Iraqi Journal of Science, 2024, Vol. 65, No. 8, pp: 4460-4467 DOI: 10.24996/ijs.2024.65.8.27





ISSN: 0067-2904

## The Trivial Extension of SAG-Algebra

#### **Ruaa Yousuf Jawad**

Technical Instructors Training Institute, Middle Technical University, Baghdad, Iraq

Received: 1/3/2023 Accepted: 22/7/2023 Published: 30/8/2024

#### Abstract

The string almost gentle algebras (SAG-algebras) are studied in this paper. Generalizing the properties of string almost gentle algebras has also given. Let  $A = \frac{KQ}{I}$  be the string almost gentle algebras, with quiver Q and admissible ideal I of algebra. We show that the radical of string almost gentle algebras A can be written as a direct sum of uniserial modules. After that the quiver  $Q^*$  is constructed from Q and an extension of the quiver Q is showed. Also, the quiver  $Q^*$  which is a quiver of trivial extension of string almost gentle algebras A has been studied. Consequently, the relations  $I^*$  of algebra  $A^* = \frac{KQ^*}{I^*}$  have been described. As well as, we will show that the algebra  $A^* = \frac{KQ^*}{I^*}$  is an extension to string almost gentle algebras. Furthermore, we describe the trivial extension of string almost gentle algebras A, we prove and that the trivial extension of A is isomorphic to the algebra  $A^*$ .

**Keywords:** Admissible ideal, Almost gentle algebra, Maximal path, String almost gentle algebra, Trivial extension.

## الامتداد البسيط للجبر من نوع SAG

## رۇى يوسف جواد

معهد اعداد المدربين التقنين, الجامعه التقنيه الوسطى, بغداد, العراق

#### الخلاصة:

في هذا البحث تمت دراسة الجبر من نوع SAG. حيث تم إعطاء تعميم لخواص الجبر. ليكن الجبر A في هذا البحث تمت دراسة الجبر من نوع SAG. حيث تم إعطاء تعميم لخواص الجبر. ليكن الجبر A مع جعبة Q والمثالي I المحتوى في KQ. وقد بيناً ن أنه يمكن كتابة جذر السلسلة الجبرية A محموع مباشر للوحدات غير المتسلسلة. بعد ذلك ، تم إنشاء الجعبة Q من Q وقد برهننا انه امتداد للجعبة Q. تبين أن الجعبة Q مي مع جعبة المتسلسلة. بعد ذلك ، تم إنشاء الجعبة Q من Q وقد برهننا انه امتداد للجعبة A محموع مباشر للوحدات غير المتسلسلة. بعد ذلك ، تم إنشاء الجعبة Q من Q وقد برهننا انه امتداد للجعبة Q. تبين أن الجعبة Q مي مع جعبة للامتداد البسيط للجبر A . ان العلاقات الجديدة I في الجبر المبني Q. تبين أن الجعبة Q مي معاف المتداد البسيط للجبر A . ان العلاقات الجديدة المنا انه امتداد للجعبة Q من Q وقد برهنا انه امتداد المبني Q متموع مباشر للوحدات غير المتسلسلة. بعد ذلك ، تم إنشاء الجعبة Q من Q وقد برهنا انه امتداد الجعبة Q من أن الجعبة Q من المعنا انه امتداد السيط للجبر A . ان العلاقات الجديدة I المنا المنا المنا المعني Q من أن الجعبة عنه وصفها في هذه الورقة البحثية. وقد برهننا وعرضنا ان الجبر I المنا المتداد وبينا ان المعنا المعنو وي منا ان المعنو معاه في هذه الورقة المعبد I من واكثر من ذلك قمنا بوصف هذا الامتداد وبينا ان المتداد وبينا ان المتداد وبينا ان المتداد وبينا ان المتداد السيط للجبر A هو مشابه للجبر المبني A.

\*Email: ruaa.yousuf.jawad@mtu.edu.iq

## **1. Introduction**

The classes of string almost gentle algebras named (SAG-algebra) are studied in this paper. An algebra  $A = \frac{KQ}{I}$  is string almost algebra if it is special multiseiral, *I* is given by paths of length 2 and for all  $v \in Q$ , *v* is the source of at most two arrows, and *v* is the target of at most two arrows. The almost gentle algebras are generalized to classes of SAG-algebras.

