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Abstract  

    The string almost gentle algebras (SAG-algebras) are studied in this paper. 

Generalizing the properties of string almost gentle algebras has also given. Let 𝐴 =
𝐾 𝒬

𝐼
  be  the string almost gentle algebras, with quiver 𝒬 and admissible ideal 𝐼 of 

algebra.  We show that the radical of string almost gentle algebras 𝐴 can be written 

as a direct sum of uniserial modules. After that the quiver 𝒬∗ is constructed from 𝒬 

and an extension of the quiver 𝒬 is showed.  Also, the quiver 𝒬∗  which is a quiver 

of trivial extension of string almost gentle algebras 𝐴 has been studied.  

Consequently, the relations 𝐼∗ of algebra 𝐴∗ =
𝐾𝒬∗

𝐼∗  have been described. As well as, 

we will show that the algebra  𝐴∗ =
𝐾𝒬∗

𝐼∗   is an extension to string almost gentle 

algebras. Furthermore, we describe the trivial extension of string almost gentle 

algebras 𝐴, we prove and that the trivial extension of 𝐴 is isomorphic to the algebra 

𝐴∗. 

. 

Keywords: Admissible ideal, Almost gentle algebra, Maximal path, String almost 

gentle algebra, Trivial extension.  
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1. Introduction 

    The classes of string almost gentle algebras named (SAG-algebra) are studied in this paper.   

An algebra 𝐴 =
𝐾𝒬

𝐼
 is string almost algebra if it is special multiseiral, 𝐼 is given by paths of 

length 2 and for all  𝑣 ∈ 𝒬 , 𝑣 is the source of at most two arrows, and 𝑣 is the target of at 

most two arrows. The almost gentle algebras are generalized to classes of SAG-algebras.  

 

      The SAG-algebra introduced by Franco, Giraldo, and Rizzo in [1]. SAG-algebra arises 

from the intersection of two classes which are string algebra and almost gentle algebra. Green 

and Schroll defined the almost gentle algebra in [2]. The almost gentle algebras are monomial 

and special multiserial algebras. Also, they show that the trivial extension of an almost gentle 

algebra is a symmetric special multiserial algebra. The string algebra is special biserial 

algebra and 𝐼 is generated by zero relations. The string algebras are generalized to gentle 

algebras [3] and moreover are generalized to SAG-algebra. 

 

     The global dimension of almost gentle algebra could be finite or infinite. While the string 

almost gentle algebras have an infinite global dimension which is proved in [1].  Algebra is 

backbone for all science like  [4], [5], and [6]. 

 

      We begin this paper by recalling the definition of string almost gentle algebras (SAG-

algebras) and giving properties for SAG-algebras. Also, the 𝑟𝑎𝑑(𝐴) can be written as a direct 

sum of uniserial modules which is proved in section two. 

 

     In section three, the new quiver 𝒬∗ is built from the quiver 𝒬 and also the relations 𝐼∗ are 

defined. Where we show that the quiver 𝒬∗ is a quiver of trivial extension of SAG-algebra 𝐴. 
This construction is applied to example, where we describe in this example the new quiver 

𝒬∗. In addition, the dimension of  𝐴∗ =
𝐾𝒬∗

𝐼∗  has been calculated and given through section 

three. 

    In section four, the trivial extension of SAG-algebras is given, and we proved the main 

theorem  

 

Theorem: 

Let 𝐴 =
𝐾𝒬

𝐼
 be a SAG-algebra and 𝑇(𝐴) be the trivial extension of 𝐴 arising from 𝐷(𝐴). Then 

𝐴∗ ≅ 𝑇(𝐴). 
 

We fix some notation through this paper. Let 𝐴 =
𝐾𝒬

𝐼
 be a finite dimensional algebra over an 

algebraically closed field. Our quiver 𝒬 is a finite and 𝐼 is an admissible ideal, and we call 

𝒬0 the set of vertices and  𝒬1 the set of arrows.  All modules are finitely generated right 

module. We denoted the trivial path by 𝑒𝑣 which corresponds to a vertex 𝑣. We set 𝑃 to be the 

set of all paths in 𝐴 that are not in  𝐼 with lengths greater than and equal to 1. 

