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Abstract:

Estimation for the reliability of a parallel redundant system with independent stress
and strength Burr distribution (type X ) probability density functions is considered.
Estimation of the reliability parameters is conducted according to the non-Bayesian
estimation methods, namely the maximum likelihood and shrinkage methods. The
Bayesian estimation is also considered using the Jeffery and Gamma priors with
squared error, quadratic and weighted loss functions. Finally, the reliability estimate
is calculated and the best method for estimation for each case is given using the mean
squared error criteria.

Keywords: Burr type X distribution, Reliability, Stress- Strength, Reliability
Estimation.
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1. Introduction

The Burr distribution of type X belongs to one of the well-known twelve types of the Burr
distribution model. This distribution was first introduced in 1942 by Burr [1]. The cumulative
Burr distribution function of type X can be defined by :

Fy(x) = {(1 - e;(ax)Z))\ i i g} . 1)
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Where a and A are scale and shape parameters, respectively which are real numbers greater
than zero. The probability density function of the Burr distribution of type X is:

Fo 1) = {““2 x e7(@ (1 - @)™
0 x<0

The Burr type X distribution was studied and analysed in many different applications. In

(2020), Ibrahim and Abdullah Khaleel [2] proposed a generalization of the Burr type

distribution based on the methods of Gamma-G , Beta-G and Weibull-G families of

distributions. In (2022), Hassan et al.[3] proposed a model with two parameters based on the

Kavya- Manharan —Burr X model. The Burr type X is used in a wide range of survival data and
hazard functions [4].

x>0,a>0,/1>0}. (2)

Several studies have been conducted in terms of stress-strength reliability. In (2020), N. S.
Karam et.al. [5] studied the reliability of a multicomponent system based on the Lomax stress-
strength model. In (2021), F. GilceCuran [6], the reliability of a redundant system with
exponentially distributed stress and strength variables.In (2021), N. S. Karam [7] estimated the
reliability of a stress-strength model based on the Generalized Inverted Kumaraswamy
distribution. In the same year, S. A. Jabr and N. S. Karam [8] discussed the estimation of the
reliability for the Gompertz Fréchet stress-strength model. E. Sh. M. Haddad and F. Sh. M.
Batah (2021) [9] studied the reliability estimation of the stress-strength Rayleigh Pareto model.
A. A. J. Ahmed and F. Sh. M. Batah (2023) [10] estimated the reliability of a stress-strength
Power Rayleigh model.

Now for a = 1, we suppose that two random variables X and Y take the Burr distribution of
type X as strength and stress respectively. For each X and Y, the probability density functions
from equation (2) are defined as follows:

_ 2 _ 2 A-1
fx(x,x):{”xe ® (Ol-e @) x>02>0 ®)
0.W.
—(v)2 _(v)2 M1
fy(y,m:{zﬂye Ve y> 0u 0 @
0.W.

And from Equation (3) and Equation (4), the cumulative density function (CDF) for the two
random variables X and Y , respectively are given as:

R ={A-e @ x=0p ©)
(- e—(y)z)u y >0
ORI SR SR ©

This work focuses on the system of reliability based on parallel redundant stress-strength
modules by using the Burr type X distribution.

2. The System of Reliability

A parallel system (redundant system) is composed of k components which is the limit state
that does not necessarily indicate a system failure. Reliability and redundancy have been the
subject of numerous studies such as [11].

The reliability system R.of the component in the stress and strength system is computed as
follows:
R.=PY<x)=Px>Y). (7)
Where P is the probability; X and Y are the strength and stress, respectively. Equation (7) can
be rewritten as follows:

Re =2 FO) (1, FGo)dx) dy. (8)
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Where f(x) is the strength probability density function
Hence, the parallel system reliability Rpof stress-strength model can be obtained if we substitute
Equation (9) into Equation (10):

R =P >y) = [7fO0aX. ©)

(© L)

Figure 1: The system of reliability based on Burr distribution (type X). In (a) and (b) the
reliability is drawn as a function of the parameter A, while in (c) and (d) as a function of

Rp(y) =1—(1-R()". (10)
Where k is the number of components. The overall reliability of the parallel redundant system
under stress [12]:

Ro = [y (Re().f(3))dy . (12)
In our work, the reliability system (R,) for this system is defined by the following formula

based on the Burr type of X distribution. By using Equation (3) , Equation (4) and Equation (9),
we get

R =1-F(»=1-(1-e?)1>0. (12)
By using the same processing in Equation (9) ,Equation (10) and Equation (12), we have:
R,(») =1—(Fx(3) =1—(1—e? )} 1> 0,k € Z*. (13)

So, the reliability of the parallel redundant system can be defined by using Equation (11) and
Equation (12) and Equation (13) :
kA

Ry = fooo R,). fy(y,w)dy = o >0k € Z*. 14)
Figure (2.1) shows the behavior of the reliability with respect to the parameters.

