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Abstract

This article aims to determine the time-dependent heat coefficient together with
the temperature solution for a type of semi-linear time-fractional inverse source
problem by applying a method based on the finite difference scheme and Tikhonov
regularization. An unconditionally stable implicit finite difference scheme is used as
a direct (forward) solver. While by the MATLAB routine Isgnonlin from the
optimization toolbox, the inverse problem is reformulated as nonlinear least square
minimization and solved efficiently. Since the problem is generally incorrect or ill-
posed that means any error inclusion in the input data will produce a large error in the
output data. Therefore, the Tikhonov regularization technique is applied to obtain
stable and accurate results. Finally, to demonstrate the accuracy and effectiveness of
our scheme, two benchmark test problems have been considered, and its good working
with different noise levels.
Keywords: Implicit finite difference scheme (IFDS), Tikhonov technique, Caputo
fractional derivative, Time-fractional source inverse problem, Stability analysis.
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1. Introduction
The use of fractional partial differential equations to model many systems and processes is
still ongoing and their applications are very wide [1, 2]. They have many types, the most
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important is the diffusion equation of fractional order that was used for the first time in physics
[3] to describe the diffusion in media using fractal geometry. However, sometimes, a part of
the data may not be given. These data are source terms, diffusion coefficients, initial data,
boundary data, and e.t. Therefore, these data must be determined by additional information, and
this is called fractional inverse problems. Work and study of direct problems of PDE have
become widespread. In another hand, work on inverse problems is very little and more recent,
articles on this aspect are few and very limited, see [4 — 11]for some examples of work to solve
inverse problems.

In this article, we consider the time-fractional inverse source problem to reconstruct the
unknown time-source coefficient c(t) in the following time-fractional reaction—diffusion
equation:

Dfu(x,t) = Uy, —a(®ulx, t) + c(t)F(x,t,u), (x,t) € (0,1) x (0,T]. 1)
The initial condition

u(x,0) = @), x € [0,1], (2)
and nonlocal boundary conditions;

u(0,t) =u(l,t); u(1,t) =0, t €e[0,T], (3)
and integral over determination condition

[, xu(x,t)dx =e(t), 0<t<T, (4)

where F(x, t,u), ¢(x) and e(t) are given functions, a(t) is given positive function, c(t) is
unknown time-dependent coefficient. Mathematically, Eq. (1) is a parabolic fractional partial
differential equation where u(x, t) represents the concentration of one substance, u,, IS a
diffusion term, a(t)u(x, t) + c(t)F (x, t,u) represents the reaction term where F(x, t,u) is a
non-linear source term and a(t) > 0 can be regarded as a control parameter. Dfu(x, t) is the
Caputo time-fractional derivative of order 0 < a < 1, [12]:

1 t. —q 0u(x,s) <
1"(1—a)f0(t s) — ds, 0 <t <T,

Dffu =

The unique solvability for the inverse problem (1)-(4) is established in [12] and reads under
the following assumptions:
(Al) a € C[0,T] is a positive functionand M, = || allcor -
(A2) ¢ € C*[0,1] such that ¢(0) = ¢(1),¢'(1) =0,¢"(0) = ¢" (1), ¢"'(1) = 0.
(A3) Let the function F (x, t,u) be continuous with respect to all argumentsin (0,1) x (0, T] X
R and satisfies the following conditions:

1. F(.,t,u) € C*[0,1],t € [0, T], F(x, t,u)|x=0 = F(x, t,U)|x=1,

2. Fx(x' t)lx:l =0, Fxx(x' t)lx:O = Fxx(x' t)lx:l'Fxxx(x' t)lx:l = 0.

3. There exists a nonnegative function b(x,t) such that for each u,% € Rand (x,t) €
(0,1) x (0,T],

%F(x, t,u) — aaer(x, t, 11)| <b(x,t)|lu—1l,r=0,1,2

where b € L?((0,1) x (0,T]), gnfl);llb(', 201y <

4. Mp= max{” aa;rF(.,.,u)

;r=0,1,2)
L2((0,1)X(0,T1)