     

2. String Almost Gentle Algebras 

The string almost gentle algebra (SAG-algebra) is defined in this section. The class of almost 

gentle algebra is a special case to class of almost gentle algebra. Franco, Giraldo, and Rizzo 

established a new class named String almost gentle algebra, this class come from the 

intersection of two classes: string algebra and almost gentle algebra [1].  We recall a definition 

of gentle algebra from Scroll [7]. 
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Definition 2.1: The algebra 𝐴 is gentle if it is Morita equivalent to an algebra of the form 𝐾𝒬 

where 

     (S0) The relations 𝐼 are generated by paths of length two. 

     (S1)  For every 𝛼 ∈ 𝒬1, there is at most one element (arrow) 𝛽 ∈ 𝒬1, such that 𝛼𝛽 ∉ 𝐼 and   

            at most one element (arrow) 𝛾 ∈ 𝒬1, such that 𝛾𝛼 ∉ 𝐼. 

     (S2) For every 𝛼 ∈ 𝒬1there is at most one element (arrow) 𝛽 ∈ 𝒬1, such that 𝛼𝛽 ∈ 𝐼, and  

              at most one element (arrow) 𝛾 ∈ 𝒬1, such that 𝛾𝛼 ∈ 𝐼. 

     (S3)  For every 𝑣 ∈  𝒬0,the vertex 𝑣 is the source of at most two arrows, and is the target  

             of at most two arrows. 

         The algebra 𝐴 =
𝐾𝒬

𝐼
 is a special multiserial algebra [7] if it is Morita equivalent and 

satisfying the condition (S1). 

 

Definition 2.2[2]: Algebra is almost gentle if it is Morita equivalent and satisfying (S0) and 

(S1). 

   The definition of string almost gentle algebra is used from Franco, Giraldo, and Rizzo [1] or 

simply we call it SAG-algebra. 

 

Definition 2.3: We say that the algebra 𝐴 =
𝐾𝒬

𝐼
 is string almost gentle if the following 

conditions hold: 

1. For all 𝑣 ∈  𝒬0, 𝑣 is the source of at most two arrows. And for all 𝑣 ∈  𝒬0, 𝑣 is the target 

of at most two arrows. 

2. Given an 𝛼 ∈ 𝒬1, there is at most one element (arrow) 𝛽 ∈ 𝒬1, where 𝑠(𝛽) = 𝑡(𝛼) and 

𝛼𝛽 ∉ 𝐼. 

3. Given an 𝛼 ∈ 𝒬1, there is at most one element (arrow) 𝛾 ∈ 𝒬1, where 𝑠(𝛼) = 𝑡(𝛾) and 

𝛾𝛼 ∉ 𝐼. 

4. The admissible ideal 𝐼 is generated by paths of length 2. 

 

It is clear that the almost gentle algebra is generalized for two classes which are gentle algebra 

and SAG-algebra. 

 

      Let 𝐴 be a SAG-algebra, A path 𝑚 = 𝑣1𝛼1 ⋯ 𝑣𝑛𝛼𝑛𝑣𝑛+1 or, simply 𝑚 = 𝛼1 ⋯ 𝛼𝑛 in P, is 

maximum if for all 𝑎 and 𝑏 in 𝒬1, we have 𝑎𝑚 and 𝑚𝑏 in 𝐼. We denoted to ℳto be the set of 

maximum paths. It is clear that ℳ ⊆ 𝑃. 

 

    The next example shows that the set ℳ. 
 

