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Abstract  

     This article aims to determine the time-dependent heat coefficient together with 

the temperature solution for a type of semi-linear time-fractional inverse source 

problem by applying a method based on the finite difference scheme and Tikhonov 

regularization. An unconditionally stable implicit finite difference scheme is used as 

a direct (forward) solver. While by the MATLAB routine lsqnonlin from the 

optimization toolbox, the inverse problem is reformulated as nonlinear least square 

minimization and solved efficiently. Since the problem is generally incorrect or ill-

posed that means any error inclusion in the input data will produce a large error in the 

output data. Therefore, the Tikhonov regularization technique is applied to obtain 

stable and accurate results. Finally, to demonstrate the accuracy and effectiveness of 

our scheme, two benchmark test problems have been considered, and its good working 

with different noise levels. 

Keywords: Implicit finite difference scheme (IFDS), Tikhonov technique, Caputo 

fractional derivative, Time-fractional source inverse problem, Stability analysis. 

 

الحرارة من الدرجة الأولى عزم تحديد معامل المصدر الزمني في معادلة التفاعل والانتشار الزمني من  
 

 قتيبه وادي ابراهيم, محمـد صباح حسين*
 قسم الرياضيات ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق.

 

  الخلاصة 
تهدف هذه المقالة إلى تحديد معامل الحرارة المعتمد على الوقت جنبًا إلى جنب مع حل درجة الحرارة لنوع        

شبه الخطي من خلال تطبيق طريقة تعتمد على مخطط الفروق المحدودة    الجزئي  المصدر العكسي من مشكلة  
مخطط الفرق المحدود الضمني المستقر غير المشروط كحل مباشر )أمامي(.   ستخدام تم ا. Tikhonovوتنظيم 

العكسية على أنها تصغير غير خطي للمربع الصغرى وحلها بكفاءة بواسطة    سألةبينما تمت إعادة صياغة الم
MATLAB  الروتين  lsqnonlin  أدوات الا المشكلة بشكل عام  مثلية  من صندوق  نظرًا لأن  أو غير    معتلة . 

كبير في بيانات الإخراج ، لذلك    صحيحة ، أي أن إدراج أي خطأ في بيانات الإدخال سيؤدي إلى حدوث خطأ
للحصول على نتائج مستقرة ودقيقة. أخيرًا ، لإثبات دقة وفعالية مخططنا ،    Tikhonovتم تطبيق تقنية تنظيم  

 يات ضوضاء مختلفة.جيد مع مستو كان عملها  ختبار مجموعة العلامات ، و لاين  مثالتم النظر في 
 

1. Introduction 

     The use of fractional partial differential equations to model many systems and processes is 

still ongoing and their applications are very wide [1, 2]. They have many types, the most 
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important is the diffusion equation of fractional order that was used for the first time in physics 

[3] to describe the diffusion in media using fractal geometry. However, sometimes, a part of 

the data may not be given. These data are source terms, diffusion coefficients, initial data, 

boundary data, and e.t. Therefore, these data must be determined by additional information, and 

this is called fractional inverse problems. Work and study of direct problems of PDE have 

become widespread. In another hand, work on inverse problems is very little and more recent, 

articles on this aspect are few and very limited, see [4 − 11]for some examples of work to solve 

inverse problems. 

 

     In this article, we consider the time-fractional inverse source problem to reconstruct the 

unknown time-source coefficient 𝑐(𝑡)  in the following time-fractional reaction–diffusion 

equation: 

     𝐷𝑡
𝛼𝑢(𝑥, 𝑡) = 𝑢𝑥𝑥 − 𝑎(𝑡)𝑢(𝑥, 𝑡) + 𝑐(𝑡)𝐹(𝑥, 𝑡, 𝑢), (𝑥, 𝑡) ∈ (0,1) × (0, 𝑇].          (1) 

The initial condition 

     𝑢(𝑥, 0) = 𝜑(𝑥) ,              𝑥 ∈ [0,1],                                                                        (2) 

and nonlocal boundary conditions;  

     𝑢(0, 𝑡) = 𝑢(1, 𝑡);   𝑢𝑥(1, 𝑡) = 0,            𝑡 ∈ [0, 𝑇],                                                 (3) 

and integral over determination condition  

     ∫ 𝑥𝑢(𝑥, 𝑡)𝑑𝑥
1

0
= 𝑒(𝑡),   0 ≤ 𝑡 ≤ 𝑇,                                                                        (4) 

where 𝐹(𝑥, 𝑡, 𝑢), 𝜑(𝑥) and 𝑒(𝑡) are given functions, 𝑎(𝑡) is given positive function, 𝑐(𝑡)  is 

unknown time-dependent coefficient. Mathematically, Eq. (1) is a parabolic fractional partial 

differential equation where 𝑢(𝑥, 𝑡)  represents the concentration of one substance, 𝑢𝑥𝑥  is a 

diffusion term, 𝑎(𝑡)𝑢(𝑥, 𝑡) + 𝑐(𝑡)𝐹(𝑥, 𝑡, 𝑢) represents the reaction term where 𝐹(𝑥, 𝑡, 𝑢) is a 

non-linear source term and 𝑎(𝑡) > 0  can be regarded as a control parameter. 𝐷𝑡
𝛼𝑢(𝑥, 𝑡) is the 

Caputo time-fractional derivative of order  0 < 𝛼 < 1, [12]: 

            𝐷𝑡
𝛼𝑢 =

1

𝛤(1− 𝛼)
∫ (𝑡 − 𝑠)−𝛼 𝜕𝑢(𝑥,𝑠)

𝜕𝑠  
𝑑𝑠

𝑡

0
,   0 ≤  𝑡 ≤  𝑇, 

 

     The unique solvability for the inverse problem (1)-(4) is established in [12] and reads under 

the following assumptions: 

(A1)  𝑎 ∈ 𝐶[0, 𝑇] is a positive function and  𝑀𝑎 = ‖ 𝑎‖𝑐(0,𝑇]  .     