5. There exists a positive constant F,, such that | fol xF(x,t,u)dx| > F, foreach t € [0,T]
and uniformly to u € R.
(A4) E € C([0,T]) and E(0) = [, x¢p(x) dx .
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In recent years, inverse source problems have received great attention from researchers, as
they have been studied in many articles. Wei and Zhang [13] solved the time-fractional time-
dependent source problem by a method based on the separation of variables and Duhamel’s
principle and Tikhonov regularization. Y. Zhang and X. Xu [14] used the eigen function method
and Tikhonov regularization to solve the fractional inverse source problem (FISP) for the one-
dimensional time-fractional diffusion equation. Wang, Yamamoto and Han [15] identified a
space-dependent coefficient-source from data at the final time by using a reproducing kernel
space method. By using a modified quasi-boundary value method, Wei and Wang [16]
determined the space-dependent source parameter by using the final data. Tatar and Ulusoy
[17] determined an inverse space-dependent coefficient-source for nonlocal ISP for a one-
dimensional time-fractional diffusion equation. Tuan, Long and Thinh [18] solved an ISP for a
time-fractional diffusion equation and determined an unknown source by using the Tikhonov
regularization method (TRM). Tuan and Nane [19] solved an ISP for a fractional diffusion
equation for the random case and determined a source parameter. Jian, Li, Liu and Yamamoto
[20] proposed an iterative threshold algorithm and found the numerical solution to the inverse
source problem, they reformulated it as an optimization problem. Ma, Prakash and Deiveegan
[21] identified the unknown space-dependent source term in an ISP for time-fractional diffusion
equation with variable coefficients in a bounded domain by generalized Tikhonov
regularization method (GTRM). By using the fractional Tikhonov regularization method
(FTRM), Xiong and Xue [22] solved ISP for the time-fractional diffusion equation and
identified a space-dependent source. Djennadi, Smina, Inc, Osman, Gémez and Abu Arqub [23]
solved the ISP of the Atangana-Baleanu-Caputo fractional diffusion equation by using the
Tikhonov regularization method (TRM). The later authors also [24] solved the inverse source
problem of the time—space fractional diffusion equation by using a numerical scheme in the
RKHS approach and determining of state variable and source parameter. By using TRM, Liu,
Songshu, Sun, and Feng [25] solved ISP for a fractional diffusion equation with a fractional
Riemann-Liouville derivative. By using the generalized quasi-boundary value method, Wei,
Ting, and Luo [26] solved ISP for a time-fractional wave equation and identified a space-
dependent source by using the final time data. Molaee, Tahereh, and Shahrezaee [27] solved
ISP for time-fractional differential equations by the DMLPG method. Ebru, et.al [28] solved a
time-fractional inverse problem for a parabolic equation by a finite difference scheme.

In our article, a stable numerical solution to problem (1) - (4) should be obtained by using
implicit finite difference (IFD) with Tikhonov regularization [29]. First, we apply (IFD) to
obtain the direct solution to problem (1)-(3). Next, we use the Tikhonov regularization to
stabilize this problem.

The article consists of six sections: (IFDS) is given in section 2 to obtain the numerical
solution of problems (1)-(3). Section 3 is developed to investigate the stability and convergence
of the numerical procedure. The numerical approach to solving (TFSIP) of equations (1)-(4) is
given in section 4. In section 5, some experiments are provided. The end section gives the
conclusions for this work.

