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Abstract

In this paper, we propose new types of non-convex functions called
strongly Ej,-b-vex functions and semi strongly Ej,-b-vex functions. We study
some properties of these proposed functions. As an application of these
functions in optimization problems, we discuss some optimality properties of
the generalized nonlinear optimization problem for which we use, as an
objective function, strongly Ej-b-vex function and semi strongly Ej-b-vex
function.
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1. Introduction

Convex analysis is considered as effective tool for dealing with problems in optimization and
applied mathematics [1-4]. Several attempts are made to extend and generalize convex sets and
functions into ones with less restrictive convexity assumptions. For instance, b-vex functions
introduced by Bector and Singh [5] as a generalization of convex functions which met with convex
functions in many properties. Another class of generalized convex functions introduced by Youness
[6]. Youness introduced E-convex sets, E-convex functions, and E-convex programming by relaxing
the definitions of convex sets, convex functions, and convex optimization problems and using the
effect of a mapping E. After that, Chen [7] introduced semi E-convex, quasi semi E-convex, and
pseudo semi E-convex functions, and studied some of their properties and relations with E-convex
functions. Recently, Youness and Emam, [8, 9] extended E-convex sets, E-convex functions, and semi
E-convex functions into strongly E-convex sets, strongly E-convex functions, and semi strongly E-
convex functions, respectively. By combining E-convex and b-vex functions, Mishra et. al [10]
introduced the class of E-b-vex and semi E-b-vex functions and study some of their properties and
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relations with E-convex functions. Very recently, Marian [11] introduced h-strongly E-convex
functions as a combination of strongly E-convex functions and h-convex functions introduced by
Hézy [12]. For more results published on generalized convexity, (see, e.g. [13-19]). In this paper, we
introduce two new classes of functions, namely, strongly Ej-b-vex and semi strongly Ej-b-vex
functions. The new classes generalize E-b-vex, semi E-b-vex and h-strongly E-convex functions. We
study some basic and optimality properties of these functions. The paper is organized as follows. In
the next section we recall some preliminary concepts and some generalized convex functions
introduced in the literature. For the sake of completeness, we define h- semi strongly E-convex
function where h- strongly E-convex functions are already studied in [11]. In section 3, we define
strongly Ej,-b-vex and semi strongly Ej -b-vex functions which are new types of non-convex functions
and study some of their general properties. Applications of strongly Ej-b-vex and semi strongly Ej,-b-
vex functions to non-linear optimization problems are studied in Section 4.

2. Preliminaries

Throughout the paper, we assume that R™is the n-dimensional Euclidean space, R* be a set of
non-negative real numbers. For the sake of brevity, we adopt the following assumption
Assumption (A) Let K be a non-empty subset of R™. Assume that f:R™ — R is a real valued
function, E: R™ — R"™, and b: R™ x R™ x [0,1] = R* are given mappings where ub(x,y,u) € [0,1]
foreach x,y € R™ and u € [0,1].

Let us recall some preliminaries and related concepts that will be needed to develop the new
generalized functions. For the rest of the paper, K, f, E and b are defined as in assumption (A) unless
otherwise specified.

Definition 2.1 Let y € R. Then, different types of y-level sets associated with f and E are defined in
the literature. Some of these sets are listed below.

1) K, ={keK:f(k) <y} [1]

2) E-K,={k€K:f(Ek) <v}. [6]

3) Ky ={E(k) e E(K): f(k) <vy}. [16]