3. Estimation Methods

In this section, we will discuss the non-Bayesian and Bayesian estimators for the reliability
model. This section deals with the reliability system model in two considered cases in the
stress—strength model. The strength (X) and the stress (Y) are independent variables having two
parameters Burr distribution of type (X). The used estimators include the maximum likelihood
method, and Shrinkage estimator method (SEM). Finally, Bayesian estimation methods for the
Jeffry and gamma prior with the three difference loss functions such as the squared error loss
function, quadratic loss function and weight loss function are used in the reliability model.
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3.1 Non-Bayesian Estimation methods
In the following subsections, we will use the non-Bayesian estimators for the parameters A
and u with the reliability model R:

3.1.1 Maximum Likelihood Estimator Method (MLE)[13]:
Suppose that x4, x,,. . ., x, isarandom sample from B(1,A) and y;,y5,. . ., ¥y iSarandom
sample from (1, u). The likelihood function is given by:

L= L(?\,,u;x;y) = ?=1f(xi) H;n=1h(yj)

L =TT 20 ™ (1 — e XU, 2uy5e™0" (1 — e 7Yt

L = }\n‘umzn+me—2?=1xi2 Z;'riﬂ’jz ?=1xi H;,n:lyj ?:1(1 — e—xiz))\—l H;'n=1(1 — e—yl'z)ll—l
(15 a)

Take Ln to both sides of Eq(15) , we have :

In(L) =nlnd+minu+ (n+m) In2 + ¥, Inx; + 372, Iny; — XL, x> — XL, ;% +

mn(l— e YT E T In(1— e iR, (15 b)
Differentiating Equation (15 b) with respect to A and u then put the results in:
O =Ry in(1—e ). (16)
Oln(L) _ m .2
T—;+Z§”=11n(1—e yl). (17)
Putting 9nd) — o and aL}EL) = 0, Equation (16) and Equation (17) will be:

S+ 3L In(1—e)=0.
%+ Ymin(l—e¥)=0.

Then, the maximum likelihood estimator for Aand u ; Ayz and flu. are given as follows:

N -n
M TGy (12)
AmLE = = (19)

ST In (1-e Vi)’
Substituting Equations (18), (19) and (14), we get the estimator EOMLE as:

5 KAMLE
R = 20
OMLE ™ kXppg+BmLE (20)

3.1.2 The Shrinkage Estimator Method (SEM)[13]:
In this section, we will use the shrinkage estimator of the shape parameters A and u of the
Burr distribution:
A = O(A) A+ (1 — 0(A)A, - (21)
fon = B A+ (1 - B(D)Ao - (22)
Where 0 < ¢(1) < 1and 0 < @(j2) < 1 with the values of A, and {, are close to A and g,
respectively.

In this work, we consider the following three cases:
Case(1): Put @(X) = @(2) = 0.05,% = Az, 2 = Apyr » then Equation (21) and Equation
(22) can be written as:
Asy1 = 0.05A,,.r + (0.95)A, . (23)
Asur = 0.054ye + (0.95)4, . (24)
By using Equation (23) and Equation (24) in Equation (14) for funding estimator SH1 the
reliability system §05H1 will be as the following formula:
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N kX
Rosis = e sions (25)

kAsg1+HsH1 _

Case (2): Put ¢(}) = 'Sln"' ,O(R) = 'Slfnm' A= Ayig,fl = fAye , then Equation (23) and
Equation (24) can be ertten as:

stz = Ismn|7\MLE +(1-

|sinn|

)ho- (26)
|51n m| .