The SAG-algebra introduced by Franco, Giraldo, and Rizzo in [1]. SAG-algebra arises from the intersection of two classes which are string algebra and almost gentle algebra. Green and Schroll defined the almost gentle algebra in [2]. The almost gentle algebras are monomial and special multiserial algebras. Also, they show that the trivial extension of an almost gentle algebra is a symmetric special multiserial algebra. The string algebra is special biserial algebra and I is generated by zero relations. The string algebras are generalized to gentle algebras [3] and moreover are generalized to SAG-algebra.

The global dimension of almost gentle algebra could be finite or infinite. While the string almost gentle algebras have an infinite global dimension which is proved in [1]. Algebra is backbone for all science like [4], [5], and [6].

We begin this paper by recalling the definition of string almost gentle algebras (SAGalgebras) and giving properties for SAG-algebras. Also, the rad(A) can be written as a direct sum of uniserial modules which is proved in section two.

In section three, the new quiver  $Q^*$  is built from the quiver Q and also the relations  $I^*$  are defined. Where we show that the quiver  $Q^*$  is a quiver of trivial extension of SAG-algebra A. This construction is applied to example, where we describe in this example the new quiver  $Q^*$ . In addition, the dimension of  $A^* = \frac{KQ^*}{I^*}$  has been calculated and given through section three.

In section four, the trivial extension of SAG-algebras is given, and we proved the main theorem

## Theorem:

Let  $A = \frac{KQ}{I}$  be a SAG-algebra and T(A) be the trivial extension of A arising from D(A). Then  $A^* \cong T(A).$ 

We fix some notation through this paper. Let  $A = \frac{KQ}{I}$  be a finite dimensional algebra over an algebraically closed field. Our quiver Q is a finite and I is an admissible ideal, and we call  $Q_0$  the set of vertices and  $Q_1$  the set of arrows. All modules are finitely generated right module. We denoted the trivial path by  $e_{v}$  which corresponds to a vertex v. We set P to be the set of all paths in A that are not in I with lengths greater than and equal to 1.

# 2. String Almost Gentle Algebras

The string almost gentle algebra (SAG-algebra) is defined in this section. The class of almost gentle algebra is a special case to class of almost gentle algebra. Franco, Giraldo, and Rizzo established a new class named String almost gentle algebra, this class come from the intersection of two classes: string algebra and almost gentle algebra [1]. We recall a definition of gentle algebra from Scroll [7].

Jawad

**Definition 2.1**: The algebra A is gentle if it is Morita equivalent to an algebra of the form KQ where

- (S0) The relations I are generated by paths of length two.
- (S1) For every  $\alpha \in Q_1$ , there is at most one element (arrow)  $\beta \in Q_1$ , such that  $\alpha\beta \notin I$  and at most one element (arrow)  $\gamma \in Q_1$ , such that  $\gamma\alpha \notin I$ .
- (S2) For every  $\alpha \in Q_1$  there is at most one element (arrow)  $\beta \in Q_1$ , such that  $\alpha\beta \in I$ , and at most one element (arrow)  $\gamma \in Q_1$ , such that  $\gamma\alpha \in I$ .
- (S3) For every  $v \in Q_0$ , the vertex v is the source of at most two arrows, and is the target of at most two arrows.

The algebra  $A = \frac{KQ}{I}$  is a special multiserial algebra [7] if it is Morita equivalent and satisfying the condition (S1).

**Definition 2.2[2]:** Algebra is almost gentle if it is Morita equivalent and satisfying (S0) and (S1).

The definition of string almost gentle algebra is used from Franco, Giraldo, and Rizzo [1] or simply we call it SAG-algebra.

**Definition 2.3:** We say that the algebra  $A = \frac{KQ}{I}$  is string almost gentle if the following conditions hold:

1. For all  $v \in Q_0$ , v is the source of at most two arrows. And for all  $v \in Q_0$ , v is the target of at most two arrows.

2. Given an  $\alpha \in Q_1$ , there is at most one element (arrow)  $\beta \in Q_1$ , where  $s(\beta) = t(\alpha)$  and  $\alpha\beta \notin I$ .

3. Given an  $\alpha \in Q_1$ , there is at most one element (arrow)  $\gamma \in Q_1$ , where  $s(\alpha) = t(\gamma)$  and  $\gamma \alpha \notin I$ .

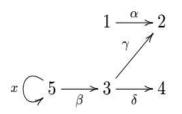
4. The admissible ideal *I* is generated by paths of length 2.