(A2) 𝜙 ∈ 𝐶4[0, 1] such that 𝜙(0) = 𝜙(1), 𝜙′(1) = 0, 𝜙′′(0) = 𝜙′′(1), 𝜙′′′(1) =  0. 
 (A3) Let the function 𝐹(𝑥, 𝑡, 𝑢) be continuous with respect to all arguments in (0,1) × (0, 𝑇] ×
𝑅 and satisfies the following conditions: 

 

1. 𝐹(. , 𝑡, 𝑢) ∈ 𝐶4[0, 1] , 𝑡 ∈ [0, 𝑇], 𝐹(𝑥, 𝑡, 𝑢)|𝑥=0 = 𝐹(𝑥, 𝑡, 𝑢)|𝑥=1, 
2. 𝐹𝑥(𝑥, 𝑡)|𝑥=1 = 0, 𝐹𝑥𝑥(𝑥, 𝑡)|𝑥=0 = 𝐹𝑥𝑥(𝑥, 𝑡)|𝑥=1, 𝐹𝑥𝑥𝑥(𝑥, 𝑡)|𝑥=1 = 0. 

3. There exists a nonnegative function 𝑏(𝑥, 𝑡)  such that for each 𝑢, �̃�  ∈ 𝑅 and (𝑥, 𝑡) ∈
 (0,1) × (0, 𝑇] , 

|
𝜕𝑟

𝜕𝑥𝑟
𝐹(𝑥, 𝑡, 𝑢) −

𝜕𝑟

𝜕𝑥𝑟
𝐹(𝑥, 𝑡, �̃�)| ≤ 𝑏(𝑥, 𝑡)|𝑢 − �̃�|, 𝑟 = 0,1,2  

where  𝑏 ∈ 𝐿2((0,1) × (0, 𝑇]), max
0≤𝑡≤𝑇

‖𝑏(·, 𝑡)‖𝐿2(0,1) < ∞; 

4. 𝑀𝐹 =  𝑚𝑎𝑥{‖ 
𝜕𝑟

𝜕𝑥𝑟 𝐹(. , . , 𝑢)‖
𝐿2((0,1)×(0,𝑇])

;  𝑟 = 0, 1, 2}. 

5. There exists a positive constant 𝐹𝑚 such that |  ∫ 𝑥𝐹(𝑥, 𝑡, 𝑢) 𝑑𝑥
1

0
|  > 𝐹𝑚 for each 𝑡 ∈ [0, 𝑇] 

and uniformly to 𝑢 ∈ 𝑅. 

(A4)  𝐸 ∈  𝐶([0, 𝑇]) and 𝐸(0) = ∫ 𝑥𝜙(𝑥) 𝑑𝑥
1

0
 . 
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     In recent years, inverse source problems have received great attention from researchers, as 

they have been studied in many articles.  Wei and Zhang [13] solved the time-fractional time-

dependent source problem by a method based on the separation of variables and Duhamel’s 

principle and Tikhonov regularization. Y. Zhang and X. Xu [14] used the eigen function method 

and Tikhonov regularization to solve the fractional inverse source problem (FISP) for the one-

dimensional time-fractional diffusion equation. Wang, Yamamoto and Han [15] identified a 

space-dependent coefficient-source from data at the final time by using a reproducing kernel 

space method. By using a modified quasi-boundary value method, Wei and Wang [16] 

determined the space-dependent source parameter by using the final data. Tatar and Ulusoy 

[17] determined an inverse space-dependent coefficient-source for nonlocal ISP for a one-

dimensional time-fractional diffusion equation. Tuan, Long and Thinh [18] solved an ISP for a 

time-fractional diffusion equation and determined an unknown source by using the Tikhonov 

regularization method (TRM). Tuan and Nane [19] solved an ISP for a fractional diffusion 

equation for the random case and determined a source parameter. Jian, Li, Liu and Yamamoto 

[20] proposed an iterative threshold algorithm and found the numerical solution to the inverse 

source problem, they reformulated it as an optimization problem. Ma, Prakash and Deiveegan 

[21] identified the unknown space-dependent source term in an ISP for time-fractional diffusion 

equation with variable coefficients in a bounded domain by generalized Tikhonov 

regularization method (GTRM). By using the fractional Tikhonov regularization method 

(FTRM), Xiong and Xue [22] solved ISP for the time-fractional diffusion equation and 

identified a space-dependent source. Djennadi, Smina, Inc, Osman, Gómez and Abu Arqub [23] 

solved the ISP of the Atangana-Baleanu-Caputo fractional diffusion equation by using the 

Tikhonov regularization method (TRM). The later authors also [24] solved the inverse source 

problem of the time–space fractional diffusion equation by using a numerical scheme in the 

RKHS approach and determining of state variable and source parameter. By using TRM, Liu, 

Songshu, Sun, and Feng [25] solved ISP for a fractional diffusion equation with a fractional 

Riemann–Liouville derivative. By using the generalized quasi-boundary value method, Wei, 

Ting, and Luo [26] solved ISP for a time-fractional wave equation and identified a space-

dependent source by using the final time data. Molaee, Tahereh, and Shahrezaee [27] solved 

ISP for  time-fractional differential equations by the DMLPG method. Ebru, et.al [28] solved a 

time-fractional inverse problem for a parabolic equation by a finite difference scheme. 

 

     In our article, a stable numerical solution to problem (1) - (4) should be obtained by using 

implicit finite difference (IFD) with Tikhonov regularization [29]. First, we apply (IFD) to 

obtain the direct solution to problem (1)-(3). Next, we use the Tikhonov regularization to 

stabilize this problem. 

 

     The article consists of six sections: (IFDS) is given in section 2 to obtain the numerical 

solution of problems (1)-(3). Section 3 is developed to investigate the stability and convergence 

of the numerical procedure. The numerical approach to solving (TFSIP) of equations (1)-(4) is 

given in section 4. In section 5, some experiments are provided. The end section gives the 

conclusions for this work. 