Ashnz = —— fme + (1 — lsmml) Ho- (27)
Hence, by using Equatlon (26) and Equatlon (27) in Equation (14) for funding estimator SH2
the reliability system }?OSHZ will be as the following formula:
N 7N
Ros, = kXSHziHl;SHz ' (28)
Case (3): In this case, we estimation the parameters A and u in the Shrinkage method from
Ayre and fiy, ¢ in Equation (18-19), respectively:

Aoy = {n?—l mee + (1 — _)7\0 7:\0 € R} . (29)
AuLe Ao € R

fss = {m.uMLE +(1- _)#o do € R}_ (30)
AmLE fo € R

Also, by using Equation (29) and Equation (30) in Equation (14) for funding estimator SH3
the reliability system ﬁOSHS will be as the following formula:

5 kAsHs
R = 31
OSH3 ™ kXsps+RsHs ( )

3.2 Bayesian Estimation Methods (BEM)

In this section, we will give some important Bayes estimators with types of priors, namely
the Jeffery and Gamma for the parameters A and u with their reliability model. They are shown
below [14]:

3.2.1 Squared error loss function
The Bayes estimator for A, u and the risk function based on squared error loss function under
Jeffrey's prior:
n A m ~ kkjs
G (et IS T gm name vy 0 T s tays
While, The Bayes estimator for A , u and the risk function based on the squared error loss

function under Gamma's prior:

&~ n+a A m+a 5 _ kXGS

)\ ) = 1R - =~
Gs = (™, In (1—e~%i*))~14b Hes 7, In (1—e¥i*)=14p" ° " Khgs+Acs

As = (32)

(33)

3.2.2 Quadratic loss function
The Bayes estimator for A, u and the risk function based on quadratic loss function under
Jeffrey's prior:

n-—2 m-—2

Mo = o ey e = (7, In (1-e~Yi*)t” (34)
The Bayes estimator for A, u and the risk function based on quadratic loss function under

Gamm's prior:
2 n+a-—2 A m+a—2

}\ = ) = ,R\ = 35
60 = 3 n(—e—ry)14p HOQ @7, In (1-e i) =14p" (35)
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3.2.3 Weighted loss function
The Bayes estimator for A, 4 and the risk function based on the weighted loss function under
Jeffrey's prior
2 n—1 m—1
(L, In (1—e~%i%))~1 M, In (1-e 7)1
As well as, the Bayes estimator for A, u and the risk function based on weighted loss function
under Gamm's prior:
}\\ — n+a-1
W e ) 14b

-~ kA
RO = + .
kM w+igw

7\]W = i w = (36)

m+a—1
(EM,In (1-e™Yi*))"14b’

= Mew - (37)

kAgw +Rew

=v))

» Hegw = 0

4. Simulation

A simulation study of size (1000) is used to compare the reliability estimators. The program
MATLAB(2018b) is used to generate a complete type of data that is used to acquire the
reliability estimates based on methods that are given in section 3. A comparison is then made
to test the performance using the mean square error (MSE) criteria. The procedure is done as
follows:
e From Equation (5), we let U = F(x), where U is uniformly distributed over (0,1), the random
sample generated by:

i\ 1/2
Uy = (1—e " @Hr U;/}‘ =(1- e_(")z) - X = <— In <1 - U;)) :

1\ 1/2
u,=>1- e~ U;/” =(1- e_(y)z) —y= <— In <1 - U;)) :

e A random sample of size n,m is generated for x;and y; which are given for small medium
and large (n,m) = (10,30), (30,10), (50,90), (90,50) and k = 2,3. The real values of the
parameters A, u are taken to be (4, u) = (0.5,0.9), (0.5,2), (1.9,0.9), (3,0.9). The resulting data
sets become 32 data sets for each x and y.

e Parametric estimation is then conducted for each data set according to equations (14-37). For
each case, the reliability of the system is estimated according to equation (14) resulting in 32
system reliability data sets of size 1000.

¢ The mean of the data sets for each case is calculated and given for each case in Tables (1-16).

e The MSE is also calculated according to the relation MSE= % N (R, —R)? , where N =

1000. The values are also given in Tables (1-16) along with the best method corresponding to
the minimum value of the MSE.