It is clear that the almost gentle algebra is generalized for two classes which are gentle algebra and SAG-algebra.

Let *A* be a SAG-algebra, A path  $m = v_1 \alpha_1 \cdots v_n \alpha_n v_{n+1}$  or, simply  $m = \alpha_1 \cdots \alpha_n$  in P, is maximum if for all *a* and *b* in  $Q_1$ , we have *am* and *mb* in *I*. We denoted to  $\mathcal{M}$  to be the set of maximum paths. It is clear that  $\mathcal{M} \subseteq P$ .

The next example shows that the set  $\mathcal{M}$ .

Example 2.4: Let A be a SAG-algebra over K which given by a quiver



and relations  $I = \langle \beta \gamma, \beta \delta, x^2, x \beta \rangle$ .

We have the set of vertices  $Q_0 = \{v_1, v_2, ..., v_5\}$  and the set *P* containing the following paths

- paths of length 1 are  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$ , x.
- paths of length 2 are  $x^2$ ,  $x\beta$ ,  $\beta\gamma$ ,  $\beta\delta$ .
- paths of length 3 are  $x^3$ ,  $x^2\beta$ ,  $x\beta\delta$ ,  $x\beta\gamma$ .
- paths of length 4 are  $x^4$ ,  $x^3\beta$ ,  $x^2\beta\delta$ ,  $x^2\beta\gamma$ .

• continuing in the same way we get paths of length *n* which are  $x^n, x^{n-1}\beta, x^{n-2}\beta\delta, x^{n-2}\beta\gamma$ .

So  $P = \{\alpha, \beta, \gamma, \delta, x, x^2, x\beta, \beta\gamma, \beta\delta, x^3, x^2\beta, x\beta\delta, x\beta\gamma, ..., x^n, x^{n-1}\beta, x^{n-2}\beta\delta, x^{n-2}\beta\gamma, ...\}$ . It is clear that the maximum path set  $\mathcal{M}$  is  $\{x, \beta, \gamma, \delta\}$ .

Defining the function  $\phi$  from KQ to A via  $\alpha \mapsto \overline{\alpha}$ , for all  $\alpha$  in  $Q_1$ . So  $\phi$  is a canonical surjection. For all  $\alpha \in Q_1$ , we let  $\overline{\alpha}A$  to be A-module which is generated by  $\overline{\alpha}$ . In case that A is SAG- algebra, the A-modules,  $\overline{\alpha}A$  are uniserial [8] and [9].

The following lemma is a generalization of Lemma 12, [1].

Lemma 2.5: Let A be a SAG-algebra, then

- 1. There are no repeated arrows in maximal path m, for all  $m \in \mathcal{M}$ .
- 2. *v* lies in two maximal paths  $m_1$  and  $m_2$  if and only if  $m_1 \cap m_2 = \{0\}$ .
- 3. v is in a unique maximal path  $m \in \mathcal{M}$  if and only if s(m) = v.
- 4. v is in a unique maximal path  $m \in \mathcal{M}$  if and only if t(m) = v.

**Lemma 2.6:** Let A be a SAG-algebra, then the maximal paths are elements in the basis of  $soc_{A^e}A$ 

**Proof:** Let  $m = v_i m v_j$  be a maximal path. We look at  $soc_{A^e}A$  as vector space over K, then we have

$$soc_{A^e}A = \bigoplus_{v_i, v_i \in Q_0} vi(soc_{A^e}A)v_i.$$

We want to show that each maximal path m belongs to the basis of  $soc_{A^e}A$ , in particular,  $v_i mv_j$  from a basis  $v_i soc_{A^e}Av_j$ . Since A is a SAG-algebra, then there is at most a non-zero path p and q such that  $s(p) = s(q) = v_i$  and  $t(p) = t(q) = v_j$ . Set  $p = \alpha_1 \cdots \alpha_m$  and  $q = \beta_1 \cdots \beta_n$ . So, we have four different cases. First, by assuming that the only arrows start from  $v_i$  are  $\alpha_1$  and  $\beta_1$ , and the only arrows end at  $v_j$  are  $\alpha_m$ , and  $\beta_m$ . Hence, p and q are in  $\mathcal{M}$ , particularly  $\mathcal{M} = \{p, q\}$ . Thus,  $\{p, q\}$  is a basis of  $v_i soc_{A^e} Av_j$ .

