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Abstract

In this research, we introduce the concepts of P,-module where (i=1,2,3), as
proper generalizations of C;-conditions, where (i=1,2,3). The relationships between
these concepts and previous ones were explained, and a comprehensive description
of each was provided. Additionally, by relying on P;-module, new concepts were
developed, such as supplement continuous and quasi-supplement continuous, which
represent generalizations of continuous and quasi-continuous. Illustrative examples
were provided, and the possibility of their inheritance was discussed.
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1. Introduction
Throughout this paper all rings have an identity and the modules are unitary. A submodule
S of an R-module H is said to be essential in H and denote by (S <, H) if SN D # (0),
Vv (0) # D < H,[1], p. 15]. A module H is said to be uniform, if S<, H,vV § < H[2], p.
37]. A submodule S of an R-module H is closed in H (denoted by S <. H), if S <, D <H
then S = D, [1], p. 18]. A module H is called extending module if every submodule of H is
essential in a direct summand of H [3]. There are many researchers who have made many
generalizations about extending modules see [4] and [5]. The submodule S is called a
supplement submodule of N in H if S+N = H and SN N « S, [6]. H is called a supplement

extending module if every submodule of H is essential in a supplement submodule in H [7].
Also, H is said to be supplement simple if (0) and H are the only supplement in H [8].
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R. Wisbauer mentioned and defined a local module H to be a module that has a proper
submodule which contains all other proper submodules of H. Equivalently, H is called local if
it is hollow and has a unique maximal submodule [[8], p.52]. An R-module H is said to be
lifting if for every submodule S of H there exists a submodule A of S such that H = A@ D
and SN D«H, where D submodule of H [9]. It can be proving that every local module is
lifting. An R-module H is said to quasi-injective if it is injective with respect to itself [10]. An
R-module H is said to be continuous, if it satisfies the conditions (C1): Every submodule of H
is essential in a direct summand of H; and (C2): Every submodule of H which is isomorphic
to a direct summand of H is a direct summand of H. Also, an R-module H is quasi-continuous
if it satisfies the conditions (C1) and (C3): If two direct summands of H have zero
intersection, then their sum is a direct summand of H. There are a lot of researchers who dealt
with these concepts and made many studies about them, for example[3], [11] and [12].

2. Py-module, P,-module and P3-module

Definition 2.1: An R-module H is said to be P,-module if every submodule of H is essential
in a supplement in H. Actually, this definition is the same definition of supplement extending
modules which introduced by M. Tawfeek [8].

Definition 2.2: An R-module H is said to be P,-module if each submodule of H which is
isomorphic to a direct summand of H is a supplement in H.

Definition 2.3: An R-module H is said to be P;-module if two direct summands of H have
zero intersection, then their sum is a supplement in H.

Proposition 2.4: Every P,-module is P;-module.

Proof: Suppose that H;and H, are summands of P.-module H such that H; NH, = 0, we must
show that H;@H,is supplement submodule in H. Now, since H; <gH, so there exists a
submodule Hj of H such that H = H,;@®H]. Also take mto be projection map from H
ontoH7 and |y, be the restriction map of 1 on Hy, also by [[12], Proposition 2.2 we get H; &
H,= H;® mH,and m|y, isomorphic to Hj, but H is P,-module. So, w(H;)supplement in H.
Now, since (H,) < Hj implies Hf = m(H2) +Hj ,and since we have H =H,;@Hj then H=
H;®( mt(H2)+H;) = (H;® n(H,)) + Hi. Now since H; n H, = 0 and H; n H] = 0, then we
get (H;®H,) nH; =0 it flows that H= ( H;®H,)®H]. that means H,;@H,is direct
summand of H and by the fact that every direct summand is supplement then we get H; @H,is
supplement in H. Therefore, H is P;-module.

Remarks and examples 2.5:

1. If an R-module H has (C1) condition then it is P;-module, since every summand is
supplement. But the converse argument is not generally true for example H=Zs®Z> it is P;-
module but not (C1) condition.

2. If an R-module H has (C>) condition then it is P,-module.

Proof: Let S <H such that S=D where D<gq, H. Since H has (C2) then S<g H and by every
summand is supplement, we get that S is supplement submodule in H.