Definition 2.2 The epigraph of f associated with K, for each y € R, is denoted by epi f and defined
asepi f ={(k,y) € KxR: f(k) <v}. [1]
Definition 2.3 The set K is said to be
1) convex if for every k4, k, € K, and for every u € [0,1], we have
pki+ (1 — Wk, €K. [1]
2) E-convex with respect to the operator E if for every k;,k, € K, and for every u € [0,1], we have
HE (k1) + (1 — pE(ky) € K. [6]
3) Strongly E-convex if for every k4, k, € K, and for every u, a € [0,1], we have

u(aky + E(ky)) + (1 — w)(ak; + E(ky)) €K, [8]
4) E-b-vex if for every k4, k, € K, and for every u € [0,1], we have
bk, ko, f)E (k1) + (1 — ub(kq, k2, ))E(k2) € K. [10]
Definition 2.4 [9] Let K € R™ X R, I: R — R be the identity function, and E: R™ —» R" is a given
mapping then K is called strongly E x I convex if (x, 8), (y,w) € K and u, a € [0,1] then
(u(ax + E(x)) + A —-w(ay +E®)),u(ap +EPB)) + (1 — w)(aw + E(w)) € K.In other words,
(u(ax + E@)) + (1 — w(ay + EQ)), u(aB + B) + (1 — w(aw + w) € K.
Proposition 2.5 [8] If K < R™is strongly E-convex set then E(K) € K.
Definition 2.6 [6] f is said to be E-convex function on K if and only if K is an E-convex set and for
each k{,k, € K,and each 0 < u < 1, we have
fE(k:) + (1 = WE(ky)) < uf (E(k1)) + (1 = w)f (E(k2)).
Definition 2.7 [8] A function f is said to be strongly E-convex on K if and only if K is strongly E-
convex set and for each k4, k, € K, and each 0 < y,a < 1, we have
f(u(aky + E(ky)) + (1 — @) (akz + E(k2))) < uf (E (k) + (1 = w)f (E (kz)).
Remark 2.8 Every strongly E-convex function is E-convex function (« = 0). The converse does not
hold [8, Example 4].
Definition 2.9 [10] A function f is said to be E-b-vex on K if and only if K is E-b-vex set and for
each ki, k, € K,and each 0 < u < 1, we have
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fub(ky, ky, WE(kq) + (1 — pb(ky, ko, 1)) E (k7)) <
pub(ky, ko, 1) f (E(k1)) + (1 — ub(kq, k2, ) f (E (k2)).

Mishra et al. [10] also introduced semi E-b-vex functions as follows.
Definition 2.10 A function f is referred to as semi E-b-vex on K if and only if K is E-b-vex set and
for each kq,k, € K,each 0 < u <1, we have

fub(ky, kay )E (ky) + (1 = ub ey, ko, 10)E (k2)) < ub(ky, ko, i) f (k1) +
(1 = pub(ky, ka, 1)) f (k7).

In what follow we recall the definition of h-convex introduced in [12]. Note that other versions of
h-convex functions can be found in [20-21].
Definition 2.11 [12] Let h: [0,1] — R be a function. Then £ is said to be h-convex function if for each
ki, k, € K,andeach 0 < pu <1 we have f(uk; + (1 — wk,) < h(u)f (k1) + h(1 — p)f (ky).

By making use of h-convex functions and strongly E-convex functions, Marian [11] introduced the
h-strongly E-convex functions as follows.
Definition 2.12 Let h:[0,1] = R be a function. Then f is said to be h-strongly E-convex function if
for each kq,k, € K,and each 0 < u,a < 1 we have
fu(aky + E(kq)) + (1 — p)(aky + E(kz))) < h(u)f (E(k1)) + h(1 — @) f (E (k2)).

Following the lines of Marian [11] and Youness and Emam [8], the definition of h- semi strongly
E-convex function can be deduced.
Definition 2.13 Let h:[0,1] = R be a function. Then f is said to be h-semi strongly E-convex
function if for each k,,k, € K, and each 0 < u,a < 1 we have
fu(aky + E(kq)) + (1 — p)(akz + E(kz))) < h(u)f (k1) + h(1 — 1)f (ko).

