Faisal and Dawood

Iraqi Journal of Science, 2024, Vol. 65, No. 4, pp: 1839-1854 DOI: 10.24996/ijs.2024.65.4.5

ISSN: 0067-2904

Synthesis, Identification and Biological Activity Study of Some New Spiro-Isatin Derivatives

Farah N. Faisal, Rafid S. Dawood*

Department of Chemistry, College of Science, University of Baghdad Al-Jadriya Campus, Baghdad 10071, Iraq

Received: 26/2/2023 Accepted: 25/4/2023 Published: 30/5/2024

Abstract

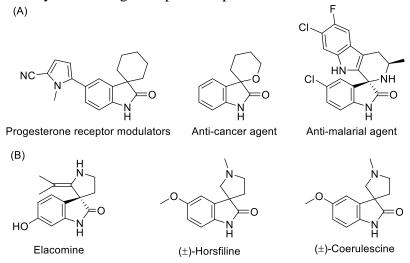
Spiro-isatin derivatives have been the subject of extensive research due to their diverse pharmacological properties and potential therapeutic applications. These molecules are characterized by a spirocyclic structure that includes an isatin moiety and one or more heterocyclic rings, resulting in a unique and versatile molecular architecture. In this work, a series of new spiro-isatin derivatives **B1-12** were synthesized over two steps. The first step included a condensation reaction between isatin and various aromatic amines, affording the corresponding Schiff bases **A1-12** in high yields (up to 96%). In the second step, **A1-12** underwent a reaction with glycine, resulting in the formation of **B1-12** with yields varying between 65 and 92%. The structures of the compounds were confirmed by FT-IR and ¹H NMR spectroscopy. A few of the produced compounds were examined for antibacterial and antioxidant properties.

Keywords: Antioxidant activity, Isatin, Imidazolidone ring, Spiro-compounds.

تحضير، تشخيص و دراسة الفعالية البايولوجية لمجموعة من مشتقات سبايرو – ايستن الجديدة

فرح نزار فيصل ، رافد سعد داود*

قسم الكيمياء ، كلية العلوم ، جامعة بغداد ، مجمع الجادرية ، بغداد 10071 ، العراق.


الخلاصة

كانت مشتقات السبايرو-ايستن موضوع بحث مكثف بسبب خصائصها الدوائية المتنوعة و التطبيقات العلاجية المحتملة. تتميز هذه الجزيئات بهيكل حلزوني تشتمل على جزء ايستن و واحدة أو أكثر من الحلقات الحلقية غير المتجانسة، مما ينتج عنه بنية جزيئية فريدة و متعددة الاستخدامات. في هذا العمل، تم تحضير سلسلة من مشتقات سبايرو-ايستن الجديدة 12-B1 على خطوتين. تضمنت الخطوة الاولى تكاثف بين الايستن و امينات اروماتية مختلفة، منح قواعد شيف 12-A1 منتوجات عالية (تصل الى 96%). في الخطوة الثانية، خضعت المركبات 12-A1 للتفاعل مع الكلايسين، مما ادى الى تكوين المركبات بمنتوجات تتراوح بين 65 و 92%. تم تأكيد تراكيب المركبات بواسطة مطيافية R1-1 و HNMR . تم اختبار عدد قليل من المركبات المحضرة لخصائصها المضادة للبكتيريا و مضادات الأكسدة.

*Email: <u>rafid.s@sc.uobaghdad.edu.iq</u>

1. Introduction

Isatin, alternatively referred to as indole-1H-2,3-dione or indoline-2,3-dione, is a compound composed of a combination of five and six-membered rings. Positioned at 1 is a nitrogen atom, and at positions 2 and 3 are two carbonyl groups. This molecule can be found in several potent synthetic pharmaceutical drugs. Progesterone receptor modulators [1], anticancer [2], and antimalarial [3] are a few examples (Figure 1, A). Isatin can also be found in a variety of natural alkaloid products, including elacomine [4], (\pm) -horsfiline [5], and (\pm) coerulescine [6] (Figure 1, B). In the medical and pharmaceutical industries, Schiff bases are a significant class of chemicals that have demonstrated a wide range of biological activities, including antifungal [7], antibacterial [8], anti-inflammatory [9], anticancer [10], antimicrobial [11,12], and antioxidant effects [13]. Additionally, they are employed as catalysts, dyes, corrosion inhibitors [14-16], and stabilizing agents [17]. On the other hand, spiro-compounds, formally known as bicyclic organic compounds, comprise rings connected through just one atom that present several unique characteristics, such as 3D structural properties related to their inherent rigidity. Notably, these compounds display a broad range of biological activities. Recently, spiro-compounds have attracted increasing attention as scaffolds in modern drug discovery. The intrinsic complexity and, more importantly, the rigidity of these scaffolds offer several advantages to drug discovery programs [18]. Our project objective involves a two-step process for producing spiro-compounds from isatin. The first step comprises combining isatin with various aromatic amines to create corresponding imines through condensation. The second step involves a cycloaddition reaction between the imines and glycine to yield the targeted spiro compounds.