2. Fractional Finite Differences Scheme (FFDS)
In this section, we give a direct solution method to problem (1)-(3).
We start by letting M and N are two positive integers. Consider a regular grid in I =
[0,1] x [0,T] as:
Q={(x; =iht; =jk),j=012,..,N; i=0,12,..,M},
The step length in space and time are h = 1/M and k = T /N, respectively. In addition,
suppose
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u]'—u(xl,t) a;: = a(t;), ¢i: = c(t;), FJ:=F(xi,tj,u(xl-,tj)),
0=, Ez=EF;) for j=012,..,N;i=012,.., M,

J —2U; +uJ

Uer (%1, 67) = % for j=012,..,N; i=1.2,..,M
and
j
u —U;
U (3, t) = %
The discrete form of the term D*u that is introduced in [4] is defined as the following:
Diu(x;, tj) = qoi Z{(=1 ’Wja (u{_kﬂ - u{_k) ()
k—(l

where g = -ord-a

We must note that ;" satisfies the following fact:

wja =(OHr*-G-nt*,j=12,..,N.
From equation’s (2) and (3), we obtain the following discrete form of boundary

w=u, uy, =uy_, j =012,..,N, (6)
and the discrete initial condition' SO as;
w=¢;, i=012..,M. (7)

By using equatlons (5), (6) and (7), we get the following formula for governing equation (1) :

J—k+1 f—k _ Jj Jj j Jj j
qakzk 1“’1 (ul u; ) = V[”i—1 —2u; + ui+1] — aju; + GF;

Wherey—i ,i=12,..,.M—1.

h?2

k —k j j j j
Qo Zk 1 Wj (u] - J ) [Vui]—1 -2y + aj)u'l! + Vui]+1] + CjFi]'
Or

qa,kwla(uil - u?) + da.k Z wlg (u{_k-l-l - ul!_k)
k=2
= [yui]_1 -2y + aj)ui] + yuiJH] + chL-J (8)
We must note that ;" satisfies the following fact:
l=w{f>ws>wsf>- -0, j=12,..,N.
We apply equation (8) wheni = 1,2,...,M — 1, M, we have:
= At the first-time level (j = 1),

—yul_y + Qv + ay + qepwul —yulyy = o F' + qopwie;, 9)
and from (8) and (6) at i = M, we have:
—2yuy—q + 2y + ay + qepwiHuy = ¢1Fy + qarwi Qu (9a)
= At(j = 2,3,..,N),
j—1
vl +(2y+a + @)y J — =¢F + ( Yu!
Yu;_4 Yy T4 T g u Vul+1 Gy ok Wi — Wi, u
k=1
+qa Wi @i (10)
and from (8) and (6) at i = M, we have:
j-1
—2yul,_y + (21 + @ + Quri® ul, = ¢ F) + (wf — wiul ™
VuM_1 Y a] qa,kwl uM Cj M qa,k W Wit ul
k=1
+qa W Pu (10a)
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Using equations (9), (9a), (10) and (10a), for j = 1,...,Nand i = 1,2,...,M , it can be
written in more compact form:

AU = ¢ F1 4 g4, U°,

AU = ¢iFl + qqi D™t j = 2,...,N

where
(2}/ +a; + qa,kwf‘) -y 0 0
-y (2r+a+qawf) -y 0
0o -y (2v+ a; + Qarw?) -y . 0 0 0
A= : : : : : : . : :
0 0 0 -y (2r+ a; + Qaiwi) -y O
0 0 0 .. 0 -y (2y+a+quew) —v
0 0 0 .. 0 0 0-2y (2r+a+qeuwi)

. . . .t

Fl=[F ,E,.. . F], j=12,..,N,

where u is computed from equation (7). Also, we have U’ = [u},u3, ..., ulf]t,
= = j—k

D] 1= Z{czé(w,‘j‘ —wi)ul T+ wfug,

Finally, discretize integral condition (4) by using the trapezoidal rule as:
M-1

e(t-)zixuj+x uj+2 xuj i =0,1,2 N
] 2M 0*%o M%Mm k%K I_] y Ly ey IV
k=1

3. Stability and Convergence

Here, we use the Von Neumann method [30] to prove the stability of the scheme (8). Let the
solution of the equations (9) and (10) with ¢ (x) be U and U is the solution to the perturbed data
P (). o o
Define the error E = U — U, E/ = U7 — U/ =(el,e],..,e5)" ie. el =] —u!, j=
0,,2,..,N,i=0,1,2,...,M.