Next, we show an example of h-semi strongly E-convex function that is not h-strongly E-convex.
Example 2.14 Let f and E are defined as in [Example 2.1, 8]. Namely, f: R — R such that

Vx x=>0
f® {—\/—_x x<0

Let E:R - R such that E(x) = —|x| and h:[0,1] - R be defined as h(1) = 21. Direct

computation shows that f is h-semi strongly E-convex function. However, f is not h-strongly E-

convex function. Indeed, if we take u= % a=1,x=2,y=5. Then, f(u(ax +EM)) +

(1 — @) (ay + E())) = £(0) = 0, and
h(w)f(E()) +h(1 — w)f (E(y))=-3.73. L

Another example illustrates h-strongly E-convex function which is not h-semi strongly E-convex
function is given below.
Example 2.15 Let f and E are defined as in [Example 2.3, 8] where f: R = R such that

(x —2)2 0 <x<2
f(x)_{(x+2)2 —2<x<0

Let E: R — Rsuch that E(x) = 0 and h:[0,1] - R be defined as h(1) = 24.
Using the definition, we deduce that f is h-strongly E-convex function, but it is not h-semi strongly
E-convex function.Foruy=a =0, x =0, y = 1.
Then, f(u(ax + E(x)) + (1 —w(ay + E(y))) = 4, and h(w)f(x) + h(1 = )f(y)=2. m
Remark 2.16 For simplicity in appearance, we omit in the proofs and calculations the parentheses
from E (x), and writing it instead as Ex whenever it seems convenient. We also discard the argument
of the mapping b and express b(x,y,u) asb.
3. Strongly E,-b-vex and semi strongly Ej-b-vex functions

In this section, we introduce two generalized convex functions which are strongly Ej,-b-vex and
semi strongly Ej-b-vex functions where h: [0,1] — R is a function defined as in Definition 2.10. The
generalized functions extend the definitions of h-strongly E-convex functions, E-b-vex functions, and
semi E-b-vex functions. As we mentioned earlier in the preliminary section, each of f,E, b, and K are
defined as in assumption (A).
Definition 3.1 f is said to be strongly Ej-b-vex function if K is strongly E-convex and for each
ki, k, € K,andeach 0 < u,a < 1 we have

fu(aky + Eky) + (1 = p)(aky + Eky)) < h(ub)f (Eky) + h(1 — ub)f (Ek,).
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Definition 3.2 f is said to be semi strongly Ej-b-vex function if K is strongly E-convex and for each
ki, k, € K,andeach 0 <y, <1 we have

fulaky + E(k1)) + (1 = p)(aks + E(kz))) < h(ub)f (k1) + h(1 — ub)f (k).

Note that strongly Ej,-b-vex and semi strongly Ej,-b-vex functions are considered as
generalizations of h-strongly E-convex and h-semi strongly E-convex functions, respectively, in the
following sense.

Remark 3.3 Every h-strongly (respectively, h-semi strongly) E-convex functions are strongly
(respectively, semi strongly) E},-b-vex functions. (Choose b = 1)
Proposition 3.4 Let f, b, K, and E are defined as in assumption (A) such that the mapping b = 1 and
let h:[0,1] —» R be a function such that A(0) = 0. Assume that f is semi strongly Ej-b-vex function
on the strongly E-convex set K. Then f(ak + Ek) < h(1)f(k) Vk € K,a € [0,1].
Proof Assume that f is semi strongly Ej-b-vex on the strongly E-convex set K, then for each
ki, k, € K,andeach 0 <y, <1 we have
u(aky + Eky) + (1 — w)(ak, + Ek,) € K and
fu(aky + Ekqy) + (1 — w)(ak; + Ekz)) < h(ub)f (k) + h(1 — ub)f (k).
Foru=b =1, weget f(ak; + Eky) < h(1)f (ky). n
Proposition 3.5 Assume that f is strongly Ej-b-vex function on the strongly E-convex set K and
f(Ek) < f(k) Vk € K. Then f is semi strongly Ej-b-vex function on K.
Proof. From the assumptions, we have for each kq,k, € K,andeach 0 < y,a < 1,
u(aky + Eky) + (1 — w)(ak, + Ek,) € K and
fu(aky + Ekqy) + (1 = w)(ak, + Ekz)) < h(ub)f (Eky) + h(1 — ub)f (Eky).