Figure 1: Some compounds containing isatin in their structures. (A) Synthetic pharmaceutical drugs. (B) Natural products.

2. Experimental part

2.1. Materials and instruments

All chemicals were obtained from commercial sources and used directly, unless stated otherwise. Merck silica gel 60 F_{254} was visualized using a UV lamp and aqueous, alkaline potassium permanganate in TLC. Using Stuart Scientific SMP3, melting points were measured in open capillary tubes without correction. A Shimadzu 8400 FT-IR spectrometer was used to record the infrared spectral data, and a Bruker AV400 spectrometer was used to record the ¹H NMR spectral data. Chemical shifts in ¹H NMR are measured in ppm downfield from either deuterated DMSO (δ_H 2.50 ppm) or tetramethylsilane (TMS), which serves as an internal standard and reference. A UV-1800 spectrophotometer made by Shimadzu was used to collect the data on antioxidant activity.

2.2. Chemistry

2.2.1. General procedure for the synthesis of isatin Schiff's bases A1-12 [19,20]

A mixture of EtOH:DMF (3:1, 20 mL) was used to dissolve isatin (500 mg, 3.4 mmol, 1.0 eq.), and then glacial acetic acid (4-5 drops) was added to the solution. The mixture was stirred at room temperature for 30 minutes before a dropwise addition of a solution of the corresponding amine (3.4 mmol, 1.0 eq.) in EtOH (5-10 mL). After the completion of the addition, the mixture was heated at 70-80 °C for 2-18 hours. The reaction was monitored by TLC (eluent with petroleum ether/ethyl acetate) until no starting material remained. The reaction mixture was then poured on ice, filtered, washed with water, and dried. The desired products A1-12 were obtained with 75-96% yields. The physical properties of these compounds (A1-12) are shown in Table 1.

2.2.2. General procedure for the synthesis of spiro-compounds derived from isatin **B1-12**

In a 50-mL round-bottom flask, Schiff's bases A1-12 (1.2 mmol, 1.0 eq.) were dissolved in EtOH (20 mL) and stirred for 5 minutes. A solution of glycine (90 mg, 1.2 mmol, 1.0 eq.) in EtOH (5 mL) and water (some drops) was then added dropwise to the reaction mixture before heating to reflux for 12-24 hours. The completion of the reaction was determined by TLC (eluent with petroleum ether/ethyl acetate). The precipitate was collected after the solvent had evaporated, filtered, and washed with an appropriate solvent. The physical properties of these compounds (B1-12) are shown in Table 2.

2.3. Biological activity

2.3.1. Antibacterial activity test

The agar well-diffusion method was used for the *in vitro* antibacterial activity assay of some samples against two strains of bacteria [21]: *Escherichia coli* and *Staphylococcus aureus*. The antibiotic Amikacin was used as a standard reference. A 1 mg/mL solution of DMSO was used to prepare test samples and standard references. The microorganism suspension (1 mL/100 mL of medium) was added to sterilized and liquefied agar, and the mixture was poured into a Petri dish to a depth of approximately 3 mm. The test samples and references were placed on the wells, the wells were established in solidified medium, and the resulting plates were refrigerated for 1 hour at 5 °C and then incubated at 37 °C for 18 hours.