Theorem 1. The FDM scheme (8) is unconditionally stable.
Proof:

Assume eij = Eje”””‘ ,where g is a real spatial number [31] and i = v—1. From equation (9),
we have

_V$z1eiﬁ(l_1)h + (ZV +a; + Qa,kw{x)ﬁemlh - Yfﬂ?w(lﬂ)h = foewlh,
where @ = tg%g%g]la(t)l, which can be reduced to

—y&e PR+ (2y + @y + qw)é — yE et = &,

$o
—ye R + (2y + @y + qauwi’) — yet

Or,

$1 =
which implies
1

= (Zy(l—cos Bh)+d1+qa,kw{") o (1)
Since 2y (1 — cos Bh) + @1 + qqwi* = 1, it follows that &; < &.
Now, from equation (10) when j > 2 and substituting e/ = &;e%™ , we have
—y§je T+ (2 + 0 + qepwi)§; — §e" = qup BTy (wi — Wi D€k + dagew o
(—ye " + (2y + a; + ogwi’) — yePME; = qoi Thoi (Wil — wid)E ok + GarwEo
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£ = QOL,kZ{;ll(wlg_wlg+1)€j—k+Qa,kw]"x€0

J (2y(1—-cos Bh)+dj+qq wr{Y)

By induction, we have &y <&y ; <+ <& <& .Thus |e¢/| < |e/7F|, for all j. This
completes the proof of the unconditional stability of the scheme (8).

s P2
Now, we must prove the convergent. Consider ||E1||§ = h¥;|e/| . This Euclidean norm
of the perturbation [31]. Therefore, the stability condition can be written as:

1E7Nl, < N[BT, .5 = 1.2,.., N (15)
This relation implies that ||Ef||2 < ||E®||,, Equation (8) can be rewritten as:

AU = MUt
where M is the difference operator defined as:
j-1
MEUI); = ) (@ = w0 )(UT); + (U,
k=1

From AE/ = ME/=',we have E/ = A"*ME’~1, by considering equation (15), gives

A=t e | < ||E) (16)
That is the operator A~1M is a non-expansive.
Now, take A — M = R, where R is the difference equation at mesh point (i, k)th. So if
R tends to zero (R — 0), the scheme (8) is consistent [33,34].
Now, define e/ = u/ — U/, where U is the numerical solution and u is the exact solution,
then we have [32].

Ael = Me/™' + R A7)
Therefore, from equation (17), we can write

le”ll, < [la=are =], + 1A~ [|R7]], (18)
Because A~ M is non-expansive, then from equation (18) we have

le?ll, < lle”={I, + A1 [|R7], (19)
Thus, by induction, we have

le/ll, < A7 12 Ziey IR¥I1 (20)

This inequality shows that if ||A~Y||, for equations (9) — (10) is bounded, then, the
error ||e/||, — 0. This completes the proof of the convergence of the proposed method.

3.1 Numerical Example for Direct Problem
Here, an example is given for the direct problem, that is when the coefficient c(t) is known,
to validate, stability, and accuracy for (FFDS).

Example 1 Consider solving the problem (1)-(3) with the data:
a(t) = 100e1°° ¢t € [0,1],
c(t) =et, t€[0,1],
o) =0,,x €[0,1],

1
—t~%u—(2-12x2)t+100e 10ty
F(x,t,u) = &=

, (x,t) €0,1] x [0,1],

et
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where u(x,t) = x?(1 — x2)t is the exact solution. Figure 1 shows the absolute error
between the exact and numerical solutions of u(x, t) when a € {0.25,0.5,0.75}, M =N =
40. And, one can see from this 3D figure excellent agreement is obtained. Figure 2 shows the
exact and numerical solutions for the thermal energy e(t)

Absolute error with =0.75

Absolute error with =025 Absolute error with 1=0.5

arror
omor

arror

Figure 1: The absolute error between the true and numerical solutions of u(x,t) when a €
{0.25,0.5,0.75} for Example 1.