Example 2.4: Let 𝐴 be a SAG-algebra over 𝐾 which given by a quiver 

 

 
 

and relations 𝐼 = 〈𝛽𝛾, 𝛽𝛿, 𝑥2, 𝑥𝛽〉.  
      We have the set of vertices 𝒬0 = {𝑣1, 𝑣2, … , 𝑣5} and the set 𝑃 containing the following 

paths 
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• paths of length 1 are 𝛼, 𝛽, 𝛾, 𝛿, 𝑥. 

• paths of length 2  are 𝑥2, 𝑥𝛽, 𝛽𝛾, 𝛽𝛿. 
• paths of length 3 are 𝑥3, 𝑥2𝛽, 𝑥𝛽𝛿, 𝑥𝛽𝛾. 
• paths of length 4 are 𝑥4, 𝑥3𝛽, 𝑥2𝛽𝛿, 𝑥2𝛽𝛾. 
• continuing in the same way we get paths of length 𝑛 which are 

$𝑥𝑛, 𝑥𝑛−1𝛽, 𝑥𝑛−2𝛽𝛿, 𝑥𝑛−2𝛽𝛾. 
So 𝑃 = {𝛼, 𝛽, 𝛾, 𝛿, 𝑥, 𝑥2, 𝑥𝛽, 𝛽𝛾, 𝛽𝛿, 𝑥3, 𝑥2𝛽, 𝑥𝛽𝛿, 𝑥𝛽𝛾, … , 𝑥𝑛, 𝑥𝑛−1𝛽, 𝑥𝑛−2𝛽𝛿, 𝑥𝑛−2𝛽𝛾, … }.  It 

is clear that the maximum path set ℳ is  {𝑥, 𝛽, 𝛾, 𝛿}. 

 

    Defining the function 𝜙 from 𝐾𝒬  to 𝐴 via α ↦ �̅�, for all 𝛼 in 𝒬1 .  So 𝜙 is a canonical 

surjection. For all 𝛼 ∈ 𝒬1, we let  �̅�𝐴 to be 𝐴-module which is generated by  �̅�. In case that 𝐴 

is SAG- algebra, the 𝐴-modules, �̅�𝐴 are uniserial [8] and [9]. 

The following lemma is a generalization of Lemma 12, [1]. 

Lemma 2.5: Let 𝐴 be a SAG-algebra, then 

1. There are no repeated arrows in maximal path 𝑚, for all 𝑚 ∈  ℳ . 
2. 𝑣 lies in two maximal paths 𝑚1 and 𝑚2 if and only if 𝑚1 ∩ 𝑚2 = {0}. 

3. 𝑣 is in a unique maximal path 𝑚 ∈  ℳ if and only if 𝑠(𝑚) = 𝑣. 

4. 𝑣 is in a unique maximal path 𝑚 ∈  ℳ if and only if 𝑡(𝑚) = 𝑣. 

 

Lemma 2.6: Let 𝐴 be a SAG-algebra, then the maximal paths are elements in the basis of 

𝑠𝑜𝑐𝐴𝑒𝐴 

Proof: Let 𝑚 = 𝑣𝑖𝑚𝑣𝑗  be a maximal path. We look at 𝑠𝑜𝑐𝐴𝑒𝐴 as vector space over  𝐾 , then 

we have   

𝑠𝑜𝑐𝐴𝑒𝐴 = ⨁ 𝑣𝑖,𝑣𝑗∈𝒬0
 𝑣𝑖(𝑠𝑜𝑐𝐴𝑒𝐴)𝑣𝑗 . 