 

2. Fractional Finite Differences Scheme (FFDS) 

     In this section, we give a direct solution method to problem (1)-(3). 

We start by letting 𝑀  and 𝑁  are two positive integers. Consider a regular grid in 𝐼 =
[0,1] × [0, 𝑇] 𝑎𝑠:  

Ω = {(𝑥𝑖 = 𝑖ℎ, 𝑡𝑗 = 𝑗𝑘), 𝑗 = 0,1,2, … ,𝑁;  𝑖 = 0,1,2, … ,𝑀}, 

     The step length in space and time are ℎ = 1/𝑀 and 𝑘 = 𝑇/𝑁, respectively. In addition, 

suppose 

https://www.tandfonline.com/author/Ulusoy%2C+S%C3%BCleyman
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                              𝑢𝑖
𝑗
: = 𝑢(𝑥𝑖 , 𝑡𝑗),  𝑎𝑗: = 𝑎(𝑡𝑗), 𝑐𝑗: = 𝑐(𝑡𝑗),   𝐹𝑖

𝑗
: = 𝐹(𝑥𝑖, 𝑡𝑗 , 𝑢(𝑥𝑖, 𝑡𝑗)),                                     

                             𝜑𝑖: = 𝜑(𝑥𝑖),  𝐸𝑗
 : = 𝐸(𝑡𝑗)   for  𝑗 = 0,1,2, … ,𝑁;  𝑖 = 0,1,2,… ,𝑀,                                                                                                          

                             𝑢𝑥𝑥(𝑥𝑖 , 𝑡𝑗) ≈
𝑢𝑖−1

𝑗
−2𝑢𝑖

𝑗
+𝑢𝑖+1

𝑗

ℎ2    for  𝑗 = 0,1,2, … ,𝑁;  𝑖 = 1,2, … ,𝑀         

and 

𝑢𝑥(𝑥𝑖, 𝑡𝑗) ≈
𝑢𝑖−1

𝑗
− 𝑢𝑖+1

𝑗

2ℎ
 

The discrete form of the term 𝐷𝑡
𝛼𝑢 that is introduced in [4] is defined as the following: 

   𝐷𝑡
𝛼𝑢(𝑥𝑖, 𝑡𝑗) ≈ 𝑞𝛼,𝑘 ∑ 𝓌𝑗

𝛼𝑗
𝑘=1 (𝑢𝑖

𝑗−𝑘+1
− 𝑢𝑖

𝑗−𝑘
)                                                     (5) 

where 𝑞𝛼,𝑘 =
𝑘−𝛼

(1−𝛼)𝛤(1−𝛼)
  . 

 

We must note that 𝓌𝑗
𝛼 satisfies the following fact: 

 𝓌𝑗
𝛼 = (𝑗)1−𝛼 − (𝑗 − 1)1−𝛼 , 𝑗 = 1,2, … ,𝑁. 

From equation’s (2) and (3), we obtain the following discrete form of boundary 

   𝑢0
𝑗
= 𝑢𝑀

𝑗
,   𝑢𝑀+1

𝑗
= 𝑢𝑀−1

𝑗
,   𝑗 = 0,1,2, … ,𝑁 ,                                                         (6) 

and the discrete initial condition; so as; 

   𝑢𝑖
0 = 𝜑𝑖 , 𝑖 = 0,1,2, … ,𝑀 .                                                                                    (7) 

By using equations (5), (6) and (7), we get the following formula for governing equation (1) :  

 

𝑞𝛼,𝑘 ∑ 𝓌𝑗
𝛼𝑗

𝑘=1 (𝑢𝑖
𝑗−𝑘+1

− 𝑢𝑖
𝑗−𝑘

) = 𝛾[𝑢𝑖−1
𝑗

− 2𝑢𝑖
𝑗
+ 𝑢𝑖+1

𝑗
] − 𝑎𝑗𝑢𝑖

𝑗
+ 𝑐𝑗𝐹𝑖

𝑗
    

where 𝛾 =
1

ℎ2   ,  𝑖 = 1,2, … ,𝑀 − 1 . 

 

𝑞𝛼,𝑘 ∑ 𝓌𝑗
𝛼𝑗

𝑘=1 (𝑢𝑖
𝑗−𝑘+1

− 𝑢𝑖
𝑗−𝑘

) = [𝛾𝑢𝑖−1
𝑗

− (2𝛾 + 𝑎𝑗)𝑢𝑖
𝑗
+ 𝛾𝑢𝑖+1

𝑗
] + 𝑐𝑗𝐹𝑖

𝑗
.    

Or 

𝑞𝛼,𝑘𝓌1
𝛼(𝑢𝑖

1 − 𝑢𝑖
0) + 𝑞𝛼,𝑘 ∑ 𝓌𝑘

𝛼

𝑗

𝑘=2

(𝑢𝑖
𝑗−𝑘+1

− 𝑢𝑖
𝑗−𝑘

) 

                                                            = [𝛾𝑢𝑖−1
𝑗

− (2𝛾 + 𝑎𝑗)𝑢𝑖
𝑗
+ 𝛾𝑢𝑖+1

𝑗
] + 𝑐𝑗𝐹𝑖

𝑗
           (8) 

We must note that   𝓌𝑗
𝛼 satisfies the following fact: 

1 = 𝓌1
𝛼 > 𝓌2

𝛼 > 𝓌3
𝛼 > ⋯ → 0,   𝑗 = 1,2, … ,𝑁. 