Second, by letting  $\alpha \in Q_1$ , such that  $t(\alpha) = s(p) = s(q)$ . So, if  $\alpha p$  lies in *I*, then *p* maximum (using definition of maximum). If not, we have either  $\alpha p \notin I$  or,  $\alpha q \notin I$ . It is enough to discuss one case, assume  $\alpha p \notin I$ , then  $p \notin \mathcal{M}$  and hence  $q \in \mathcal{M}$ . Therefore,  $v_i soc_{A^e} A v_i = \{q\}$ .

Third, let  $\alpha, \beta \in Q_1$  such that  $t(\alpha) = t(\beta) = s(p) = s(q)$ . Then we have either (i)  $\alpha \alpha_1 \in I$  and  $\beta \beta_1 \in I$  or (ii)  $\alpha \beta_1 \in I$  and  $\beta \alpha_1 \in I$ . Suppose (i) holds, then  $p, q \notin \mathcal{M}$  and  $\{0\}$  is a basis of  $v_i soc_{A^e} A v_j$ .

Finally, assume that  $\alpha, \beta, \gamma \in Q_1$  such that  $t(\alpha) = t(\beta) = s(p) = s(q)$  and  $s(\gamma) = t(p) = t(q)$ . Without loss of generality, we suppose that  $\beta_n \gamma \in I$  and so  $q \in \mathcal{M}$ . However,  $p \notin \mathcal{M}$ . Then  $v_i soc_{A^e} A v_j = \{q\}$ . By a similar argument, we get other cases.

**Remark 2.7**: From the definition of SAG-algebra we can see that SAG-algebra is a special multiserial algebra.

We denoted the length of path p by  $\ell(p)$ . Since A is a SAG- algebra and so monomial then the K basis of A is the set  $\{p + I | p \in Q \text{ and } p \notin I\}$  where p is a path in Q and p is a subpath of  $m, m \in \mathcal{M}$ .

**Proposition 2.8:** Let A be a SAG-algebra. Let m be a maximum path such that a is a beginning arrow in m. Then  $rad(A) = \bigoplus_{m \in \mathcal{M}} mA$ , where mA is the uniserial module generated by the a.

**Proof:** Let  $m \in \mathcal{M}$  and let p be a path in Q and p is a subpath of m. Then we have two cases: if  $\ell(p) = 0$ , then  $p = e_v$  which is a trivial path for some  $v \in Q$  and so  $e_v \in Soc_k(A)$ . If  $\ell(p) \ge 1$ , then we set a path  $p = \alpha_1 \cdots \alpha_n \in Q$ . Hence p + I in  $\overline{\alpha_1} A$ . As rad(A) is generated by the image of arrows, we get  $\sum_{\alpha \in Q} \overline{\alpha_1} A = rad(A)$ . Since A is a monomial algebra, then  $rad(A) = \bigoplus_{\alpha \in Q_1} \overline{\alpha_1} A$ . Since A is a SAG-algebra and each maximum path has no repeated arrow or common arrow with a different maximum path.

So p + I in mA, for all  $m \in \mathcal{M}$ . Thus  $rad(A) = \bigoplus_{m \in \mathcal{M}} mA$ .

Consequently, we get the following corollary.

**Corollary 2.9**: Let A be a SAG-algebra. Then  $\dim_K A = |Q_0| + \sum_{m \in \mathcal{M}} (\ell(mA)\ell(mA) + 1)/2$ .

**Proof**: We have  $|Q_0|$  vertices and so there are  $|Q_0|$  trivial paths. Using the above proposition we get  $\dim(rad(A)) = \bigoplus_{m \in \mathcal{M}} \dim(mA)$ . Let  $m \in \mathcal{M}$ , then mA <u>unisearal</u> module generated by the first arrow and moreover has length  $\ell(mA)$ . So,  $\dim(rad(A)) = \sum_{m \in \mathcal{M}} (\ell(mA)\ell(mA) + 1)/2$ .

#### 3. The extension of quiver *Q* and relations *I*

In this section the quiver  $Q^*$  is created from the quiver Q, and also the relations  $I^*$  are defined. We let  $=\frac{KQ}{I}$  be a SAG-algebra which is given by quiver Q and relations I.