We want to show that each maximal path   𝑚 belongs to the basis of 𝑠𝑜𝑐𝐴𝑒𝐴, in particular, 

𝑣𝑖  𝑚𝑣𝑗   from a basis 𝑣𝑖𝑠𝑜𝑐𝐴𝑒𝐴𝑣𝑗 . Since 𝐴 is a SAG-algebra, then there is at most a non-zero 

path 𝑝 and 𝑞 such that  𝑠(𝑝) = 𝑠(𝑞) = 𝑣𝑖 and  𝑡(𝑝) = 𝑡(𝑞) = 𝑣𝑗 .  Set 𝑝 = 𝛼1 ⋯ 𝛼𝑚 and 𝑞 =

𝛽1 ⋯ 𝛽𝑛. So, we have four different cases. First, by assuming that the only arrows start from 

𝑣𝑖 are 𝛼1 and 𝛽1, and the only arrows end at 𝑣𝑗  are 𝛼𝑚, and 𝛽𝑚. Hence, 𝑝 and 𝑞 are in ℳ, 

particularly ℳ = {𝑝, 𝑞}. Thus,  {𝑝, 𝑞}is a basis of 𝑣𝑖𝑠𝑜𝑐𝐴𝑒𝐴𝑣𝑗 . 

     Second, by letting 𝛼 ∈  𝒬1,  such that 𝑡(𝛼) = 𝑠(𝑝) = 𝑠(𝑞). So, if 𝛼 𝑝 lies in 𝐼, then 𝑝 

maximum (using definition of maximum). If not, we have either 𝛼𝑝 ∉ 𝐼 or, 𝛼𝑞 ∉ 𝐼. It is 

enough to discuss one case, assume 𝛼𝑝 ∉ 𝐼, then 𝑝 ∉ ℳ and hence 𝑞 ∈ ℳ. Therefore, 

𝑣𝑖𝑠𝑜𝑐𝐴𝑒𝐴𝑣𝑗 = {𝑞}. 

      Third, let 𝛼, 𝛽 ∈  𝒬1 such that 𝑡(𝛼) = 𝑡(𝛽) = 𝑠(𝑝) = 𝑠(𝑞). Then we have either (i) 𝛼𝛼1 ∈
𝐼 and 𝛽𝛽1 ∈ 𝐼 or (ii) 𝛼𝛽1 ∈ I and 𝛽𝛼1 ∈ 𝐼. Suppose (i) holds, then 𝑝, 𝑞 ∉ ℳ and {0} is a basis 

of 𝑣𝑖𝑠𝑜𝑐𝐴𝑒𝐴𝑣𝑗.  

      Finally, assume that 𝛼, 𝛽, 𝛾 ∈ 𝒬1 such that  𝑡(𝛼) = 𝑡(𝛽) = 𝑠(𝑝) = 𝑠(𝑞) and 𝑠(𝛾) =
𝑡(𝑝) = 𝑡(𝑞). Without loss of generality, we suppose that 𝛽𝑛𝛾 ∈ 𝐼 and so 𝑞 ∈ ℳ. However, 

𝑝 ∉ ℳ. Then 𝑣𝑖𝑠𝑜𝑐𝐴𝑒𝐴𝑣𝑗 = {𝑞}. By a similar argument, we get other cases. 

 

Remark 2.7:  From the definition of SAG-algebra we can see that SAG-algebra is a special 

multiserial algebra. 

     We denoted the length of path 𝑝 by ℓ(𝑝). Since 𝐴 is a SAG- algebra and so monomial then 

the 𝐾 basis of 𝐴  is the set {𝑝 + 𝐼|𝑝 ∈ 𝒬 𝑎𝑛𝑑 𝑝 ∉  𝐼} where 𝑝 is a path in 𝒬 and 𝑝 is a subpath 

of 𝑚, 𝑚 ∈ ℳ. 
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Proposition 2.8: Let 𝐴 be a SAG-algebra. Let 𝑚 be a maximum path such that 𝑎 is a 

beginning arrow in 𝑚. Then 𝑟𝑎𝑑 (𝐴) = ⨁ 𝑚𝐴𝑚∈ℳ , where  𝑚𝐴 is the uniserial module 

generated by the 𝑎. 

Proof: Let 𝑚 ∈ ℳ and let 𝑝 be a path in  𝒬 and 𝑝 is a subpath of 𝑚.  Then we have two 

cases: if ℓ(𝑝) = 0, then 𝑝 = 𝑒𝑣  which is a trivial path for some 𝑣 ∈ 𝒬 and so 𝑒𝑣 ∈  𝑆𝑜𝑐𝑘(𝐴). 