We apply equation (8) when 𝑖 =  1,2, . . . , 𝑀 −  1,𝑀, we have: 

▪ At the first-time level (𝑗 =  1), 

   −𝛾𝑢𝑖−1
1 + (2𝛾 + 𝑎1 + 𝑞𝛼,𝑘𝓌1

𝛼)𝑢𝑖
1 − 𝛾𝑢𝑖+1

𝑖 = 𝑐1𝐹𝑖
1  + 𝑞𝛼,𝑘𝓌1

𝛼𝜑𝑖 ,                      (9) 

and from (8) and (6) at 𝑖 = 𝑀, we have: 

    −2𝛾𝑢𝑀−1
1 + (2𝛾 + 𝑎1 + 𝑞𝛼,𝑘𝓌1

𝛼)𝑢𝑀
1 = 𝑐1𝐹𝑀

1  + 𝑞𝛼,𝑘𝓌1
𝛼𝜑𝑀                             (9a) 

▪ At (𝑗 =  2,3, … ,𝑁), 

−𝛾𝑢𝑖−1
𝑗

+ (2𝛾 + 𝑎𝑗 + 𝑞𝛼,𝑘𝜔1
(𝛼)

)𝑢𝑖
𝑗
− 𝛾𝑢𝑖+1

𝑗
= 𝑐𝑗𝐹𝑖

𝑗
 + 𝑞𝛼,𝑘 ∑(𝓌𝑘

𝛼 − 𝓌𝑘+1
𝛼 )𝑢𝑖

𝑗−𝑘

𝑗−1

𝑘=1

 

                                                                                 +𝑞𝛼,𝑘𝓌𝑗
𝛼𝜑𝑖                                      (10) 

and from (8) and (6) at 𝑖 = 𝑀, we have: 

−2𝛾𝑢𝑀−1
𝑗

+ (2𝛾 + 𝑎𝑗 + 𝑞𝛼,𝑘𝜔1
(𝛼)

)𝑢𝑀
𝑗

= 𝑐𝑗𝐹𝑀
𝑗
 + 𝑞𝛼,𝑘 ∑(𝓌𝑘

𝛼 − 𝓌𝑘+1
𝛼 )𝑢𝑖

𝑗−𝑘

𝑗−1

𝑘=1

 

                                                                          +𝑞𝛼,𝑘𝓌𝑗
𝛼𝜑𝑀                                        (10a) 

 



  Ibraheem and Hussein                            Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1612-1628 
 

1616 

Using equations (9), (9a), (10) and (10a), for  𝑗 =  1, . . . , 𝑁 and  𝑖 =  1,2, . . . , 𝑀 , it can be 

written in more compact form: 

𝑨𝑈1 = 𝑐1𝐹 
1 + 𝑞𝛼,𝑘𝑈

0 , 

𝑨𝑈𝑗 = 𝑐𝑗𝐹
𝑗 + 𝑞𝛼,𝑘𝐷𝑖

𝑗−1
 , 𝑗 =  2, . . . , 𝑁 

where 

 

𝑨 =

[
 
 
 
 
 
 
 
 

(2𝛾 + 𝑎𝑗 + 𝑞𝛼,𝑘𝓌1
𝛼)       − 𝛾          0           0      …      0      0      0

−𝛾     (2𝛾 + 𝑎𝑗 + 𝑞𝛼,𝑘𝓌1
𝛼)          − 𝛾           0     …      0      0      0

    0     − 𝛾       (2𝛾 + 𝑎𝑗 + 𝑞𝛼,𝑘𝓌1
𝛼)       − 𝛾       …      0      0      0

    ⋮           ⋮            ⋮            ⋮              ⋮            ⋮         …      ⋮        ⋮       ⋮
      0          0         0         − 𝛾       (2𝛾 + 𝑎𝑗 + 𝑞𝛼,𝑘𝓌1

𝛼)       − 𝛾      0  

     0          0          0    …       0   − 𝛾        (2𝛾 + 𝑎𝑗 + 𝑞𝛼,𝑘𝓌1
𝛼)    − 𝛾

        0          0         0     …      0        0        0 − 2𝛾    (2𝛾 + 𝑎𝑗 + 𝑞𝛼,𝑘𝓌1
𝛼)]

 
 
 
 
 
 
 
 

 

𝐹 
𝑗 = [𝐹1

𝑗
, 𝐹2

𝑗
, … , 𝐹𝑁

𝑗
]
𝑡
,   𝑗 = 1,2, … ,𝑁, 

where 𝑢𝑖
0 is computed from equation (7). Also, we have  𝑈𝑗 = [𝑢1

1, 𝑢2
2, … , 𝑢𝑀

𝑁 ]𝑡, 

𝐷𝑖
𝑗−1

= ∑ (𝓌𝑘
𝛼 − 𝓌𝑘+1

𝛼 )𝑢𝑖
𝑗−𝑘𝑗−1

𝑘=2 + 𝓌𝑗
𝛼𝑢𝑖

0. 

Finally, discretize integral condition (4) by using the trapezoidal rule as: 

𝑒(𝑡𝑗) =
1

2𝑀
(𝑥0𝑢0

𝑗
+ 𝑥𝑀𝑢𝑀

𝑗
+ 2 ∑ 𝑥𝑘𝑢𝑘

𝑗

𝑀−1

𝑘=1

) , 𝑗 = 0,1,2, … ,𝑁. 

 

3. Stability and Convergence 

     Here, we use the Von Neumann method [30] to prove the stability of the scheme (8). Let the 

solution of the equations (9) and (10) with 𝜑(𝑥) be 𝑈 and �̃� is the solution to the perturbed data 

 �̃�(𝑥). 

Define the error  𝐸 =  �̃�  −  𝑈, 𝐸𝑗  =  �̃�𝑗  −  𝑈𝑗 = (𝑒0
𝑗
, 𝑒1

𝑗
, … , 𝑒𝑀

𝑗
)𝑇   i.e.   𝑒𝑖

𝑗
= �̃�𝑖

𝑗
− 𝑢𝑖

𝑗
, 𝑗 =

0,1,2, … ,𝑁, 𝑖 = 0,1,2,… ,𝑀. 

 

Theorem 1. The FDM scheme (8) is unconditionally stable. 

