H2 = {0}. So 

g(h1) = 0, then g(0) =0. Since g is monomorphism, we have h1 = 0 hence m = 0 . Then 

S ≤⨁ H and H1 ≤⨁ H and by H is 𝑃3-module we get S⨁H1 is supplement in H. Finally, to 

show that H1 ⊕ S = H1⨁Img , for m ∈  Img then m = g(h1),  where h1 ∈ H1and so, m =
h1 − h1 + g(h1) ∈  S + H1,and, hence H1 ⊕ S = H1⨁Img, and since S⨁H1is supplement in 

H, Img is supplement in H. Therefore, Img is supplement in H2 
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Case two:  If g is any homomorphism, with Ker g ≤⨁  H1, to prove Img is supplement in H2. 

Now, since Ker g ≤⨁  H1, then there exists D ≤  H1,  such that H1 = ker g ⨁ D , then H = 

H1⨁H2= ker g ⨁ D ⊕ H2, and the restriction map g|D: D → H2 is monomorphism. By any 

direct summand of 𝑃3-module is again  𝑃3-module Proposition 2.11, and by case one we get  

Im g =Im g|D ≤sup H2. 

Corollary 2.13: If H =  H1 ⨁ H2, such that H1 and H2 submodule of H where H is 𝑃3-

module, and g is monomorphism from H1into H2, then Im g ≤sup H2. 

Proof: We deduce the proof from the above proposition. 

Definition 2.14: An R-module H is called  𝑃2 -module relative to S if any submodule S1 ≤ S 

with 𝑆1 ≅ 𝐷 where 𝐷 ≤⨁ H implies S1 ≤𝑠𝑢𝑝  S.   

Proposition 2.15: Let H =  H1 ⨁ H2, such that H1 and H2 are submodules in H where H is 

 𝑃3-module, then H1 is a 𝑃2-module relative to H2 and H2 is a 𝑃2 -module relative to 𝐻1. 

Proof: Let S ≤⨁ H1 and 𝐷 ≤ H2 such that S ≅ D. suppose π ∶  H1  → S be the natural 

projection and g is an isomorphism from S into D. Hence   igπ is a homomorphism from H1 

into H2, where  𝑖 is inclusion from D into H2 . Clearly  ker (igπ) = ker (π ) ≤⨁
  H1 by 

Proposition 2.12, Img(ig π) = D is supplement in  H2 . Therefore,  H1 is a P2-module relative 

to H2. With the same technique we complete the proof that H2 is a 𝑃2-module relative to 𝐻1. 

The next corollary is a direct result of Proposition 2.15.  

Corollary 2.16:  

1. If H ⊕ H is a 𝑃3-module, then H is a 𝑃2-module. 

2.  H=⊕ Hi,(i = 1,2, . . n) is a P3-module iff every Hi is a P2-module.  

Proposition 2.17: The conditions are equivalent for right R-module H. 

1. H is a 𝑃3-module.  

2. If S ≤⊕H, D ≤⊕H and S ∩ D ≤⊕H, then S + D ≤𝑠𝑢𝑝H. 

 

Proof: (1) ⇒ (2) By hypothesis S∩ D  ≤⨁H, H = (S∩D) ⊕K, where K ≤H. Obviously, S = 

(S ∩ D) ⊕ (S ∩ K) and D = (S ∩ D) ⊕ (D ∩ K). By S≤⊕H and (S ∩ D) ≤⊕S, we get (S ∩ 

K) ≤⊕H and by D≤⊕H and (D ∩ K) ≤⊕D,  we get (D ∩ K) ≤⊕H. And (S ∩ K) ∩ (D ∩ K) = 

(S ∩ D) ∩ K = 0, since H is  𝑃3-module, so we get (S ∩ K) ⊕ (D ∩ K) supplement in H, and 

let B= (S ∩ K) ⊕ (D ∩ K) supplement in H. in fact B is satisfy summand condition, then we 

get B≤⊕ H, and (S ∩ D) ∩ B = 0,  since H is 𝑃3-module so we get (S ∩ D) ⊕ B supplement 

in H. Now, S + D = [(S ∩ D) ⊕ (S ∩ K)] + [(S ∩ D) ⊕ (D ∩ K)] = (S ∩ D) ⊕ (S ∩ K) ⊕ (D 

∩ K) = (S ∩ D) ⊕ B supplement in H.  

(2) ⇒ (1) Clear. 

 

3. Supplement continuous and quasi supplement continuous module 

Definition 3.1: An R-module H is said to be supplement continuous, if it satisfies the 

condition of 𝑃1-module and 𝑃2-module. 

Definition 3.2: An R-module H is said to be quasi-supplement continuous if it satisfies the 

condition of 𝑃1-module and P3-module.  

Remarks and examples 3.3: 

1. Every supplement continuous module is quasi- supplement continuous module, by 

Definition 3.1, and Proposition 2.4. But the converse argument is not generally true. For 

example, Z as Z-module is P1-module and P3-module. But not P2-module, since 2Z≅Z 

and Z ≤⨁  Z. But 2Z is not supplement of Z. 

2. Every (quasi-)continuous is (quasi-)supplement continuous, by Remarks and examples 

2.5, (1), (2), and (3). 