If  ℓ(𝑝) ≽ 1, then we set a path  𝑝 = 𝛼1 ⋯ 𝛼𝑛 ∈ 𝒬. Hence 𝑝 + 𝐼 in   𝛼1̅̅ ̅ 𝐴. As 𝑟𝑎𝑑(𝐴) is 

generated by the image of arrows, we get ∑ 𝛼1̅̅ ̅ 𝐴 𝛼∈ 𝒬 = 𝑟𝑎𝑑(𝐴). Since 𝐴 is a monomial 

algebra, then 𝑟𝑎𝑑 (𝐴) =⊕𝛼∈ 𝒬1
𝛼1̅̅ ̅ 𝐴. Since 𝐴 is a SAG-algebra and each maximum path has 

no repeated arrow or common arrow with a different maximum path. 

 So 𝑝 + 𝐼 in 𝑚𝐴, for all 𝑚 ∈ ℳ. Thus 𝑟𝑎𝑑 (𝐴) = ⨁ 𝑚𝐴𝑚∈ℳ .  

         Consequently, we get the following corollary. 

Corollary 2.9: Let 𝐴 be a SAG-algebra. Then dimK  A = |𝒬0| + ∑ (ℓ(𝑚𝐴)ℓ(𝑚𝐴) +𝑚∈ℳ

1)/2 . 

Proof: We have |𝒬0|vertices and so there are |𝒬0|trivial paths. Using the above proposition 

we get d𝑖𝑚 (𝑟𝑎𝑑 (𝐴)) = ⨁ dim (𝑚𝐴𝑚∈ℳ ). Let 𝑚 ∈ ℳ, then 𝑚𝐴 unisearal module 

generated by the first arrow and moreover has length ℓ(𝑚𝐴). So, dim(rad(A))=
∑ (ℓ(𝑚𝐴)ℓ(𝑚𝐴) + 1)/2𝑚∈ℳ . 

 

3. The extension of quiver 𝓠 and relations 𝑰 

      In this section the quiver 𝒬∗ is created from the quiver 𝒬, and also the relations 𝐼∗ are 

defined.  We let =
𝐾𝒬

𝐼
 be a SAG-algebra which is given by quiver 𝒬 and relations 𝐼. 

      We start defining a quiver 𝒬 such that: 

1. 𝒬∗ = 𝒬, 

2. 𝒬1
∗ = 𝒬1 ∪ {αm|𝑚 ∈ ℳ and s(αm) = t(m), t(αm) = s(m)}.  

 

Proposition 3.1: Let 𝐴 be a SAG-algebra and let 𝒬∗ built as above. Then 𝒬∗ is a quiver of 

𝑇(𝐴). 

Proof: By using [7] and Lemma 2.6, we have the set of arrows which obtain from 𝒬 in 𝐴 and 

the set {𝛼𝑚|𝑚 ∈ ℳ}, where s(αm) = t(m), t(αm) = s(m). Thus, the quiver of the trivial 

extension of 𝐴 is 𝒬∗. 

 

       Recall Example 2.4, to show that our construction of quiver 𝒬∗. So we have  

        𝒬0
∗ = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and 𝒬1

∗ = {𝛼, 𝛽, 𝛾, 𝛿, 𝑥, 𝑎𝛽 , 𝑎𝛾, 𝑎𝛿 , 𝑎𝑥} and so we have the 

following quiver:  

 
     Following the approach of Green and Schroll [2], we have for all 𝑚 ∈ ℳ, a cycle element  

𝑐𝑚 = 𝑚𝑎𝑚 in 𝒬. Defining a set 𝒮𝑚  to be a set {𝑐∗|𝑐∗ 𝑎 𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑒𝑟𝑚𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐,
𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚 ∈ ℳ}.  The function  𝜇: 𝒮𝑚 ⟶ 𝕫 is defined as follow 𝜇(𝑐∗) = 1, for all 𝑐∗ ∈
𝒮𝑚. 