Proof: 

Assume  𝑒𝑖
𝑗
= 𝜉𝑗𝑒

�̃�𝛽𝑖ℎ ,where 𝛽 is a real spatial number [31] and 𝑖̃ = √−1. From equation (9), 

we have 

            −𝛾𝜉1𝑒
�̃�𝛽(𝑖−1)ℎ + (2𝛾 + �̃�1 + 𝑞𝛼,𝑘𝓌1

𝛼)𝜉1𝑒
�̃�𝛽𝑖ℎ − 𝛾𝜉1𝑒

�̃�𝛽(𝑖+1)ℎ = 𝜉0𝑒
�̃�𝛽𝑖ℎ,        

where �̃� = max
𝑡∈[0,𝑇]

|𝑎(𝑡)|, which can be reduced to 

            −𝛾𝜉1𝑒
−�̃�𝛽ℎ + (2𝛾 + �̃�1 + 𝑞𝛼,𝑘𝓌1

𝛼)𝜉1 − 𝛾𝜉1𝑒
�̃�𝛽ℎ = 𝜉0, 

Or, 

𝜉1 =
𝜉0

−𝛾𝑒−�̃�𝛽ℎ + (2𝛾 + �̃�1 + 𝑞𝛼,𝑘𝓌1
𝛼) − 𝛾𝑒 �̃�𝛽ℎ

, 

which implies 

    𝜉1 = (
1

2𝛾(1−cos𝛽ℎ)+�̃�1+𝑞𝛼,𝑘𝓌1
𝛼) 𝜉0 .                                                                                     (11) 

Since 2𝛾(1 − cos 𝛽ℎ) + �̃�1 + 𝑞𝛼,𝑘𝓌1
𝛼 ≥ 1, it follows that  𝜉1 ≤ 𝜉0. 

Now, from equation (10) when 𝑗 ≥ 2 and substituting 𝑒𝑖
𝑗
= 𝜉𝑗𝑒

�̃�𝛽𝑖ℎ , we have  

−𝛾𝜉𝑗𝑒
−�̃�𝛽ℎ + (2𝛾 + 𝑎𝑗 + 𝑞𝛼,𝑘𝓌1

𝛼)𝜉𝑗 − 𝜉𝑗𝑒
�̃�𝛽ℎ = 𝑞𝛼,𝑘 ∑ (𝓌𝑘

𝛼 − 𝓌𝑘+1
𝛼 )𝜉𝑗−𝑘

𝑗−1
𝑘=1 + 𝑞𝛼,𝑘𝓌𝑗

𝛼𝜉0    

(−𝛾𝑒−�̃�𝛽ℎ + (2𝛾 + 𝑎𝑗 + 𝜎𝛼,𝑘𝓌1
𝛼) − 𝛾𝑒 �̃�𝛽ℎ)𝜉𝑗 = 𝑞𝛼,𝑘 ∑ (𝓌𝑘

𝛼 − 𝓌𝑘+1
𝛼 )𝜉𝑗−𝑘

𝑗−1
𝑘=1 + 𝑞𝛼,𝑘𝓌𝑗

𝛼𝜉0   
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𝜉𝑗 =
𝑞𝛼,𝑘 ∑ (𝓌𝑘

𝛼−𝓌𝑘+1
𝛼 )𝜉𝑗−𝑘

𝑗−1
𝑘=1 +𝑞𝛼,𝑘𝓌𝑗

𝛼𝜉0

(2𝛾(1−cos𝛽ℎ)+�̃�𝑗+𝑞𝛼,𝑘𝓌1
𝛼)

.   

By induction, we have 𝜉𝑁 ≤ 𝜉𝑁−1 ≤ ⋯ ≤ 𝜉1 ≤ 𝜉0  .Thus  |𝑒𝑖
𝑗
| ≤ |𝑒𝑖

𝑗−1
| , for all  𝑗 . This 

completes the proof of the unconditional stability of the scheme (8). 

 

       Now, we must prove the convergent. Consider  ‖𝐸𝑗‖
2

2
= ℎ ∑ |𝑒𝑖

𝑗
|
2

𝑖 . This Euclidean norm 

of the perturbation [31]. Therefore, the stability condition can be written as: 

 

       ‖𝐸𝑗‖
2

≤ ‖𝐸𝑗−1‖
2
 , 𝑗 = 1,2, … ,𝑁                                                                     (15) 

This relation implies that   ‖𝐸𝑗‖
2

≤ ‖𝐸0‖2, Equation (8) can be rewritten as: 

 

𝐴𝑈𝑗 = ℳ𝑈𝑗−1 , 
where ℳ is the difference operator defined as: 

(ℳ𝑈𝑗−1)𝑖 = ∑(𝓌𝑘
𝛼 − 𝓌𝑘+1

𝛼 )(𝑈𝑗−𝑘)𝑖

𝑗−1

𝑘=1

+ 𝓌𝑗
𝛼(𝑈0)𝑖 

From 𝐴𝐸𝑗 = ℳ𝐸𝑗−1 , we have  𝐸𝑗 = 𝐴−1ℳ𝐸𝑗−1, by considering equation (15), gives  

 

                                  ‖𝐴−1ℳ𝐸𝑗−1‖
2

≤ ‖𝐸𝑗−1‖
2
 .                                                                (16) 

That is the operator 𝐴−1ℳ is a non-expansive. 

      Now, take 𝐴 −  ℳ =  𝑅, where 𝑅 is the difference equation at mesh point (𝑖, 𝑘)𝑡ℎ. So if 

R tends to zero (𝑅 → 0), the scheme (8) is consistent [33,34].  

Now, define  𝑒𝑗  =  𝑢𝑗  −  𝑈𝑗, where 𝑈 is the numerical solution and 𝑢 is the exact solution, 

then we have [32].  