We start defining a quiver Q such that:

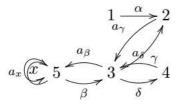
- 1.  $Q^* = Q$ ,
- 2.  $Q_1^* = Q_1 \cup \{\alpha_m | m \in \mathcal{M} \text{ and } s(\alpha_m) = t(m), t(\alpha_m) = s(m)\}.$

**Proposition 3.1**: Let A be a SAG-algebra and let  $Q^*$  built as above. Then  $Q^*$  is a quiver of T(A).

**Proof**: By using [7] and Lemma 2.6, we have the set of arrows which obtain from Q in A and the set  $\{\alpha_m | m \in \mathcal{M}\}$ , where  $s(\alpha_m) = t(m), t(\alpha_m) = s(m)$ . Thus, the quiver of the trivial extension of A is  $Q^*$ .

Recall Example 2.4, to show that our construction of quiver  $Q^*$ . So we have

 $Q_0^* = \{v_1, v_2, v_3, v_4, v_5\}$  and  $Q_1^* = \{\alpha, \beta, \gamma, \delta, x, a_\beta, a_\gamma, a_\delta, a_x\}$  and so we have the following quiver:



Following the approach of Green and Schroll [2], we have for all  $m \in \mathcal{M}$ , a cycle element  $c_m = ma_m$  in  $\mathcal{Q}$ . Defining a set  $\mathcal{S}_m$  to be a set  $\{c^* | c^* \text{ a cyclic permution of } c, for some <math>m \in \mathcal{M}\}$ . The function  $\mu: \mathcal{S}_m \to \mathbb{Z}$  is defined as follow  $\mu(c^*) = 1$ , for all  $c^* \in \mathcal{S}_m$ .

**Definition 3.2** [10]: Let  $\mathcal{T}$  be a set of a cycle in  $\mathcal{Q}$  such that there is no common arrows in cycle (simple), and let  $\mathcal{V}: \mathcal{T} \longrightarrow \mathbb{Z}_{\geq 0}$  We call  $(\mathcal{T}, \mathcal{V})$  defining pair in if satisfying:

- 1. If there is a loop  $c \in \mathcal{T}$  at  $v \in \mathcal{Q}$ , then  $\mathcal{V}(c) > 1$ .
- 2. Whenever a simple cycle *c* contain in  $\mathcal{T}$ , then  $c^*$  (cycle permutation) of *c* contain in  $\mathcal{T}$ .

3. Let  $c \in \mathcal{T}$  and let  $c^* \in \mathcal{T}$  (cycle permutation) of *c*. Then  $\mathcal{V}(c) = \mathcal{V}(c^*)$ .

4. If an arrow appears in two simple cycles which are in  $\mathcal{T}$ . Then the cycle of each one is a cycle permutation of each other.

Then  $(\mathcal{T}, \mathcal{V})$  is defining pair.

Hence  $(S_m, \mu)$  gives the algebra over K with  $Q^*$  and ideal  $I^*$  generated by all relations of the following form:

- 1.  $c_1 c_2$ , where  $c_1, c_2 \in S_m$  and cycles at vertex  $v \in Q_0$ .
- 2. *ca*, where  $c = aa_1 \cdots a_n$  and  $a, a_i \in Q_0$ , where  $i = 1, \dots, n$ .
- 3. *ab*, where *a*, *b* are arrows in *Q* and *ab* is not subpath of *c*, for all  $c \in S_m$ . We get the following theorem using results in [11].

**Theorem 3.3**: Let A be a SAG-algebra and let  $A^*$  defined by  $(\mathcal{S}_m, \mu)$ . Then  $A^*$  is a symmetric special multiserial algebra.

The dimension of  $A^*$  is characterized in the next result.

**Proposition 3.4**: Let *A* be a SAG-algebra and let  $A^*$  is constructed as mention above. Then  $dim_k(A^*) = 2|Q_0| + \ell(m) \cdot \ell(m) + 1$ .

**Proof**: The algebra  $A^*$  has *K* basis which is all paths of length more than and equal to 1 together with the trivial path  $e_v$ . From the construction of quiver  $Q^*$ , we have  $|Q_0|$  and so there are  $|Q_0|$  trivial paths. Since  $A^*$  is symmetric, then  $\dim(soc(A^*)) = |Q_0|$ . Let  $m \in \mathcal{M}$ , then  $c_m = ma_m$  in  $\mathcal{S}_m$  with length  $\ell(m) + 1$ . Since A is SAG-algebra and the maximum path m is unique for each arrow, then we have the starting arrow a in m and moreover a in  $c_m$ . It follows  $aA^*$  is a uniserial module of length  $\ell(m) + 1$ . So  $\dim(\frac{aA^*}{aA^*} \cap soc(A^*)) = \ell(m)\ell(m) + 1$ . Therefore,  $\dim rad(A^*)/soc(A^*) = \sum_{m \in \mathcal{M}} \ell(m)\ell(m) + 1$  and so  $\dim_k(A^*) = 2|Q_0| + \sum_{m \in \mathcal{M}} \ell(m)\ell(m) + 1$ .