< h(ub)f (k1) + h(1 — ub)f (k2),
Thus, f is semi strongly Ej,-b-vex function on K as required. [

Some properties that hold for strongly Ej-b-vex functions and semi strongly Ej,-b-vex functions on
K are given next.

Proposition 3.6 Let f, g: R® — R are two functions such that K is strongly E-convex set. If f and g
are strongly (respectively, semi strongly) E,-b-vex on K w.r.t the same mappings E and b, then
af + fg is strongly (respectively, semi strongly) Ej-b-vexon K , forall a, 8 = 0.

Proof The proof follows directly using the definitions of strongly (respectively, semi strongly) Ej-b-
vex functions. |

Proposition 3.7 Let f;: R™ — R is bounded from above for each i € A and K is strongly E-convex set
with the same mappings E and b and h is a positive function. Define, f: R® — R such that f =
sup;ea fi- I f; is strongly (respectively, semi strongly) Ej-b-vex function on K for each i € A, then
f is strongly (respectively, semi strongly) Ej-b-vex function on K.

Proof We prove the property for strongly Ej,-b-vex functions and in a similar manner one can prove it
for semi strongly Ej-b-vex functions. Assume that f; is a strongly Ej-b-vex functions on K, Vi € A.
Then, for each k;,k, € K and 0 < u,a < 1 we have u(ak, + Ek,) + (1 — w)(ak, + Ek,) € K and
VieA

filu(aky + Ekq1) + (1 = p)(ak; + Eky)) < h(ub)f; (Eky) + h(1 — ub)fi(Ek>)

Taking the supremum to the right side and then to the left side of the above inequality and using the
assumptions on h and f;, we get

Silel}\)fi(ﬂ(akl + Ekqy) + (1 — p)(ak, + Eky)) < Sl-‘;}f{h(“b)ﬁ (Ekq) + h(1 — ub)f;(Ek,)}, that
is, f(u(aky + Eky) + (1 — p)(ak, + Eky)) < h(ub) slflellgﬁ (Eky) + h(1 — ub) Slflel}\)ﬁ(Ekz) =
h(ub) f(Eky) + h(1 — pub) f(Eky).

Hence, f is strongly Ej-b-vex functionson K. m

Proposition 3.8 Let f be a strongly (respectively, semi strongly) Ej-b-vex function on the strongly
E-convex set K. Assume also that G: R — R is non-decreasing sublinear function. Then Gof is a
strongly (respectively, semi strongly) Ej,-b-vex function.

Proof. We show that the composition property satisfies for semi strongly Ej-b-vex function f. Let
ki, k, € K,and u, ¢ € [0,1], then

u(ak; + Eky) + (1 — w)(ak, + Ek;) € K and
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fuaky + Eky) + (1 = p)(aky + Eky)) < h(ub)f (hy) + h(1 — ub)f (hy),
G(f (u(aky + Eky) + (1 — @) (aky + Ekz)) < G( h(ub)f (hy) + h(1 — ub)f (hy)).

The last inequality holds because G is a non-decreasing function. Using the sublinearity assumption
of G, the right-hand side of the last inequality yields,

(Gof)(u(aky + Ekq) + (1 — ) (ak; + Ek3)) < h(ub)(Gof)(hy) + h(1 — ub)(Gof)(hy).
Thus, Gof is semi strongly Ej-b-vex function on K. Analogue proof proceeds when f is strongly Ej,-
b-vex functionon K. =

The following definitions are needed in the sequel.
Definition 3.9 Let M, N € R™. Then M is said to be strongly slack 2-convex w.r.t. N if for each
x,y €E M NN and u,a € [0,1] such that
ulax +Ex) + (1 —u)(ay + Ey) € N then u(ax + Ex) + (1 — p)(ay + Ey) € M.
An example of strongly slack 2-convex set is given below.
Example3.10 Let M=M; UM, ={(x,y) ER*:x<-1,-1<y<1}U {(x,y) eR*: x>
1,-1<y<1}, N=M,and let E:R?> — R? is given by E(x,y) = (x,0). Note that M is not

strongly E-convex set and N is strongly E-convex. Indeed, if we take (—1,1),(1,1) € M,and u = %