 

    𝐴 𝑒𝑗 =  ℳ𝑒𝑗−1 + 𝑅𝑗                                                                                           (17) 

Therefore, from equation (17), we can write  

   ‖𝑒𝑗‖
2

≤ ‖𝐴−1ℳ𝑒𝑗−1‖
2
+ ‖𝐴−1‖2‖𝑅𝑗‖

2
                                                            (18) 

Because 𝐴−1ℳ is non-expansive, then from equation (18) we have 

    ‖𝑒𝑗‖
2

≤ ‖𝑒𝑗−1‖
2
+ ‖𝐴−1‖2‖𝑅𝑗‖

2
                                                                      (19) 

Thus, by induction, we have 

    ‖𝑒𝑗‖
2

≤ ‖𝐴−1‖2 ∑ ‖𝑅𝑘‖2
𝑗
𝑘=1                                                                                 (20) 

This inequality shows that if  ‖𝐴−1‖2  for equations (9) – (10) is bounded, then, the 

error ‖𝑒𝑗‖
2

→ 0 . This completes the proof of the convergence of the proposed method. 

 

3.1 Numerical Example for Direct Problem 

     Here, an example is given for the direct problem, that is when the coefficient c(t) is known, 

to validate,  stability, and accuracy for (FFDS). 

 

Example 1 Consider solving the problem (1)-(3) with the data:  

                     𝑎(𝑡) = 100𝑒100𝑡, 𝑡 ∈ [0,1], 
                     𝑐(𝑡) = 𝑒𝑡, 𝑡 ∈ [0,1], 
                     𝜑(𝑥) = 0, , 𝑥 ∈ [0,1], 

                     𝐹(𝑥, 𝑡, 𝑢) =

1

Γ(2−α)
𝑡−𝛼𝑢−(2−12𝑥2)𝑡+100𝑒100𝑡𝑢

𝑒𝑡
, (𝑥, 𝑡) ∈ [0,1] × [0,1], 
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        where 𝑢(𝑥, 𝑡) = 𝑥2(1 − 𝑥2)𝑡   is the exact solution. Figure 1 shows the absolute error 

between the exact and numerical solutions of 𝑢(𝑥, 𝑡) when  𝛼 ∈ {0.25, 0.5, 0.75},  𝑀 = 𝑁 =
40. And, one can see from this 3D figure excellent agreement is obtained. Figure 2 shows the  

exact and numerical solutions for the thermal energy  𝑒(𝑡) 

 

  
 

Figure 1: The absolute error between the true and numerical solutions of 𝑢(𝑥, 𝑡) when  𝛼 ∈
{0.25, 0.5, 0.75} for Example 1. 

 
Figure 2: The required output 𝑒(𝑡), with 𝑁 =  𝑀 =  40, for Example 1 with  𝛼 = 0.5. 

 

4. Numerical Procedure for Time-Fractional Source Inverse Problem (TFSIP) 

     We aim to find the numerical solution for problem (1)-(4) which is described in Section 2. 

We want to find stable reconstructions for the unknown coefficient 𝑐(𝑡) of the one-dimensional 

semi-linear time-fractional equation together with 𝑢(𝑥, 𝑡) to fulfill equations (1)-(4). 

Observe that from (1) and (4), we have: 

𝑐(𝑡) =
𝐷𝑡

𝛼𝑒(𝑡)+𝑎(𝑡)𝑒(𝑡)

∫ 𝑥𝐹(𝑥,𝑡,𝑢)𝑑𝑥
1
0

.  Therefore, by using 𝑡 =  0  in the above equation, 

𝑐(0) =
𝐷𝑡

𝛼𝑒(0) + 𝑎(0)𝑒(0)

∫ 𝑥𝐹(𝑥, 0, 𝜑(𝑥))𝑑𝑥
1

0

 , 

      which is a constant initial guess. Now, we recast this problem as a nonlinear minimization 

problem. In the other words, we minimize the gap between measured data and computed 

solutions. The Tikhonov regularization functional can be found by imposing the condition (4): 

                 𝐹(𝑐) = ‖∫ 𝑥𝑢(𝑥, 𝑡)𝑑𝑥
1

0
− 𝑒(𝑡)‖

2

+ 𝛽‖𝑐(𝑡)‖2 ,                                                  (21) 

 

or in discretized form, 
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                𝐹(𝑐) = ∑ (∫ 𝑥𝑢(𝑥, 𝑡𝑗)𝑑𝑥
1

0
− 𝑒(𝑡𝑗))

2
𝑁
𝑗=1 + 𝛽 ∑ 𝑐𝑗

2𝑁
𝑗=1 ,                                         (22)           

where  𝛽 >  0  represents a parameter of regularization. The 𝑙𝑠𝑞𝑛𝑜𝑛𝑙𝑖𝑛  routine is used to 

achieve a minimum objective F function, for more details see [35]. 𝐿𝑠𝑞𝑛𝑜𝑛𝑙𝑖𝑛′𝑠 routine starts 

from 𝑐(0) and tries to find a minimum of the scalar function of several variables, given the 

constraints, for more details see [4]. We take the parameters of the routine as: 

− 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =  102 × (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠). 
− 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑠 =  10−15. 
     The fractional inverse problem (1)-(4) is tested subject to both noisy measurement and exact 

data (4). The noise-contaminated is simulated as:  

                  𝑒𝜖(𝑡𝑗) = 𝑒(𝑡𝑗) + 𝜖𝑗 ,                          𝑗 = 0,𝑁̅̅ ̅̅ ̅                                                    (23) 

     where 𝜖 represents the  Gaussian random vector with a mean equal to zero and standard 

deviation is given by:  

                𝜎 = 𝑝 × max
𝑡∈[0,𝑇]

|𝑒(𝑡)| ,                                                                                     (24) 

     where 𝑝 represents the percentage of noise. We anticipate the normrnd built in function to 

generate the random variables 𝜖 = (𝜖𝑗), 𝑗 = 0,𝑁̅̅ ̅̅ ̅  as : 

                 𝜖 = 𝑛𝑜𝑟𝑚𝑟𝑛𝑑(0, 𝜎, 𝑁) .                                                                                        (25) 

 

5. Results and Discussions  

     The Root Means Square Error (RMSE) has been used to check the accuracy of numerical 

results after employing the Tikhonov regularization technique, and its formula is given as 

follows:  

                   𝑅𝑀𝑆𝐸(𝑐) = √
1

𝑁
∑ (𝑐𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙(𝑡𝑗) − 𝑐𝑒𝑥𝑎𝑐𝑡(𝑡𝑗))2𝑁

𝑗=1  ,                                       (26) 

For simplicity, we fix 𝑇 = 1 in all following numerical experiments. 