Table 1: Reliability non-Bayesian estimators values whenA = 0.5,u = 0.9,k =2 and R =
0.52631

MLE SH1 SH2 SH3 Best
mean 0.53231 0.50265 0.50376 0.52887

n=10, m=30 SH2
MSE 8.55E-03 6.04E-04 5.54E-04 7.60E-03
mean 0.51382 0.50033 0.49887 0.51505

n=30, m=10 SH1
MSE 7.99E-03 7.13E-04 7.91E-04 7.05E-03
mean 0.52908 0.50182 0.50004 0.52839

n=50, m=90 SH1
MSE 1.84E-03 6.07E-04 6.91E-04 1.79E-03
mean 0.52570 0.50148 0.50047 0.52569

n=90, m=50 SH1
MSE 1.97E-03 6.24E-04 6.68E-04 1.92E-03
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Table 2: Reliability Bayesian estimators values whenA =0.5u=0.9,k=2 and R =
0.52631

JS JQ Jw GS GQ GW Best
n=10, | mMean 0.53231 0.49514 0.51510 0.56796 0.54296 0.55621 GO
m=30 | MSE | 8.55E-03 9.56E-03 8.70E-03 9.43E-03 8.14E-03 8.68E-03
n=30, | mean 0.51382 0.55098 0.53109 0.48866 0.51406 0.50064 GO
m=10 | MSE | 7.99E-03 8.35E-03 7.84E-03 8.34E-03 7.09E-03 7.60E-03
n=50, | mean 0.52908 0.52454 0.52684 0.53534 0.53121 0.53331 GO
m=90 | MSE 1.84E-03 1.84E-03 1.84E-03 1.88E-03 1.83E-03 1.85E-03
n=90, | Mmean 0.52570 0.53024 0.52794 0.52189 0.52603 0.52393 GO
m=50 | MSE 1.97E-03 1.99E-03 1.97E-03 1.95E-03 1.93E-03 1.94E-03

Table 3: Reliability non-Bayesian estimators values when A =05u=2,k=2 and R =
0.33333

MLE SH1 SH2 SH3 Best
mean 0.34374 0.29926 0.29991 0.33957

n=10, m=30 SH2
MSE 6.79E-03 1.19E-03 1.15E-03 5.94E-03
mean 0.33251 0.29772 0.29652 0.33148

n=30, m=10 SH1
MSE 6.30E-03 1.29E-03 1.38E-03 5.46E-03
mean 0.33596 0.29851 0.29647 0.33518

n=50, m=90 SH1
MSE 1.56E-03 1.22E-03 1.36E-03 1.51E-03
mean 0.33345 0.29825 0.29676 0.33315

n=90, m=50 SH1
MSE 1.59E-03 1.24E-03 1.34E-03 1.54E-03

Table 4: Reliability Bayesian estimators values when A = 0.5,u = 2,,k = 2and R = 0.33333

JS JQ Jw GS GQ GW Best
n=10, mean | 0.34374 0.31080 0.32826 0.38333 0.35961 0.37208 W
m=30 MSE | 6.79E-03 | 6.61E-03 | 6.45E-03 | 9.10E-03 | 7.00E-03 | 7.97E-03
n=30, mean | 0.33251 0.36652 0.34809 0.32734 0.35021 0.33803 GS
m=10 MSE | 6.30E-03 | 7.98E-03 | 6.79E-03 | 4.98E-03 | 5.55E-03 | 5.12E-03
n=>50, mean | 0.33596 0.33191 0.33397 0.34377 0.34003 0.34192 0
m=90 MSE | 1.56E-03 | 1.53E-03 | 1.54E-03 | 1.66E-03 | 1.58E-03 | 1.61E-03
n=90, mean | 0.33345 0.33752 0.33545 0.33388 0.33758 0.33570 GS
m=50 MSE | 1.59E-03 | 1.63E-03 | 1.60E-03 | 1.52E-03 | 1.56E-03 | 1.54E-03

Table 5: Reliability non-Bayesian estimators values when A= 1.9,u = 0.9,k =2 and R =
0.80851

MLE SH1 SH2 SH3 Best
mean 0.80759 0.81819 0.81872 0.80808

n=10, m=30 SH1
MSE 3.12E-03 1.04E-04 1.15E-04 2.69E-03
mean 0.79526 0.81692 0.81651 0.79758

n=30, m=10 SH2
MSE 3.92E-03 8.39E-05 7.80E-05 3.37E-03
mean 0.80778 0.81773 0.81804 0.80786

n=50, m=90 SH1
MSE 7.43E-04 8.71E-05 9.08E-05 7.19E-04
mean 0.80589 0.81756 0.81816 0.80619

n=90, m=50 SH1
MSE 7.39E-04 8.40E-05 9.32E-05 7.14E-04
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Table 6: Reliability Bayesian estimators values when A =19,u=09,k=2 and R =
0.80851