Then pE(-1,1) + (1 — WE(L,1) = % (—=1,0) +§(1,0) = (0,0) ¢ M. Thus, M is not E-convex and
from Remark 2.8, M is not strongly E-convex. On the other hand, let (x;,y1),(x3,v,) € N and

a,u € [0,1]  then Ii(a’(xl'J’l) + E(xl'}ﬁ)) +(1- ll)(a(xz'}h) + E(xz»}’2)) = (u(a + Dx; +
(1 -w(a+ Dxy,pay; + (1 —way,) € N.-Thus, Nis strongly E-convex as required. Since
M NN = M, = N, then for each (xy,y,), (x3,¥2) € M N N such that

H(a(xp}ﬁ) + E(x1:Y1)) + (1 - w(alx,y) + E(x2r3’2)) € N implies

p(aley,y1) + E(xq,y1)) + (1 — w)(alxy, v2) + E(xy,¥,)) € My € M. Thus, M is strongly slack 2-
convex w.r.t. N.
Some properties related to the y-level sets and epi f are given next.
Proposition 3.11 Let K be a strongly E-convex set and f is semi strongly Ej-b-vex. Assume that h is
linear and h(1) = 1. Then K, is strongly E-convex set for each y € R.
Proof. Let y €R and k;,k, € K, then ky,k, € K and f(k,) <y, f(ky) <y. Since f is semi
strongly Ej,-b-vex on the strongly E-convex set K then for each u,a € [0,1] we have u(ak; +
Eky) + (1 — w)(ak, + Ek,) €K, (1)
and f (u(aky + Ek1) + (1 — p)(ak; + Eky)) < h(ub)f (k1) + h(1 — ub)f (k2)

< h(ub)f (k1) + h(1)f (k2) — h(ub)f (kz),
where the previous inequality is obtained from the linearity of h and the assumption h(1) = 1.

< h(ub)y +y —h(ub)y =y

Hence, f(u(ak, + Ek) + (1 — w)(ak, + Eky)) <y )

From (1) and (2), we get K, is strongly E-convex set.  m
Proposition 3.12 Let K is strongly E-convex set and f is semi strongly Ej,-b-vex. Assume that E and
h are linear and h(1) = 1. Then E — K, = {k € K: f(Ek) <y} is strongly E-convex set for each
Yy €R.
Proof. Let y € R and ky,k, € E-K, then ki, k, € K and f(Eky) <y, f(Ek;) <y. Since K is
strongly E-convex set then for each u, @ € [0,1] we have

w = u(aky, + Eky) + (1 — p)(ak, + Ek,) €K 3)
We must show that f(Ew) < y. From the linearity of E we have
f(Ew) = f(u(aEky + E?ky) + (1 — p)(aEkz + E*k3)) (4)

From Proposition 2.5, Ek,, Ek, € E(K) S K.Using (4) and the assumptions on f and h, we obtain
f(Ew) < h(ub)f(Eky) + h(1 — ub)f (Ekz)< h(ub)y + h(1 — pb)y,
= h(ub)y +y — h(ub)y =v.
Therefore, f(Ew) = f(u(aEk, + E*ky) + (1 — w)(aEk, + E%ky)) <y (5)
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From (3) and (5), the y-level set E-K,, is strongly E-convex set. m

Proposition 3.13 Let K and E(K) are strongly E-convex sets and f is semi strongly Ej-b-vex.
Assume that E and h are linear and h(1) = 1. Then K]';" ={E(k) € E(K): f(k) <y} is strongly E-
convex set for each y € R.