01

Exact
— B — Numerical
0.08 -
0.06 -
—~
fa
[}
0.04 -
0.02 -
0 | | | | | | | | | J
0 0.1 0.2 0.3 04 05 0.6 0.7 08 0.9 1

t
Figure 2: The required output e(t), withN = M = 40, for Example 1 with @ = 0.5.

4. Numerical Procedure for Time-Fractional Source Inverse Problem (TFSIP)

We aim to find the numerical solution for problem (1)-(4) which is described in Section 2.
We want to find stable reconstructions for the unknown coefficient c(t) of the one-dimensional
semi-linear time-fractional equation together with u(x, t) to fulfill equations (1)-(4).

Observe that from (1) and (4), we have:

c(t) = bie®+abe®) Therefore, by using t = 0 in the above equation,
B Dfe(0) + a(0)e(0)

I} 01 xF(x,tu)dx
c(0) ,
fol xF(x, 0, <p(x))dx
which is a constant initial guess. Now, we recast this problem as a nonlinear minimization

problem. In the other words, we minimize the gap between measured data and computed
solutions. The Tikhonov regularization functional can be found by imposing the condition (4):

F(o) = || f; xutx, dx — @] + Bllel?. (22)

or in discretized form,
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2
Fe) = 3 (Jy ulx )z — e(t)) +BEer e @)

where S > 0 represents a parameter of regularization. The Isqnonlin routine is used to
achieve a minimum objective F function, for more details see [35]. Lsqnonlin's routine starts
from ¢(0) and tries to find a minimum of the scalar function of several variables, given the
constraints, for more details see [4]. We take the parameters of the routine as:
—  Maximum number of iterations = 10? X (number of variables).
— Solution and Objective function tolerances = 10715,

The fractional inverse problem (1)-(4) is tested subject to both noisy measurement and exact
data (4). The noise-contaminated is simulated as:

where € represents the Gaussian random vector with a mean equal to zero and standard
deviation is given by:

o=pX trErEg>T<]Ie(t)I : (24)
where p represents the percentage of noise. We anticipate the normrnd built in function to

generate the random variables € = (¢;),j = O,N as:
e =normrnd(0,0,N) . (25)

5. Results and Discussions

The Root Means Square Error (RMSE) has been used to check the accuracy of numerical
results after employing the Tikhonov regularization technique, and its formula is given as
follows:

RMSE(C) = \/%Z?Lﬂcnumerical(tj) - Cexact(tj))z ) (26)
For simplicity, we fix T = 1 in all following numerical experiments.

Example 5.1: (Smooth Coefficient) Consider the fractional inverse problem (1)-(4) with input
data in Example 1 of the direct problem with the e(t) = %t, t € [0,1] and the coefficient

c(t) is unknown. The initial guess is taken as ¢, = 1. Figure 3 shows the numerical solution of
the time-dependent source function from first order heat moment (4) in comparison with the
exact solution (c(t) = e!) obtained by solving the inverse problem with the input data in
Example 1 using the FFDS, which is described in Section 2, with M = N € {10, 20, 40}. In
Figure 4, the counter of iterations required to reach the convergence of the functional (22) to a
very low threshold value of 0(1071%) is plotted with M = N € {10, 20, 40}. From this figure,
it can be observed a speed convergence was achieved in 5 iterations only to reach a very low
value of order 0(10~'>). However, the problem remains ill-posed and has to be regularized.
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3 —
—exact
— 7 ~M=N=10 _&E
25+ M=N=20
— B~ M=N=40
151
10=F | | | | | | | | | |
0 04 02 0.3 04 0.5 06 0.7 0.8 0.9 1