JS JQ Jw GS GQ GW Best
n=10, | mean | 0.80759 0.78305 0.79648 0.81436 0.79831 0.80692 GS
m=30 | MSE | 3.12E-03 | 4.37E-03 | 3.54E-03 | 2.41E-03 | 2.79E-03 | 2.52E-03
n=30, | mean | 0.79526 0.81872 0.80640 0.77283 0.79031 0.78119 10
m=10 | MSE | 3.92E-03 | 3.26E-03 | 3.47E-03 | 4.95E-03 | 3.63E-03 | 4.25E-03
n=50, | mean | 0.80778 0.80493 0.80638 0.80831 0.80571 0.80703 GS
m=90 | MSE | 7.43E-04 | 7.72E-04 | 7.55E-04 | 7.07E-04 | 7.29E-04 | 7.16E-04
n=90, | mean | 0.80589 0.80873 0.80730 0.80158 0.80421 0.80288 10
m=50 | MSE | 7.39E-04 | 7.16E-04 | 7.26E-04 | 7.81E-04 | 7.37E-04 | 7.58E-04

Table 7: Reliability non-Bayesian estimators values when1=3,u =09,k =2 and R =
0.86956

MLE SH1 SH2 SH3 Best
mean 0.86858 0.87873 0.87913 0.86920

n=10, m=30 SH1
MSE 1.75E-03 8.98E-05 9.73E-05 1.49E-03
mean 0.85864 0.87775 0.87749 0.86059

n=30, m=10 SH2
MSE 2.24E-03 7.37E-05 7.00E-05 1.90E-03
mean 0.86807 0.87832 0.87867 0.86819

n=50, m=90 SH1
MSE 4.35E-04 7.77E-05 8.29E-05 4.21E-04
mean 0.86743 0.87823 0.87875 0.86768

n=90, m=50 SH1
MSE 4.25E-04 7.62E-05 8.44E-05 4.11E-04

Table 8: Reliability Bayesian estimators values when A = 3,u = 0.9,k = 2 and R = 0.86956

JS JQ Jw GS GQ GW Best
n=10, | Mean 0.86858 0.85028 0.86034 0.86497 0.85244 0.85918 GS
m=30 | MSE | 1.75E-03 | 2.53E-03 | 2.02E-03 | 1.33E-03 | 1.81E-03 | 1.51E-03
n=30, | mMean 0.85864 0.87606 0.86695 0.83821 0.85168 0.84467 10
m=10 | MSE | 2.24E-03 | 1.75E-03 | 1.93E-03 | 3.19E-03 | 2.24E-03 | 2.69E-03
n=50, | mean 0.86807 0.86596 0.86704 0.86654 0.86460 0.86559 GS
m=90 | MSE | 4.35E-04 | 457E-04 | 4.45E-04 | 4.23E-04 | 4.49E-04 | 4.35E-04
n=90, | mean 0.86743 0.86952 0.86846 0.86314 0.86510 0.86410 10
m=50 | MSE | 4.25E-04 | 4.10E-04 | 4.16E-04 | 4.69E-04 | 4.37E-04 | 4.52E-04

Table 9: Reliability non-Bayesian estimators values when A = 0.5,u = 0.9,k =3 and R =
0.625

MLE SH1 SH2 SH3 Best
mean 0.62642 0.60241 0.60347 0.62351
n=10, m=30 SH2
MSE 6.69E-03 5.47E-04 5.01E-04 5.98E-03
mean 0.61589 0.60072 0.5993 0.61709
n=30, m=10 SH1
MSE 7.67E-03 6.26E-04 6.96E-04 6.76E-03
mean 0.62755 0.60178 0.60004 0.6269
n=50, m=90 SH1
MSE 1.73E-03 5.46E-04 6.23E-04 1.69E-03
mean 0.62346 0.6014 0.60045 0.62348
n=90, m=50 SH1
MSE 1.82E-03 5.64E-04 6.03E-04 1.77E-03
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Table 10: Reliability Bayesian estimators valueswhen A = 0.5,u = 0.9,k = 3and R = 0.625