Proof. Let y € R and E(k,),E(ky) € KJ then E(k,),E(k;) € E(K) and f(ky) <y, f(ky) <vy.
Because E(K) is strongly E-convex set and E is linear then for each u, « € [0,1] we have u(aEk; +
E?ky) + (1 — w)(aEk, + E?ky)

= E(u(aky + Eky) + (1 — w)(ak, + Ek,)) € E(K) (6)
i.e., u(aky + Eky) + (1 — p)(ak, + Ek,) € K. Using now the assumptions on f and h, we get

f(u(aky + Eky) + (1 = p)(aky + Eky)) < h(ub)f (ki) + h(1 — ub)f (kz) Sy (7)

From (6) and (7), we have Kf is strongly E-convex set. m

Proposition 3.14 Let K is strongly E-convex sets and f is semi strongly Ej,-b-vex. Assume that E and
h are linear and h(1) = 1. Then Kf ={E(k) € E(K): f(k) <y} is strongly slack 2-convex w.r.t.
E(K), foreachy € R.

Proof. Let y € R and E(k,),E(k,) € Ky N E(K) such that for each u,a € [0,1], then as in (6),
u(aEk; + E?ky) + (1 — u)(aEk, + E?k,) € E(K). Following the same steps of the proof of
Proposition 3.13 yields the required result. [
Proposition 3.15 Let f is semi strongly Ej-b-vex on the strongly E-convex set K. Assume that h is
non-negative and h(4) <A1 VA € [0,1]. Then epi f is strongly E X [-convex set.
Proof. Let (x,8), (y,w) € epi f and p, a € [0,1], we must show
(u(ax +EM) + (1 —w(ay + EQ)), u(aB + B) + (1 — ) (aw + w) € epif.
From the assumptions on K and f, we have
plax +E))+ 1 —w(ay +Ey)) €K, (8)
and f (u(ax + E) + (1 — @) (ay + EG))) < h(ub)f(x) + h(1 — ub)f (¥)
< h(ub)B + h(1 — ub)w
Using now the assumptions on h, the last inequality yields
<ubB+(A—-ph)w

Sub(a+D+A—-ph)(a+ DHw 9)
From (8) and (9), we obtain epi f is strongly E X I-convex set. m
Proposition 3.16 Let f is semi strongly Ej-b-vex on the strongly E-convex set K. Assume that h is
non-negative and h(1) <A VA€ [0,1]. Then epi f is strongly slack 2-convex w.r.t E(K) X R-
convex set.
Proof. Let (x,8), (y, w) € epi f N E(K) X R such that for u,a € [0,1]
(w(ax +E@) + (1 - w(ay + EQ)), u(@p + ) + (1 - w)(aw + ») € E(K) X R
We aim to show that

(u(ax + E()) + (1 = w)(ay + EQ)), u(@f + ) + (1 — @) (aw + ) € epi f (10)
Notethatx,y €e E(K) € K, f(x) < B,f(y) < w and
u(ax + E(x)) +(1- y)(ay + E(y)) EE(K)CSK (12)

Since f is semi strongly Ej-b-vex on K and from the assumptions on h, we get

f (u(ax + EG)) + (1= w)(ay + EG))) < h(ub)f (x) + h(1 — ub)f (¥)
Sub(a+DB+A—-ph)(a+Dw (12)
From (11) and (12), we obtain (10) as required. =
The next result follows directly from Propositions 3.5 and 3.16.
Proposition 3.17 Let f strongly Ej-b-vex on the strongly E-convex set K and f(E(k)) < f(k) Vk €
K. Assume that h is non-negative and h(1) <A VA € [0,1]. Then epi f is strongly slack 2-convex
w.rt E(K) X R-convex set. =