 

Example 5.1: (Smooth Coefficient) Consider the fractional inverse problem (1)-(4) with input 

data in Example 1 of the direct problem with the   𝑒(𝑡) =
1

12
𝑡, 𝑡 ∈ [0,1]  and the coefficient 

𝑐(𝑡) is unknown. The initial guess is taken as 𝑐0 = 1. Figure 3 shows the numerical solution of 

the time-dependent source function from first order heat moment (4) in comparison with the 

exact solution (𝑐(𝑡) = 𝑒𝑡 ) obtained by solving the inverse problem with the input data in 

Example 1 using the FFDS, which is described in Section 2, with 𝑀 = 𝑁 ∈ {10, 20, 40}. In 

Figure 4, the counter of iterations required to reach the convergence of the functional (22) to a 

very low threshold value of 𝑂(10−15) is plotted with  𝑀 = 𝑁 ∈ {10, 20, 40}. From this figure, 

it can be observed a speed convergence was achieved in 5 iterations only to reach a very low 

value of order  𝑂(10−15). However, the problem remains ill-posed and has to be regularized.  
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Figure 3: The numerical solutions for time-dependent source 𝑐(𝑡) and exact value (𝑐(𝑡) = 𝑒𝑡) 

for Example 5.1 with 𝑝 = 0 and 𝛽 = 0. 

 
Figure 4: Objective function (22) for Example 5.1 when  𝛽 = 0 and with = 0% . 

 

      Next, we fix 𝑁 = 𝑀 = 40 and start our investigation with cases (i) no noise (𝑝 = 0%) and 

(ii) noise (𝑝 = 10%), included in the measurement data (4). Figure 5 explains the comparisons 

of numerical results with the exact solution for 𝑐(𝑡) with no regularization (𝛽 =  0) and (a) no 

noise (𝑝 = 0%) and (b) with noise 𝑝 ∈ {3,10}%. Subfigure (a) investigates the convergence of 

the numerical solution for 𝑐(𝑡), while we note the results in subfigure (b) are unstable and 

inaccurate and this is expected. 
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(a) 

 
(b) 

 
Figure 5: Reconstructed 𝑐(𝑡)  for Example 5.1 with  𝛽 = 0  and (a) 𝑝 = 0%  and (b) 𝑝 ∈
{3,10}% noise. 

 

      The reconstructed 𝑐(𝑡) are presented in Figure 6 after applying the Tikhonov regularization 

with 𝑝 = 10%  and 𝛽 ∈ {10−4, 10−5, 10−6} . The speed converges minimization of the 

objective function (22), as a function of the number of iterations, for 𝛽 ∈ {10−𝑖, 𝑖 = 4,5,6} 
shown in Figure 7. The 3D graph of absolute error between true solution and numerical solution 

for temperatures 𝑢(𝑥, 𝑡) is plotted in Figure 8 with (a) 𝑝 = 3% and (b) 𝑝 =  10%  with (i, 

iv) 𝛽 = 10−4,  (ii, v) 𝛽 = 10−5 and (iii, vi) 𝛽 = 10−6.  Next, in Table1, we compute the 𝑅𝑀𝑆𝐸 

errors (25) for 𝛽 ∈ {0, 10𝑖  , 𝑖 = 3,4,5,6} and 𝑝 ∈ {3, 5,10}%. Clearly,  from Figures 5,6,8 and 

Table 1, it can be seen that there is good agreement and convergence between the numerical 

solutions of 𝑐(𝑡) and 𝑢(𝑥, 𝑡) with their corresponding exact solutions, where 𝑝 decreases from 

10 % 𝑡𝑜 3% and then to 0%. 
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Figure 6: The reconstructed 𝑐(𝑡) for Example 5.1. with 𝑝 = 10% and different amounts for 𝛽.  

 

 
 

Figure 7: Objective function (22), with different values for 𝛽 and 𝑝 = 10%, for Example 5.1 

 

 

 
(i) 

 
(ii) 

(a) 

 
(iii) 
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(iv) 

 
(v) 

(b) 

 
(vi) 

Figure 8: The absolute error between the exact and numerical solutions of 𝑢(𝑥, 𝑡) for Example 

5.1 with different values of 𝑝 and  𝛽  

 

Table 1: The 𝑅𝑀𝑆𝐸  value (25) for various amounts of noise 𝑝 ∈  {3,5,10}%  and various 

regularization parameters 𝛽 ∈  {0, 10−𝑖 , 𝑖 = 3,4,5,6} for Example 5.1. 

𝑹𝑴𝑺𝑬(𝒄) 

 𝑝 = 3% 𝑝 = 5% 𝑝 = 10% 

𝜷 = 𝟎 0.4513 0.6272 1.8438 

𝜷 = 𝟏𝟎−𝟒 0.3869 0.5416 0.6748 

𝜷 = 𝟏𝟎−𝟓 0.2655 0.4589 0.3111 

𝜷 = 𝟏𝟎−𝟔 0.3819 0.6368 1.5274 

 

Example 5.2: (Non-Smooth Coefficient) 

In this example, the time-fractional inverse source problem that is represented by equations (1) 

- (4) is considered with the following data; 

 

        𝑎(𝑡) = 100(𝑒30𝑡 + 1), 𝑡 ∈ [0,1], 
        𝜑(𝑥) = sin 4(2𝜋𝑥), , 𝑥 ∈ [0,1], 

        𝑐(𝑡) =
1

2
+ |𝑡 − 0.5|, 𝑡 ∈ [0,1],   

        𝑒(𝑡) = (
3

16
)(𝑡 + 1), 𝑡 ∈ [0,1], 

and  𝐹(𝑥, 𝑡, 𝑢) =
𝑢

𝑐(𝑡)
(

𝑥2𝑡1−𝛼

Γ(2−α)(𝑡+1)
+ 16𝜋2 (1 − 3

𝑐𝑜𝑠2(2𝜋𝑥)