JS JQ Jw GS GQ GW Best
n=10, | mean | 0.62642 0.59079 0.61005 0.65993 0.63672 0.64908 GO
m=30 | MSE | 6.69E-03 | 8.33E-03 | 7.14E-03 | 6.93E-03 | 6.21E-03 | 6.46E-03
n=30, | mean | 0.61589 0.65054 0.63212 0.59184 0.61612 0.60335 GO
m=10 | MSE | 7.67E-03 | 7.72E-03 | 7.41E-03 | 8.08E-03 | 6.80E-03 | 7.34E-03
n=50, | mean | 0.62755 0.62328 0.62545 0.63342 0.62955 0.63152 GO
m=90 | MSE | 1.73E-03 | 1.75E-03 | 1.74E-03 | 1.75E-03 | 1.71E-03 | 1.73E-03
n=90, | mean | 0.62346 0.62773 0.62556 0.61989 0.62379 0.62181 GO
m=50 | MSE | 1.82E-03 | 1.81E-03 | 1.81E-03 | 1.82E-03 | 1.78E-03 | 1.80E-03

Table 11: Reliability non-Bayesian estimators values when A = 0.5,u =2,k =3 and R =

0.42857
MLE SH1 SH2 SH3 Best
mean 0.43724 0.39048 0.39122 0.43307
n=10, m=30 SH2
MSE 8.03E-03 1.49E-03 1.44E-03 7.06E-03
mean 0.42279 0.38859 0.38723 0.42217
n=30, m=10 SH1
MSE 7.48E-03 1.63E-03 1.74E-03 6.52E-03
mean 0.42892 0.38950 0.38728 0.42810
n=50, m=90 SH1
MSE 1.89E-03 1.53E-03 1.71E-03 1.84E-03
mean 0.43018 0.38946 0.38765 0.42984
n=90, m=50 SH1
MSE 1.88E-03 1.54E-03 1.67E-03 1.82E-03

Table 12: Reliability Bayesian estimators values whenA =0.5u=2,,k=3 and R =

0.42857

JS JQ Jw GS GQ GwW Best
n=10, | Mean 0.43724 0.40093 0.42030 0.47985 0.45461 0.46793 W
m=30 | MSE | 8.03E-03 | 8.37E-03 | 7.88E-03 | 1.01E-02 | 8.05E-03 | 8.98E-03
n=30, | mean | 0.42279 0.45961 0.43978 0.41798 0.44298 0.42972 oW
m=10 | MSE | 7.48E-03 | 8.67E-03 | 7.71E-03 | 5.96E-03 | 6.21E-03 | 5.93E-03
n=50, | mean | 0.42892 0.42447 0.42673 0.43749 0.43341 0.43548 GO
m=90 | MSE | 1.89E-03 | 1.90E-03 | 1.89E-03 | 1.94E-03 | 1.88E-03 | 1.91E-03
n=90, | mean | 0.43018 0.43465 0.43238 0.43066 0.43473 0.43266 s
m=50 | MSE | 1.88E-03 | 1.92E-03 | 1.90E-03 | 1.80E-03 | 1.84E-03 | 1.82E-03

Table 13: Reliability non-Bayesian estimators values whenA =1.9,u =09,k =3 and R =

0.86363
MLE SH1 SH2 SH3 Best
mean 0.86134 0.87097 0.87137 0.86196
n=10, m=30 SH1
MSE 2.01E-03 6.09E-05 6.68E-05 1.72E-03
mean 0.85276 0.87001 0.86970 0.85463
n=30, m=10 SH2
MSE 2.77E-03 4.97E-05 4.65E-05 2.36E-03
mean 0.86313 0.87065 0.87086 0.86319
n=50, m=90 SH1
MSE 4.68E-04 5.04E-05 5.23E-05 4.53E-04
mean 0.86120 0.87048 0.87095 0.86143
n=90, m=50 SH1
MSE 4.61E-04 4.82E-05 5.35E-05 4.45E-04
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Table 14: Reliability Bayesian estimators values whenA =19,u=09,k=3 and R =
0.86363