2027



Majeed Iragi Journal of Science, 2019, Vol. 60, No.9, pp: 2022-2029

4. Applications to non-linear optimization problems
In this section, we consider the following non-linear optimization problem which will be denoted

as (P)

min f (k)

s.t. k€K,
where K and f are defined as in Assumption (A).
Proposition 4.1 Let, E, and f are defined as in assumption A such that K is strongly E-convex set and
f is strongly Eu-b-vex on K and f(Ek) < f(k) Vk € K. Assume that h is linear and h(1) = 1.
Assume that k, = E(v) is a local minimum of problem (P) then k is a global minimum.
Proof. By contrary, assume that k, is not a global minimum of the problem (P), then there exists
w € K such that f(w) < f(ko) = f(E(v)). Since f is strongly E,-b-vex on K and f(Ek) <
f(k) Vk €K then

f (1(aw + Ew)) + (1 = @) (av + E®))) < h(ub)f (Ew) + h(1 — ub)f (Ev)
< h(ub)f(w) + h(1 — ub)f (ko)
Since f(w) < f(kg), his linear and h(1) = 1, the last inequality yield
< h(ub)f (ko) + f (ko) — h(ub)f (ko) = f (ko)

fUEW) + (1 = wko) < f (ko) (13)

Considering u small enough such that uE(w) + (1 — wk, € B, (ko) N K, where B,.(kg) is an open
ball with center k, and radius r. Since kgyis a local minimum, then f (ko) < f(LE(wW) + (1 — k)
which contradicts (13). Thus, kg is a global minimum. =
Proposition 4.2 Let K, E, and f are defined as in assumption (A) such that K is strongly E-convex set
and f is semi strongly Ej-b-vex on K. Assume that h is linear and h(1) = 1. Assume that ky = E (k)
is a local minimum of problem (P) then k, is a global minimum.
Proof. By contrary, assume that k, is not a global minimum of the problem (P), then there exists
w € K such that f(w) < f (ko) = f(E(ky)). Since f is semi strongly Ej,-b-vex on K then

f (1(aw + Ew)) + (1 = @) (ako + E(ko))) < h(ub)f (W) + h(1 — ub)f (ko).

The rest of the proof is similar to that of Proposition 4.1. =

Proposition 4.3 Suppose that K is strongly E-convex set and f is strictly semi strongly Ej-b-vex on
K. If his linear and h(1) = 1. Then the global optimal solution of problem (P) is unique.

Proof. Let k7, k; € K be two different global optimal solutions of problem (P), then f(ky) = f(k3).
Since £ is semi strongly Ej,-b-vex on the strongly E-convex set K, we have w = u(ak; + E(k})) +
(1—w(ak; +E(k3)) €K

£ (ks + EG) + (1 = ) (aks + E(KS)) ) < h(ub)f (k) + h(1 — ub)f (k3),

fw) = f (w(aki + EG) + (1 — w)(aks + E(k3))) < f(ki)

foru € (0,1) and a € [0,1].

and hence, there exists weK where w=#ki, w=*k; and f(w) <f(kj).
Thus, w is a global minimum which is a contradiction. Hence, there is a unique global minimum.
Proposition 4.4 Suppose that K is strongly E-convex set and f is semi strongly Ej,-b-vex on K. If h is
linear and h(1) = 1. Then the set optimal solutions of problem (P) is strongly E-convex.

Proof. The set of optimal solutions of problem (P) is defined as follows.

argming = {k* € K: f(k*) < f(k) Vk € K}.

We must show that argming is strongly E-convex set. Let kq,k; € K and u, a € [0,1] such that f is
semi strongly Ej,-b-vex on the strongly E-convex set K then

p(ak; + E(kD)) + (1 — w)(ak; + E(k3)) € K and

f (m(aki + kD) + (1 — p)(ak; + E(k3)) ) < h(ub)f (kD) + h(1 — ub)f (k3)

< f(k) VkEeK,

where the last inequality follows from the definition of argmin, and the assumptions on h.
Consequently, u(ak; + E(k})) + (1 — w)(ak; + E(k3)) € argming. m

Now, let ¢ = 0, then
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Conclusion

In this paper, some types of generalized convex functions, namely strongly Ej,-b-vex and semi
strongly E;-b-vex are defined and their basic properties are studied. In addition, optimality properties
related to non-linear optimization problem involving these functions are discussed.
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