3. Clearly if an R-module H has (Cs) condition then it is P;-module.

4. The converse of Proposition 2.4, does not generally hold, for example, Z as Z- module is
P;-module but not P,-module. Since, 2Z=Z and Z is a direct summand of Z. But 2Z is not
supplement of Z.

5. Clearly every semisimple module is P,-module, (i = 1,2,3). but the converse argument
does not generally hold. For example, let H=Zs®Z. as Z-module is P;-module, Q as Z-
module is P,-module and, Z as Z-module is P;-module, but they are not semisimple

6. Every uniform is P,-module, (i = 1,3).
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Proof: Since every uniform module satisfies(C1) and(Cz) conditions, by [[12] Proposition 2.5.
P.20] and by (1) and (3), we get the required. But the converse argument is not generally true.
For example, H=Zs@®Z3 by (5) it is P;-module and P;-module but not uniform.

Now we will set some sufficient conditions to make the relation between the concepts
are equivalent
Proposition 2.6: Let H be a lifting R-module, then H is (P)-module iff H has (Ci)
condition.(i = 1,2,3).
Proof:=) Case one: it is clear by [7].
Case two: Let S <H such that S=D where D<g H. Since H is P,-module then S is
supplement in H, since H is lifting, we get that S<g, H.
Case three: By using same technique in case two we complete the proof in Case three
<)By Remarks and examples 2.5, (1), (2) and (3).
Corollary 2.7: Let H be a local R-module. Then H is (P;)-module iff H has (Ci)
condition.(i = 1,2,3).
Proof: Since every local is lifting module by [[8], Remark 2.2.7], then by Proposition 2.6 the
result is verified.
Proposition 2.8: Let H be a semisimple R-module, then H is (P;)-module iff H has (Ci)
condition, where (i = 1,2,3).
Proof: Since every submodule of H is direct summand and supplement then the proof hold.
The next results are partial answer about the question: when do P;-modules, (i = 1,2,3) have
properties inherited by a submodule?
Proposition 2.9: Any direct summand of a P;-module is again a P;-module.
Proof: By [7].
Proposition 2.10: Any direct summand of a P, -module is again a P,-module.
Proof: Let H be a P,-module and S <g H. Now let D and L are two isomorphic submodules
of S such that D <g S, then by [[13], Lemma 1.1.14], we get D <gq H, and since D = L and
D <g H, then by P, -module properties we get L is supplement submodule in H, hence, by
[[9], p.235], we get L is supplement submodule in S. Therefore, S is P,-module.
Proposition 2.11: Any direct summand of a P;-module is again a P;-module.
Proof: Let H be P;-module and let S <g H,and D <g Sand L <g S suchthatD nL = 0.
Now by [ [13], Lemma 1.1.14], we get D <g Hand L <g H. Since H is P;-module, thus
D @ L is supplement submodule in H. Now, with the same previous technique demonstrated
in Proposition 2.10, the proof is done.
Proposition 2.12: If H = H; @ H,, where H; and H, are submodules of H where H is Ps-
module, and g is Homomorphism from H,into H,with ker g <g Hj, then Im g <, H,.
Proof: Let g: H; — H, be homomorphism
Case one: If g is monomorphism, then Ker g=0 implies Ker g <g H;. Now to prove that Im g
is supplement inH,. For this let S={h; + g (h,):h; € H;}. We claim that H =S @ H,, if
m € H, then m = h; + h, where h; € H; and h, € H,. Therefor m = h; + g(h;) — g(h,) +
h, € S+ H,, and so H= S+ H,. Now, we show that SN H, = {0}, let m € S n H, where
m = h; + g(h,), for some h; € H;, hence h, = m — g(h;) € H; n H, = {0}, thus m = 0.
Then H=S@®H, and S <g H. Moreover, to show that Sn H; = {0}, if me S n H;, then
m = h; + g(h;) for some h; € H;. Consequently g(h;) = m— h; € H; nH, = {0}. So
g(h;) = 0, then g(0) =0. Since gis monomorphism, we have h; = 0 hence m = 0. Then
S <g H and H; <g H and by H is P;-module we get S@®H, is supplement in H. Finally, to
show that H; @ S = H;®Img, for m € Imgthen m = g(h;), where h; € H;and so, m =
h; —h; +g(h;) € S+ H;,and, hence H; @ S = H,;@®Img, and since S@H,is supplement in
H, Img is supplement in H. Therefore, Img is supplement in H,
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Case two: If g is any homomorphism, with Ker g <4 H;, to prove Img is supplement in H,.
Now, since Ker g <gq Hj, then there exists D < H;, such that H; = kerg @D , then H =
H,®H,= kerg @D @ H,, and the restriction map g|p: D = H, is monomorphism. By any
direct summand of P;-module is again P;-module Proposition 2.11, and by case one we get
Im g =lm ng Ssup HZ-

Corollary 2.13: If H= H; & H,, such that H; and H,submodule of H where H is P;-
module, and g is monomorphism from Hyinto H,, then Im g <, H,.