t
Figure 3: The numerical solutions for time-dependent source c¢(t) and exact value (c(t) = e?)
for Example 5.1 withp = 0 and § = 0.
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Figure 4: Objective function (22) for Example 5.1 when B = 0 and with = 0% .
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Next, we fix N = M = 40 and start our investigation with cases (i) no noise (p = 0%) and
(i) noise (p = 10%), included in the measurement data (4). Figure 5 explains the comparisons
of numerical results with the exact solution for c(t) with no regularization (8 = 0) and (a) no
noise (p = 0%) and (b) with noise p € {3,10}%. Subfigure (a) investigates the convergence of
the numerical solution for c(t), while we note the results in subfigure (b) are unstable and
inaccurate and this is expected.
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(@)
3 —
exact
— 8 —p=0%
25
=
T Y
151
= I | | | | | | | | J
0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1
t
(b)

Figure 5: Reconstructed c(t) for Example 5.1 with g =0 and (a) p = 0% and (b) p €
{3,10}% noise.

The reconstructed c(t) are presented in Figure 6 after applying the Tikhonov regularization
with p = 10% and B € {107%,1075,107°} . The speed converges minimization of the
objective function (22), as a function of the number of iterations, for § € {107%,i = 4,5,6}
shown in Figure 7. The 3D graph of absolute error between true solution and numerical solution
for temperatures u(x, t) is plotted in Figure 8 with (&) p = 3% and (b) p = 10% with (i,
iv) 8 = 1074, (ii,v) B = 107> and (iii, vi) § = 107°. Next, in Tablel, we compute the RMSE
errors (25) for § € {0,10%,i = 3,4,5,6} and p € {3, 5,10}%. Clearly, from Figures 5,6,8 and
Table 1, it can be seen that there is good agreement and convergence between the numerical
solutions of c(t) and u(x, t) with their corresponding exact solutions, where p decreases from
10 % to 3% and then to 0%.
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2 .\/ 7v7ﬂ=10-4
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t
Figure 6: The reconstructed c(t) for Example 5.1. with p = 10% and different amounts for 3.
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Figure 7: Objective function (22), with different values for g and p = 10%, for Example 5.1
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(V) (vi)

(b)
Figure 8: The absolute error between the exact and numerical solutions of u(x, t) for Example
5.1 with different values of p and

Table 1: The RMSE value (25) for various amounts of noise p € {3,5,10}% and various
regularization parameters § € {0,107",i = 3,4,5,6} for Example 5.1.

RMSE ((c)
p=3% p=5% p=10%
B=0 0.4513 0.6272 1.8438
B=10"* 0.3869 0.5416 0.6748
g =10"° 0.2655 0.4589 0.3111
B=10"° 0.3819 0.6368 1.5274

Example 5.2: (Non-Smooth Coefficient)
In this example, the time-fractional inverse source problem that is represented by equations (1)
- (4) is considered with the following data;

a(t) = 100(e3°t + 1), t € [0,1],

¢ (x) = sin *(2nx), , x € [0,1],

c(t) =+t — 05|, t € [0,1],

e(t) = (D)(t+ 1), t€[01],

_u x2tl-«@ 2 _ cos?(2mx)

and F(x,t,u) = = oy 5+ 167 (1-32522 ) +a(®), (0 €[01]x[0,1],
where u(x,t) = (1 + t)sin *(27x) is the exact solution to inverse problem. Figures 8-10 show
the numerical and the exact solutions of the time-dependent source c(t) and the objective
function (22). The results are obtained in the same way as Example 5.1. Figure 8 explains the
comparisons of numerical results of the time-dependent source c(t) with exact non-smooth
solution ( c(t) =§+ |t —0.5] ) with § = 0 (no regularization) and noise level p €
{0,1,3,5}%. From the graph of this figure, we note that the numerical solution of c(t) converges
when p = 0, while the results slightly deviated from the exact ones, as the noise percentage p
increases from 1% to 5% and this is expected. In Figure 9, the numerical performance of
functional (22) minimization is plotted. From this figure, it can be observed a speed
convergence was achieved in 7 iterations only to reach a very low value of order 0(1071%).
Therefore, problem (1)-(4) is ill-posed and has to be regularized. The converge minimization
of the objective function (22), as a function of the number of iterations, for g €
{1072,1073,107*} shown in Figure 10. The associated results for c(t) are presented in Figure
11 after applying Tikhonov regularization.