 

Definition 3.2 [10]: Let 𝒯 be a set of a cycle in 𝒬 such that there is no common arrows in 

cycle (simple), and let 𝒱: 𝒯 ⟶ 𝕫≥0  We call (𝒯, 𝒱)  defining pair in if satisfying: 

1. If there is a loop 𝑐 ∈ 𝒯 at 𝑣 ∈  𝒬, then 𝒱(𝑐) >  1. 

2. Whenever a simple cycle 𝑐 contain in 𝒯, then 𝑐∗ (cycle permutation) of 𝑐 contain in 𝒯. 
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3. Let 𝑐 ∈ 𝒯 and let 𝑐∗ ∈ 𝒯 (cycle permutation) of 𝑐. Then 𝒱(𝑐) = 𝒱(𝑐∗). 

4. If an arrow appears in two simple cycles which are in 𝒯. Then the cycle of each one is a 

cycle permutation of each other. 

Then (𝒯, 𝒱) is defining pair. 

      Hence (𝒮𝑚, 𝜇) gives the algebra over 𝐾 with 𝒬∗ and ideal 𝐼∗ generated by all relations of 

the following form: 

1. 𝑐1 − 𝑐2, where  𝑐1, 𝑐2   ∈ 𝒮𝑚  and cycles at vertex 𝑣 ∈  𝒬0. 

2. 𝑐𝑎, where 𝑐 = 𝑎𝑎1 ⋯ 𝑎𝑛 and 𝑎, 𝑎𝑖 ∈ 𝒬0, where 𝑖 = 1, … , 𝑛. 
3. 𝑎𝑏, where 𝑎, 𝑏 are arrows in 𝒬 and 𝑎𝑏 is not subpath of 𝑐, for all 𝑐 ∈ 𝒮𝑚. 

       We get the following theorem using results in [11]. 

 

Theorem 3.3: Let 𝐴 be a SAG-algebra and let 𝐴∗ defined by (𝒮𝑚, 𝜇). Then 𝐴∗ is a symmetric 

special multiserial algebra. 

        The dimension of 𝐴∗ is characterized in the next result. 

 

Proposition 3.4: Let 𝐴 be a SAG-algebra and let 𝐴∗ is constructed as mention above. Then 

𝑑𝑖𝑚𝑘(𝐴∗) = 2|𝒬0| + ℓ(𝑚) ̇ℓ(𝑚) + 1. 

Proof: The algebra 𝐴∗  has 𝐾basis which is all paths of length more than and equal to 1 

together with the trivial path 𝑒𝑣. From the construction of quiver 𝒬∗, we have |𝒬0|and so there 

are |𝒬0|trivial paths. Since 𝐴∗ is symmetric, then 𝑑𝑖𝑚 (𝑠𝑜𝑐(𝐴∗)) = |𝒬0|. Let 𝑚 ∈ ℳ, then 

𝑐𝑚 = 𝑚𝑎𝑚 in 𝒮𝑚with length ℓ(𝑚) + 1. Since  𝐴 is SAG-algebra and the maximum path 𝑚 is 

unique for each arrow, then we have the starting arrow  𝑎 in 𝑚 and moreover 𝑎 in 𝑐𝑚. It 

follows 𝑎𝐴∗ is a uniserial module of length ℓ(𝑚) + 1. So 𝑑𝑖𝑚 (
𝑎𝐴∗

𝑎𝐴∗ ∩  𝑠𝑜𝑐(𝐴∗)) =

ℓ(𝑚)ℓ(𝑚) + 1.Therefore, 𝑑𝑖𝑚 𝑟𝑎𝑑(𝐴∗)/𝑠𝑜𝑐(𝐴∗) = ∑ ℓ(𝑚)ℓ(𝑚) + 1𝑚∈ℳ  and so 

𝑑𝑖𝑚𝑘(𝐴∗) = 2|𝒬0| + ∑ ℓ(𝑚)ℓ(𝑚) + 1𝑚∈ℳ . 
 