𝑠𝑖𝑛2(2𝜋𝑥)
) + 𝑎(𝑡)) , (𝑥, 𝑡) ∈ [0,1] × [0,1], 

where  𝑢(𝑥, 𝑡) = (1 + 𝑡)sin 4(2𝜋𝑥) is the exact solution to inverse problem. Figures 8-10 show 

the numerical and the exact solutions of the time-dependent source c(t) and the objective 

function (22).  The results are obtained in the same way as Example 5.1. Figure 8 explains the 

comparisons of numerical results of the time-dependent source 𝑐(𝑡) with exact non-smooth 

solution ( 𝑐(𝑡) =
1

2
+ |𝑡 − 0.5| ) with 𝛽 =  0  (no regularization) and noise level  𝑝 ∈

{0,1,3,5}%. From the graph of this figure, we note that the numerical solution of 𝑐(𝑡) converges 

when p = 0, while the results slightly deviated from the exact ones, as the noise percentage p 

increases from 1% to 5% and this is expected. In Figure 9, the numerical performance of 

functional (22) minimization is plotted. From this figure, it can be observed a speed 

convergence was achieved in 7 iterations only to reach a very low value of order 𝑂(10−14). 

Therefore, problem (1)-(4) is ill-posed and has to be regularized. The converge minimization 

of the objective function (22), as a function of the number of iterations, for 𝛽 ∈
{10−2, 10−3, 10−4}  shown in Figure 10. The associated results for 𝑐(𝑡) are presented in Figure 

11 after applying Tikhonov regularization. 
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Figure 8: Reconstructed 𝑐(𝑡) for Example 5.2 with  𝛽 = 0 and different amounts for  𝑝. 

 
Figure 9: Objective function (22) for Example 5.2, with 𝛽 = 0 and when  𝑝 = 3%. 

 
Figure 10: Objective function (22) for Example 5.2, with 𝑝 =  3% and when different values 

for 𝛽. 
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Figure 1: Reconstructed 𝑐(𝑡) with 𝑝 =  3% and when different values for 𝛽 for Example 5.2. 

      

     The 3D graphs of the exact and numerical solutions for 𝑢(𝑥, 𝑡), and the absolute error  are 

plotted in Figure 12 with (i) 𝑝 = 0% and 𝛽 = 0, (ii) 𝑝 = 3% and 𝛽 = 10−2, (iii) 𝑝 = 3% and 

𝛽 =  10−3 ,and (iv)  𝑝 = 3%  and  𝛽 =  10−4 . Other details about the number of function 

evaluations, number of iterations, the value of the objective function (Eq.22) and the rmse of 

𝑐(𝑡) in (Eq.26) are given in Table 2. From Figures 11, 12 and Table 2, it can be seen that there 

is a good agreement between the numerical results of 𝑐(𝑡) and 𝑢(𝑥, 𝑡) and their analytical 

solutions for the exact data. 

 

 
(i) 

 
(ii) 
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(iii) 

 
(iv) 

Figure 12: The exact solution, numerical solution for 𝑢(𝑥, 𝑡) and the absolute error, with (i) 

𝑝 = 0% and 𝛽 = 0, (ii) 𝑝 = 3% and 𝛽 = 10−2, (iii) 𝑝 = 3% and 𝛽 =  10−3,and (iv) 𝑝 = 3% 

and  𝛽 =  10−4 for Example 5.1. 

 

Table 2: Number of iterations, number of function evaluations, value of the functional (22) and  

𝑟𝑚𝑠𝑒(𝑐) for various amounts of noise and regularization, for Example 5.2. 

 𝒑 = 𝟎% 𝒑 = 𝟏% 𝒑 = 𝟑% 𝒑 = 𝟓% 

𝜷 = 𝟎 

No. of iterations 

No. of func. evaluations 

Objective function value at 

final iteration (22) 

rmse(c) 

 

6 

294 

1.02097e-13 

 

0.0002 

 

6 

294 

1.02097e-13 

 

0.0167 

 

7 

336     3.13136e-

15 

 

0.0502 

 

7 

336 

2.1768e-16 

 

0.0837 

𝜷 = 𝟏𝟎−𝟐 

No. of iterations 

No. of func. evaluations 

Objective function value at 

final iteration (22) 

rmse(c) 

 

7 

336 

0.213394 

 

0.0756 

 

7 

336 

0.214864 

 

0.0748 

 

7 

336        

0.218397 

 

0.0817 

 

7 

336        

0.222722 

 

0.0975 

𝜷 = 𝟏𝟎−𝟑 

No. of iterations 

No. of func. evaluations 

Objective function value at 

final iteration (22) 

rmse(c) 

 

6 

294 

0.0231095 

 

0.0089 

 

7 

336 

0.0232713 

 

0.0175 

 

7 

336       

0.0236612 

 

0.0490 

 

7 

336       

0.0241397 

 

0.0818 

𝜷 = 𝟏𝟎−𝟒 

No. of iterations 

No. of func. evaluations 

Objective function value at 

final iteration (22) 

rmse(c) 

 

6 

294 

0.00233098 

 

0.0011 

 

6 

294 

0.00234733 

 

0.0166 

 

7 

336      

0.00238674 

 

0.0500 

 

7 

336      

0.00243512 

 

0.0835 

 

6. Conclusions 

     In this article, a semi-linear time-fractional inverse source problem of determining 

temperature solution together with the time-dependent source has been investigated. The 
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fractional finite difference scheme (FFDS) used with the Tikhonov regularization technique for 

finding the stable solution of problem (1)-(4) has been utilized. Proved the stability and 

convergence of the proposed algorithm by the Von Neumann method (VNM). Finally, some 

test examples are given to validate this method. 
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