JS JQ Jw GS GQ GW Best
n=10, mean | 0.86134 0.84225 0.85274 0.86685 0.85449 0.86114 s
m=30 MSE | 2.01E-03 | 2.92E-03 | 2.33E-03 | 1.52E-03 | 1.83E-03 | 1.63E-03
n=30, mean | 0.85276 0.87073 0.86133 0.83563 0.84924 0.84216 0
m=10 MSE | 2.77E-03 | 2.21E-03 | 2.42E-03 | 3.44E-03 | 2.53E-03 | 2.95E-03
n=50, mean | 0.86313 0.86095 0.86206 0.86353 0.86156 0.86256 s
m=90 MSE | 4.68E-04 | 4.87E-04 | 4.76E-04 | 4.45E-04 | 4.60E-04 | 4.52E-04
n=90, mean | 0.86120 0.86337 0.86227 0.85790 0.85992 0.85890 0
m=50 MSE | 4.61E-04 | 4.43E-04 | 4.51E-04 | 4.92E-04 | 4.62E-04 | 4.76E-04

Table 15: Reliability non-Bayesian estimators values whenA =3,u =09,k =3 and R =
0.90909

MLE SH1 SH2 SH3 Best
mean 0.90735 0.91571 0.91597 0.90800

n=10, m=30 SH1
MSE 9.31E-04 4.68E-05 5.03E-05 7.89E-04
mean 0.90233 0.91515 0.91497 0.90370

n=30, m=10 SH2
MSE 1.25E-03 4.02E-05 3.82E-05 1.06E-03
mean 0.90907 0.91550 0.91571 0.90913

n=50, m=90 SH1
MSE 2.03E-04 4,16E-05 4.38E-05 1.96E-04
mean 0.90653 0.91534 0.91576 0.90673

n=90, m=50 SH1
MSE 2.39E-04 3.97E-05 4.44E-05 2.31E-04

Table 16: Reliability Bayesian estimators values when A =3,u=0.9,k=3 and R =
0.90909

JS JQ JW GS GQ GW Best
n=10 mean 0.90735 0.89373 0.90124 0.90514 0.89586 0.90086

el MSE | 9.31E-04 | 1.42E-03 | 1.10E-03 | 7.16E-04 | 1.00E-03 | 8.25E-04 °°
n=30, mean 0.90233 0.91494 0.90837 0.88725 0.89718 0.89203

m=10 MSE | 1.25E-03 | 9.84E-04 | 1.08E-03 | 1.76E-03 | 1.24E-03 | 1.49E-03 Q
n=50, mean 0.90907 0.90754 0.90832 0.90793 0.90653 0.90724 Gs

MSE | 2.03E-04 | 2.12E-04 | 2.07E-04 | 1.96E-04 | 2.06E-04 | 2.01E-04

n=90, mean | 0.90653 0.90807 0.90729 0.90338 0.90483 0.90410

- JQ
M=30 |\ISE | 2.39E-04 | 2.27E-04 | 2.33E-04 | 2.70E-04 | 2.50E-04 | 2.60E-04

5. Result Discussion

For the non-Bayesian estimation, the results show that SH1, SH2 perform better in terms of
MSE over MLE and SH3 as seen in Tables (1,3,5,7,9,11,13 15). It is interesting to note that
even with larger MSE the MLE method had in many cases mean value closer to the real value
of the reliability than other methods. This is due to the high variance in the reliability simulation
values of the MLE method.
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No clear pattern had been seen in terms of Bayesian estimation as to which one performed
better except in the case when A, u = 0.5,0.9, respectively when the GQ estimator seemed to
perform better in each case as seen in Table 2. The data shows various methods performing
better in each case as seen in Tables (2,4,6,8,10,12,14,16). It is worth mentioning though that
higher MSE JS coincided with the MLE.

The comparison between the Bayesian and non-Bayesian methods is not included since the
later considers the existence of some information about the estimated parameter while the first
does not.

6. Conclusion and Recommendation

Estimation of the reliability parameters had been conducted according to non-Bayesian and
Bayesian methods for a parallel redundant system based on Burr of type X distribution. The
data was generated using a size 1000 simulation with a different value for the parameters A and
u and components k. The result shows that SH1 and SH2 had better MSE in the non-Bayesian
estimation. No clear pattern had been seen in terms of Bayesian estimation as to which one
performed better.

Therefore, it is recommended to use the SH1 method in the non-Bayesian estimation as it
seems to outperform the other methods in most cases. As to the Bayesian estimation, a slight
advantage to Gamma quadratic prior. It is therefore recommended to use GQ method.
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