4. Trivial extension of SAG-algebra 

       We define the trivial extension of a finite-dimension algebra 𝐴  as in literature, where we 

let  𝐷(𝐴) = 𝐻𝑜𝑚𝐾(𝐴, 𝐾) be the dual of 𝐴. The trivial extension of 𝐴 is given by 𝑇(𝐴) = 𝐴 ⋊
 𝐷(𝐴), where 𝑇(𝐴) is symmetric algebra and viewed as vector space 𝑇(𝐴) = 𝐴 ⊕ 𝐷(𝐴)  with 

multiplication which is given by  (𝑎1, 𝑓1)(𝑎2, 𝑓2) = (𝑎1𝑎2, 𝑎1𝑓2 + 𝑓1𝑎2) for all 𝑎1, 𝑎2 ∈  𝐴 

and 𝑓1, 𝑓2 ∈  𝐷(𝐴). 
         The basis of 𝐷(𝐴) is 𝑃∨  = {𝑝∨|𝑝 ∈  𝑃}. We remind the reader of an element 𝑝 ∈ 𝑃 in 

particular in 𝐴, then 𝑝∨ ∈ 𝐷(𝐴) [2].  

 

Proposition 4.1 [2]: Let 𝐴 be finite dimension algebra. Then the set {(𝛼, 0)|𝛼 ∈ 𝒬1 ∪
 {(0, 𝑚∨)|𝑚 ∈ ℳ} generate  𝑇(𝐴). 

      The next result show that 𝐴∗ ≅  𝑇(𝐴). 
 

Theorem 4.2: Let 𝐴 = 𝐾𝒬/𝐼 be a SAG-algebra and 𝑇(𝐴) be the trivial extension of 𝐴 arise 

from 𝐷(𝐴). Then 𝐴∗ ≅  𝑇(𝐴). 
Proof: Starting by defining an algebra homomorphism 𝜙: 𝐾𝒬∗ ⟶  𝑇(𝐴) via 

1. Let 𝑣 ∈  𝒬0
∗ , then 𝜙(𝑣) = (𝑣, 0). 

2. Let 𝛼 ∈  𝒬1
∗. then  

ϕ(α) = {
(𝛼, 0) 𝛼 ∈  𝒬1

(0, m∨) α ∈ {αm|m ∈ ℳ and s(αm) = t(m), t(αm) = s(m)}.
 

      It is clear that from the Proposition 2, the ring homomorphism is a surjection. We want to 

show that 𝐼∗ ⊆  𝐾𝑒𝑟 𝜙. We start with the first type. (i) Let 𝑐1, 𝑐2 in 𝒮𝑚 at vertex 𝑣 ∈  𝒬0
∗. Then 

𝜙(𝑐1 − 𝑐2) = 𝜙(𝑐1) − 𝜙(𝑐2). Let m ∈ ℳ and  𝑚 = 𝑝𝑞, where 𝑝, 𝑞 ∈ 𝑃. Since 𝑐1, 𝑐2 in 𝒮𝑚, 

then we write 𝑐1 = 𝑝𝛼𝑚𝑞 𝑎𝑛𝑑  
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𝑐2 = 𝑝′𝛼𝑚′𝑞′. From [2, Lemma 4.1], we have 𝜙(𝑐1) = 𝜙(𝑝𝛼𝑚 𝑞) = (𝑞, 0)(0, 𝑚∨)(𝑝, 0) =
(0, 𝑝𝑚∨ 𝑝) = (0, 𝑟∨),  this gives 𝑚 = 𝑝𝑟𝑞. By hypothesis 𝑚 = 𝑝𝑞, so 𝑟 = 𝑒𝑣. Hence 𝜙(𝑐1) =
(0, 𝑟^ ∨) = (0, 𝑒𝑣).3 

Similarly we get 𝜙(𝑐2) = (0, 𝑒𝑣) and so 𝜙(𝑐1 − 𝑐2) = 0.  