### 4. Trivial extension of SAG-algebra

We define the trivial extension of a finite-dimension algebra A as in literature, where we let  $D(A) = Hom_K(A, K)$  be the dual of A. The trivial extension of A is given by  $T(A) = A \rtimes D(A)$ , where T(A) is symmetric algebra and viewed as vector space  $T(A) = A \oplus D(A)$  with multiplication which is given by  $(a_1, f_1)(a_2, f_2) = (a_1a_2, a_1f_2 + f_1a_2)$  for all  $a_1, a_2 \in A$  and  $f_1, f_2 \in D(A)$ .

The basis of D(A) is  $P^{\vee} = \{p^{\vee} | p \in P\}$ . We remind the reader of an element  $p \in P$  in particular in A, then  $p^{\vee} \in D(A)$  [2].

**Proposition 4.1** [2]: Let *A* be finite dimension algebra. Then the set  $\{(\alpha, 0) | \alpha \in Q_1 \cup \{(0, m^{\vee}) | m \in \mathcal{M}\}$  generate T(A).

The next result show that  $A^* \cong T(A)$ .

**Theorem 4.2:** Let A = KQ/I be a SAG-algebra and T(A) be the trivial extension of A arise from D(A). Then  $A^* \cong T(A)$ .

**Proof:** Starting by defining an algebra homomorphism  $\phi: KQ^* \to T(A)$  via

1. Let  $v \in Q_0^*$ , then  $\phi(v) = (v, 0)$ .

2. Let  $\alpha \in Q_1^*$ . then

 $\phi(\alpha) = \begin{cases} (\alpha, 0) & \alpha \in Q_1 \\ (0, m^{\vee}) & \alpha \in \{\alpha_m | m \in \mathcal{M} \text{ and } s(\alpha_m) = t(m), t(\alpha_m) = s(m) \}. \end{cases}$ 

It is clear that from the Proposition 2, the ring homomorphism is a surjection. We want to show that  $I^* \subseteq Ker \phi$ . We start with the first type. (i) Let  $c_1, c_2$  in  $S_m$  at vertex  $v \in Q_0^*$ . Then  $\phi(c_1 - c_2) = \phi(c_1) - \phi(c_2)$ . Let  $m \in \mathcal{M}$  and m = pq, where  $p, q \in P$ . Since  $c_1, c_2$  in  $S_m$ , then we write  $c_1 = p\alpha_m q$  and

 $c_2 = p' \alpha_{m'} q'$ . From [2, Lemma 4.1], we have  $\phi(c_1) = \phi(p \alpha_m q) = (q, 0)(0, m^{\vee})(p, 0) = (0, pm^{\vee} p) = (0, r^{\vee})$ , this gives m = prq. By hypothesis m = pq, so  $r = e_v$ . Hence  $\phi(c_1) = (0, r^{\wedge} \vee) = (0, e_v)$ .<sup>3</sup>

Similarly we get  $\phi(c_2) = (0, e_v)$  and so  $\phi(c_1 - c_2) = 0$ .

(ii) Let c in  $S_m$  at v and write  $c = q\alpha_m p$  where  $\alpha$  is a first arrow in c. So  $\phi(c\alpha) = \phi(q\alpha_m p)\phi(\alpha) = (p,0)(0,m^{\vee})(q,0)\phi(\alpha) = (0,pm^{\vee} q)\phi(\alpha) = (0,r^{\vee})\phi(\alpha) =$ 

 $(0, e_v)\phi(\alpha)$ . In this case either  $\alpha \in Q_1$  or  $\alpha = \alpha_m$ . If  $\alpha \in Q_1$ , then  $(0, e_v)\phi(\alpha) = (0, e_v)(\alpha, 0) = (0, \alpha e_v)$ . Here two cases are appeared: if  $(0, \alpha e_v) = 0$ , then  $\phi(c\alpha) = 0$ . Suppose that  $(0, \alpha e_v) \neq 0$ , then  $(0, \alpha e_v) = (0, r^{\vee})$  and so  $e_v = r\alpha$  this is a contradiction with assumption  $\alpha \in Q_1$ . If  $\alpha = \alpha_m$ , then  $\phi(c\alpha) = (0, e_v)(0, m^{\vee}) = 0$  by using [Lemma 4.1, 2].