Proof: We deduce the proof from the above proposition.

Definition 2.14: An R-module H is called P, -module relative to S if any submodule S; < S
with S; = D where D <g Himplies S; <g,,, S.

Proposition 2.15: Let H = H; & H,, such that H; and H, are submodules in H where H is
P;-module, then H; is a P,-module relative to H, and H, is a P, -module relative to H, .
Proof: Let S <g H; and D < H, such that S = D. suppose m: H; — S be the natural
projection and g is an isomorphism from S into D. Hence igmis a homomorphism from H,
into H,, where i is inclusion from D into H, . Clearly Kker (igm) = ker (m) <g H; by
Proposition 2.12, Img(ig m) = D is supplement in H, . Therefore, H; is a P,-module relative
to H,. With the same technique we complete the proof that H, is a P,-module relative to H;.
The next corollary is a direct result of Proposition 2.15.

Corollary 2.16:

1. If H @ H is a P;-module, then H is a P,-module.

2. H=@ H;,(i = 1,2,..n) is a P;-module iff every H; is a P,-module.
Proposition 2.17: The conditions are equivalent for right R-module H.

1. H is a P;-module.

2. IfS <gH,D <gHand SN D <gH, then S+ D <g,,,H.

Proof: (1) = (2) By hypothesis SN D <gH, H=(SND) ©K, where K <H. Obviously, S =
(SND)® (SNK)and D= (S N D) & (D NK). By S<gH and (S N D) <gS, we get (SN
K) <gH and by D<gH and (D N K) <D, we get (D N K) <gH. And (SN K) N (D NK)=
(SN D) N K=0,since His P;-module, so we get (S N K) @ (D N K) supplement in H, and
let B=(S N K) @ (D N K) supplement in H. in fact B is satisfy summand condition, then we
get B<g H, and (S N D) N B =0, since H is P3-module so we get (S N D) & B supplement
inH.Now,S+D=[(SND)SSNK)]+[(SND)PSDNK)]=(SND)DHSNK)D (D
N K)=(S N D) & B supplement in H.

(2) = (1) Clear.

3. Supplement continuous and quasi supplement continuous module

Definition 3.1: An R-module H is said to be supplement continuous, if it satisfies the

condition of P;-module and P,-module.

Definition 3.2: An R-module H is said to be quasi-supplement continuous if it satisfies the

condition of P;-module and P3-module.

Remarks and examples 3.3:

1. Every supplement continuous module is quasi- supplement continuous module, by
Definition 3.1, and Proposition 2.4. But the converse argument is not generally true. For
example, Z as Z-module is P;-module and P;-module. But not P,-module, since 2Z=Z
and Z <g Z. But 2Z is not supplement of Z.

2. Every (quasi-)continuous is (quasi-)supplement continuous, by Remarks and examples
2.5, (1), (2), and (3).

3. Obviously, every uniform module H is quasi- supplement continuous, by Remarks and
examples 2.5, (6).
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4. Every quasi-injective module is (quasi-)supplement continuous. By [12]; Proposition
2.1] and by Remark and example 2.5, (1), (2) and (3). But the converse argument is not
generally true. For example, Z as Z-module by (3) is quasi-supplement continuous but it
is not quasi-injective

The Next is an illustrative diagram of the relationships between previous concepts:

Quasi-injective = continuous = quasi-supplement continuous = C;
U U U U
supplement continuous = quasi-supplement continuous = P;-module

The next lemma is a direct result of Proposition 2.11:
Lemma 3.4: Let H=@ H;,(i = 1,2,..n) if H is a quasi-supplement continuous then H; is
supplement continuous.
Proof: By Corollary 2.16, (2), we get H; is P,-module and by [7], we obtain H; is P;-module.
Therefore, H; is supplement continuous.
Proposition 3.5: Let H be lifting R-module, then H is (quasi-) continuous if and
only if H is (quasi-)supplement continuous.
Proof: =)By Remark and examples 3.3, (2).
<)By Proposition 2.6.