1623



Ibraheem and Hussein Iragi Journal of Science, 2024, Vol. 65, No. 3, pp: 1612-1628

121

? exact

/):\\ — ¥V —p=0%

103 % p=1%

why RO e 4
N \;ﬁ/// S d\ /‘D\ —© —p=5% . 8

= : g % V/gﬂ%ﬂ
; o}

ol
06 - WM

04 ! ! ! ! ! ! ! ! ! |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t
Figure 8: Reconstructed c(t) for Example 5.2 with 8 = 0 and different amounts for p.
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Figure 9: Objective function (22) for Example 5.2, with § = 0 and when p = 3%.
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Figure 10: Objective function (22) for Example 5.2, with p = 3% and when different values
for S.
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Figure 1: Reconstructed c(t) withp = 3% and when different values for § for Example 5.2.
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The 3D graphs of the exact and numerical solutions for u(x, t), and the absolute error are
plotted in Figure 12 with (i) p = 0% and 8 = 0, (ii) p = 3% and B = 1072, (iii) p = 3% and
f = 1073 and (iv) p =3% and B = 10~*. Other details about the number of function
evaluations, number of iterations, the value of the objective function (Eq.22) and the rmse of
c(t) in (EQ.26) are given in Table 2. From Figures 11, 12 and Table 2, it can be seen that there
is a good agreement between the numerical results of c(t) and u(x, t) and their analytical
solutions for the exact data.
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Figure 12: The exact solution, numerical solution for u(x, t) and the absolute error, with (i)
p=0%andpB =0,(ii)p=3%and B = 1072, (iii) p = 3% and B = 1073,and (iv) p = 3%
and B = 10~* for Example 5.1.

Table 2: Number of iterations, number of function evaluations, value of the functional (22) and

rmse(c) for various amounts of noise and regularization, for Example 5.2.

p=0% p=1% p=3% p=5%
B=0
No. of iterations 6 6 7 7
No. of func. evaluations 294 294 336 3.13136e- 336
Objective function value at 1.02097e-13 1.02097e-13 15 2.1768e-16
final iteration (22)
rmse(c) 0.0002 0.0167 0.0502 0.0837
B =102
No. of iterations 7 7 7 7
No. of func. evaluations 336 336 336 336
Obijective function value at 0.213394 0.214864 0.218397 0.222722
final iteration (22)
rmse(c) 0.0756 0.0748 0.0817 0.0975
p=103
No. of iterations 6 7 7 7
No. of func. evaluations 294 336 336 336
Objective function value at 0.0231095 0.0232713 0.0236612 0.0241397
final iteration (22)
rmse(c) 0.0089 0.0175 0.0490 0.0818
B=10"*
No. of iterations 6 6 7 7
No. of func. evaluations 294 294 336 336
Obijective function value at 0.00233098 0.00234733 0.00238674 0.00243512
final iteration (22)
rmse(c) 0.0011 0.0166 0.0500 0.0835

6. Conclusions

In this article, a semi-linear time-fractional inverse source problem of determining
temperature solution together with the time-dependent source has been investigated. The
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fractional finite difference scheme (FFDS) used with the Tikhonov regularization technique for
finding the stable solution of problem (1)-(4) has been utilized. Proved the stability and
convergence of the proposed algorithm by the Von Neumann method (VNM). Finally, some
test examples are given to validate this method.
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