(iii) Let  $\alpha$  and  $\forall beta \text{ in } Q_1$ , since  $\alpha\beta \in I^*$ , then  $\alpha\beta = 0$  and hence  $\phi(\alpha\beta) = 0$ .

Let  $\alpha \in Q_1$  and  $\beta = \alpha_m$  for some m in  $\mathcal{M}$ . Then  $\phi(\alpha \alpha_m) = (\alpha, 0)(0, m^{\vee}) = (0, \alpha m^{\vee})$ . If  $(0, \alpha m^{\vee}) \neq 0$ , we have  $(0, \alpha m^{\vee})(o, r^{\vee})$  and hence  $m = r\alpha$  this is a contradiction with hypothesis. Let  $\alpha = \alpha_m$  and  $\beta = \alpha_{m'}$ , for some m, m' in  $\mathcal{M}$ . By [Lemma 4.1(4), 2] we have  $\phi(\alpha_m \alpha_{m'}) = (0, m^{\vee})(0, m'^{\vee}) = 0$ . So  $Ker \phi = I^*$ . Using the First isomorphism theorem we get  $\frac{KQ^*}{I} \cong T(A)$ .

**Corollary 4.3**: Let  $A = \frac{KQ}{I}$  be a SAG-algebra and T(A) be the trivial extension of A arise from D(A). Then  $dim_K(A^*) = dim_K(T(A))$ .

#### 5. Conclusions

In this article the string almost algebras A = KQ/I are investigated. Many properties of SAG-algebra are given. The quiver  $Q^*$  was constructed from the quiver Q and the admissible ideal was defined. The algebra  $A^*$  which was given by quiver  $Q^*$  and relations  $I^*$  was defined. We proved that the trivial extension of algebra A was isomorphic to the algebra  $A^*$ .

#### References

- [1] A.Franco, H. Giraldo and P. Rizzo, "String and Band Complexes Over string Almost gentle Algebras," *arXiv:1910.04012.*, 2021.
- [2] E. L. Green and S. Schroll, "Almost gentle algebras and their trivial extensions". Proc. Edinb. Math. Soc.(2) 62, vol. 2, pp. 489-504, 2019.
- [3] Geib, C. Reiten., "Gentle Algebras are Gorenstein," *Representions of algebras and related topics, 129133, Fields Inst. Commun., 45, Amer. Math. Soc., Providence, RI, 2005.*
- [4] A. Al-Aadhami, "Full Transformation Semigroup of A Free Left S-Act on N-Generators," *Iraqi Journal of Science*, vol. 5, no. 63, p. 2194–2202, 2022. <u>https://doi.org/10.24996/ijs.2022.63.5.32</u>
- [5] Shaheen, R. C. and Taher, H. R., "Triple Γ-Homomorphisms and Bi Γ -Derivations on Jordan Γ-algebra," *Iraqi Journal of Science*, vol. 6, no. 64, p. 2973–2981, 2023. <u>https://doi.org/10.24996/ijs.2023.64.6.25</u>
- [6] Ahmed, I. S., Ebrahim, H. H., and Al-Fayadh, "γ– algebra of Sets and Some of its Properties," *Iraqi Journal of Science*, vol. 11, no. 63, p. 4918–4927, 2022. <u>https://doi.org/10.24996/ijs.2022.63.11.28</u>
- [7] S. Schroll, "Trivial extension of gentle Algebra and Brauer Graph Algebras," *J. of Algebra*, vol. 473, pp. 397-405, 2017.
- [8] E. L. Green, S. Schroll, "Multiserial algebras and Special multiserial and their representations," *Adv. Math.*, vol. 302, pp. 1111-1136, 2016.
- [9] E. L. Green, S. Schroll, "Special multiserial algebras are quotients of symmetric special multiserial algebras," *J. of Algebra*, vol. 444, pp. 183-200, 2015.

- [10] E. A. Fernández, M. I. Platzeck, "Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner," *J. of Algebra*, vol. 249, no. 2, pp. 326-344, 2002.
- [11] E. L. Green, S. Schroll, "Multiserial algebras and Special multiserial and their representations," *Adv. Math.*, vol. 302, pp. 1111-1136, 2016.