3. Obviously, every uniform module H is quasi- supplement continuous, by Remarks and 

examples 2.5, (6). 
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4. Every quasi-injective module is (quasi-)supplement continuous. By  [12]; Proposition 

2.1] and by Remark and example 2.5, (1), (2) and (3).  But the converse argument is not 

generally true. For example, Z as Z-module by (3) is quasi-supplement continuous but it 

is not quasi-injective 

 The Next is an illustrative diagram of the relationships between previous concepts: 

               Quasi-injective ⟹ continuous ⟹ quasi-supplement continuous ⟹ 𝐶1 

                      ⇓                       ⇓                         ⇓                                           ⇓ 

               supplement continuous     ⟹  quasi-supplement continuous  ⟹ 𝑃1-module 

 

The next lemma is a direct result of Proposition 2.11: 

Lemma 3.4: Let H=⊕ Hi,(i = 1,2, . . n) if H is a quasi-supplement continuous then Hi is 

supplement continuous. 

Proof: By Corollary 2.16, (2), we get H𝑖 is 𝑃2-module and by [7], we obtain  H𝑖 is 𝑃1-module. 

Therefore, Hi is supplement continuous. 

Proposition 3.5: Let H be lifting R-module, then H is (quasi-) continuous if and  

   only if H is (quasi-)supplement continuous. 

Proof: ⟹)By Remark and examples 3.3, (2). 

⟸)By Proposition 2.6. 

 

 A module H is said to be automorphism-invariant if f(H) ⊆ H for any automorphism f of the 

injective hull of H, [14] . A module H is referred to be pseudo-injective if for any submodule 

S in H, every monomorphism S → H can be extended to an endomorphism of the module H, 

[15] . It was shown that a module H is automorphism invariant iff it is pseudo-injective. In 

[14]. Also, every pseudo-injective module as well as every automorphism invariant module is 

a 𝐶2[16]. If R is a prime ring, then all nonsingular automorphism-invariant right R-modules 

are quasi-injective. [[17]; Theorem 5]. Recall that a ring R is prime if aRb = 0 implies that a = 

0 or b = 0.  

Proposition 3.6: Let H be (local-)lifting pseudo-injective then the next concepts are 

equivalent: 

1. H is continuous; 

2. H is quasi- continuous; 

3. H is extending; 

4. H is supplement -continuous; 

5. H is quasi- supplement continuous; 

6. H is supplement extending. 

 

Proof: (1) ⟹) (2) ⟹)(3) Clearly. 

 (3) ⟹)(4) Since H is extending then H is 𝑃1-module and by [15], we get that H satisfy 

(𝐶2) condition, also by Corollaries 2.6 and 2.7, H is 𝑃2-module, which implies H is 

supplement-continuous 

(4) ⟹) (5) ⟹)(6) Clearly. 

(6) ⟹) (1) Since H is supplement extending module then by [7], we get that H satisfies 

(𝐶1)condition, also by [15], then H is satisfied (𝐶2)condition, therefore, H is continuous. 

 

Corollary 3.7: Let H be (local-)lifting automorphism invariant module then the next concepts 

are equivalent: 

1. H is continuous; 

2. H is quasi- continuous; 

3. H is extending; 

4. H is supplement -continuous; 

5. H is quasi- supplement continuous; 
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6. H is supplement extending. 

 

Proof: By [16], we deduce the proof from the above proposition. 

 

Proposition 3.8: If H is an R-module such that H ⊕ H is P3-module., then the next concepts 

are equivalents;    

1. H is supplement continuous; 

2.  H is quasi-supplement continuous; 

3.  H is supplement extending. 

Proof: (1)⟹)  (2)⟹)  (3) Clearly, 

 (3) ⟹) (1) Snice H is supplement extending, then H is 𝑃1-module. Now, since H ⊕H is 𝑃3-

module, then by Corollary 2.16, (1), we get that H is a 𝑃2-module. Therefore, H is supplement 

continuous. 

Proposition 3.9: Let H be (local) lifting module, such that H ⊕ H is P3-module then the next 

concepts are equivalent;    

1. H is continuous; 

2. H is quasi- continuous; 

3. H is extending; 

4. H is supplement -continuous; 

5. H is quasi- supplement continuous; 

6.  H is supplement extending. 

 

Proof: (1) ⟹) (2) ⟹)(3) Clearly. 

 (3) ⟹)(4) Since H is extending then H is 𝑃1-module and by Corollary 2.16, (1), we get that 

H is a 𝑃2-module, which implies H is supplement-continuous 

(4) ⟹) (5) ⟹)(6) clearly 

(6) ⟹)(1) Since H is supplement extending module then by  [7], we get H is satisfied 

(𝐶1)condition, and by Corollary 2.16, (1), we get that H is 𝑃2-module, and by Corollaries 2.6, 

and 2.7, then H is continuous. 

 

Lemma 3.10: Let H be a supplement simple R-module. If H is a supplement extending, then 

it is uniform,  [8]. 

 

Proposition 3.11: If a supplement simple module H is a 𝑃1-module, then H is quasi- 

supplement continuous. 

 

Proof: By Lemma 3.10 and by Remark and example 3.3, (3), H is quasi-supplement 

continuous. 

From Propositions 2.9, 2.10, and 2.11, we answer in the next proposition the about question: 

when does a (quasi)-supplement continuous module have properties inherited by a 

submodule? 
 

Proposition 3.12: If S direct summand of H (quasi)-supplement continuous module then S is 

(quasi)-supplement continuous modules. 

4. Conclusions 

Through this paper, we reached the next conclusions: any 𝑃2-module is 𝑃3-module but the 

converse argument does not generally hold. Additionally, we prove that each (quasi-

)continuous and quasi-injective modules are (quasi)-supplement continuous. Further, we show 

that 𝑃1 −modules, 𝑃2-modules 𝑃3-modules, and (quasi)-supplement continuous module are 

inherited by direct summand. Finally, we introduced some conditions that make the above 

concepts equivalent. 
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