A module H is said to be automorphism-invariant if f(H) < H for any automorphism f of the
injective hull of H, [14] . A module H is referred to be pseudo-injective if for any submodule
S in H, every monomorphism S — H can be extended to an endomorphism of the module H,
[15] . It was shown that a module H is automorphism invariant iff it is pseudo-injective. In
[14]. Also, every pseudo-injective module as well as every automorphism invariant module is
a C,[16]. If R is a prime ring, then all nonsingular automorphism-invariant right R-modules
are quasi-injective. [[17]; Theorem 5]. Recall that a ring R is prime if aRb = 0 implies that a =
Oorb=0.

Proposition 3.6: Let H be (local-)lifting pseudo-injective then the next concepts are
equivalent:

H is continuous;

H is quasi- continuous;

H is extending;

H is supplement -continuous;

H is quasi- supplement continuous;

H is supplement extending.

ok wdE

Proof: (1) =) (2) =)(3) Clearly.

(3) =)(4) Since H is extending then H is P;-module and by [15], we get that H satisfy
(Cy) condition, also by Corollaries 2.6 and 2.7, H is P,-module, which implies H is
supplement-continuous

(4) =) (5) =)(6) Clearly.

(6) =) (1) Since H is supplement extending module then by [7], we get that H satisfies
(Cy)condition, also by [15], then H is satisfied (C,)condition, therefore, H is continuous.

Corollary 3.7: Let H be (local-)lifting automorphism invariant module then the next concepts
are equivalent:

1. His continuous;

2. H is quasi- continuous;

3. His extending;

4. H is supplement -continuous;

5. H is quasi- supplement continuous;
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6. H is supplement extending.
Proof: By [16], we deduce the proof from the above proposition.

Proposition 3.8: If H is an R-module such that H @ H is P;-module., then the next concepts
are equivalents;

1. H is supplement continuous;

2. H is quasi-supplement continuous;

3. His supplement extending.

Proof: (1)=) (2)=) (3) Clearly,

(3) =) (1) Snice H is supplement extending, then H is P;-module. Now, since H @H is P;-
module, then by Corollary 2.16, (1), we get that H is a P,-module. Therefore, H is supplement
continuous.

Proposition 3.9: Let H be (local) lifting module, such that H @ H is P;-module then the next
concepts are equivalent;

1. H is continuous;

2. H is quasi- continuous;

3. His extending;

4. H is supplement -continuous;

5. H is quasi- supplement continuous;

6. H is supplement extending.

Proof: (1) =) (2) =)(3) Clearly.

(3) =)(4) Since H is extending then H is P;-module and by Corollary 2.16, (1), we get that
H is a P,-module, which implies H is supplement-continuous

(4) =) (5) =)(6) clearly

(6) =)(1) Since H is supplement extending module then by [7], we get H is satisfied
(Cy)condition, and by Corollary 2.16, (1), we get that H is P,-module, and by Corollaries 2.6,
and 2.7, then H is continuous.

Lemma 3.10: Let H be a supplement simple R-module. If H is a supplement extending, then
it is uniform, [8].

Proposition 3.11: If a supplement simple module H is a P;-module, then H is quasi-
supplement continuous.

Proof: By Lemma 3.10 and by Remark and example 3.3, (3), H is quasi-supplement
continuous.
From Propositions 2.9, 2.10, and 2.11, we answer in the next proposition the about question:
when does a (quasi)-supplement continuous module have properties inherited by a
submodule?

Proposition 3.12: If S direct summand of H (quasi)-supplement continuous module then S is
(quasi)-supplement continuous modules.

4. Conclusions

Through this paper, we reached the next conclusions: any P,-module is P;-module but the
converse argument does not generally hold. Additionally, we prove that each (quasi-
)continuous and quasi-injective modules are (quasi)-supplement continuous. Further, we show
that P; —modules, P,-modules P;-modules, and (quasi)-supplement continuous module are
inherited by direct summand. Finally, we introduced some conditions that make the above
concepts equivalent.
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