         (ii) Let c in 𝒮𝑚 at 𝑣 and write  𝑐 = 𝑞𝛼𝑚𝑝 where 𝛼 is a first arrow in 𝑐. So 𝜙(𝑐𝛼) =
𝜙(𝑞𝛼𝑚 𝑝)𝜙(𝛼) = (𝑝, 0)(0, 𝑚∨)(𝑞, 0)𝜙(𝛼) = (0, 𝑝𝑚∨ 𝑞)𝜙(𝛼) = (0, 𝑟∨)𝜙(𝛼) =
(0, 𝑒𝑣)𝜙(𝛼). In this case either 𝛼 ∈  𝒬1 or 𝛼 = 𝛼𝑚. If 𝛼 ∈ 𝒬1,  then (0, 𝑒𝑣)𝜙(𝛼) =
(0, 𝑒𝑣)(𝛼, 0) = (0, 𝛼 𝑒𝑣). Here two cases are appeared: if (0, 𝛼 𝑒𝑣) = 0, then 𝜙(𝑐𝛼) = 0. 

Suppose that (0, 𝛼 𝑒𝑣) ≠  0, then (0, 𝛼 𝑒𝑣) = (0, 𝑟∨)  and so 𝑒𝑣 = 𝑟𝛼 this is a contradiction 

with assumption 𝛼 ∈  𝒬1. If 𝛼 = 𝛼𝑚, then 𝜙(𝑐𝛼) = (0, 𝑒𝑣)(0, 𝑚∨) = 0 by using [Lemma 4.1, 

2]. 

 (iii) Let 𝛼 and \𝑏𝑒𝑡𝑎 in 𝒬1, since 𝛼𝛽 ∈  𝐼∗ , then 𝛼𝛽 = 0 and hence 𝜙(𝛼𝛽) = 0. 

Let 𝛼 ∈ 𝒬1 and 𝛽 = 𝛼𝑚 for some 𝑚 in ℳ. Then 𝜙(𝛼𝛼𝑚) = (𝛼, 0)(0, 𝑚∨) = (0, 𝛼 𝑚∨). If  
(0, 𝛼 𝑚∨) ≠  0, we have (0, 𝛼 𝑚∨)(𝑜, 𝑟∨) and hence 𝑚 = 𝑟𝛼 this is a contradiction  with 

hypothesis. Let 𝛼 = 𝛼𝑚 𝑎𝑛𝑑 𝛽 = 𝛼𝑚′, for some 𝑚, 𝑚′ in ℳ. By [Lemma 4.1(4), 2] we have 

𝜙(𝛼𝑚𝛼𝑚′) = (0, 𝑚∨)(0, 𝑚′∨) = 0. So 𝐾𝑒𝑟 𝜙 =  𝐼∗. Using the First isomorphism theorem we 

get 
𝐾𝒬∗

𝐼
≅  𝑇(𝐴). 

 

Corollary 4.3: Let 𝐴 =
𝐾𝒬

𝐼
 be a SAG-algebra and 𝑇(𝐴) be the trivial extension of 𝐴 arise 

from 𝐷(𝐴). Then 𝑑𝑖𝑚𝐾(𝐴∗) =  𝑑𝑖𝑚𝐾 (𝑇(𝐴)). 

 

5. Conclusions 

     In this article the string almost algebras 𝐴 = 𝐾𝒬/𝐼 are investigated. Many properties of 

SAG-algebra are given. The quiver 𝒬∗was constructed from the quiver 𝒬 and the admissible 

ideal was defined. The algebra 𝐴∗ which was given by quiver 𝒬∗ and relations 𝐼∗was defined. 

We proved that the trivial extension of algebra 𝐴 was isomorphic to the algebra 𝐴∗. 
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