2.3.2. Antioxidant activity test

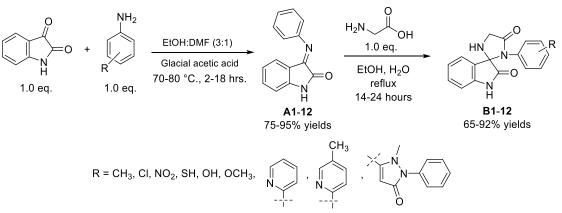
The synthesized compounds' ability to scavenge free radicals was evaluated using the 2,2diphenyl-1-picrylhydrazyl (DPPH) assay [22]. To conduct the assay, the compound was prepared at various concentrations (25, 50, and 100 ppm), and 1 mL of each concentration was mixed with 1 mL of DPPH solution (400 mg in 100 mL). Then, the mixture was incubated in the dark for 30 minutes at room temperature. Finally, the absorbance of each sample was measured at 517 nm using a spectrophotometer. The potential to scavenge DPPH was calculated using the following equation, where ascorbic acid was used as a standard. I% = (Abs blank - Abs sample) / Abs blank × 100 [23]

No.	Compound structure	Compound formula	Reaction time (hours)	M.Wt (g/mol)	m.p. (°C)	Color	Yield (%)		
A1	H ₃ C N N N N N N N N N N N N N N	C15H12ON2	18	236.27	218-220	Yellow	90		
	A1 - 3-(p-tolylimino)indolin-2-one								
A2		C ₁₄ H ₉ OClN ₂	15	256.69	258-260	Pale orange	85		
		A2 - 3-((4-ch	lorophenyl)in	nino)indolin	-2-one				
A3		C13H9ON3	12	223.24	264-266	Orange	84		
		A3 - 3-(py	ridin-2-ylimin	o)indolin-2-	one				
A4	SH N N H	$C_{14}H_{10}N_2OS$	10	254.30	120-122	Red	75		
		A4 - 3-((2-mer	captophenyl)i	mino)indoli	n-2-one				
A5	H ₃ C N N N N N N N N N N N N N N N N	C ₁₄ H ₁₁ ON ₃	8	237.26	178-180	Deep orange	96		
		A5 - 3-((5-meth	ylpyridin-2-yl)imino)indo	lin-2-one				
A6		C ₁₄ H ₉ O ₃ N ₃	18	267.24	229-231	Pale orange	80		
		A6 - 3-((3-m	itrophenyl)im	ino)indolin-	2-one				

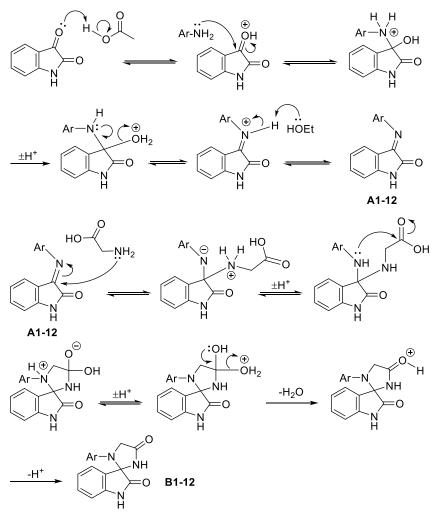
 Table 1: Physical properties of compounds A1-12

A7		C ₁₉ H ₁₆ N ₄ O ₂	14	332.36	150-152	Orange	88
	A7 - 3-((1,5-dimet	thyl-3-oxo-2-phe	nyl-2,3-dihydi	ro-1H-pyraz	ol-4-yl)imin	o)indolin-2-one	
A8		C14H9O4N3	8	283.24	116-118	Red	92
	A	48 - 3-((2-hydrox	y-5-nitrophen	yl)imino)ind	lolin-2-one		
A 9		C ₁₆ H ₁₄ ON ₂	16	250.30	105-107	Pale yellow	90
		A9 - 3-((2,4-dir	nethylphenyl)	imino)indol	in-2-one		
A10		$C_{14}H_{10}O_2N_2$	8	238.25	292-294	Orange	92
		A10 - 3-((4-hy	droxyphenyl)i	mino)indoli	n-2-one		
A11		C ₁₅ H ₁₂ O ₂ N ₂	2	252.72	234-236	Yellow	95
		A11 - 3-((4-me	thoxyphenyl)	imino)indoli	n-2-one		
A12		C ₁₈ H ₁₂ ON ₂	11	272.31	234-236	Brown	80
		A12 - 3-(napl	nthalen-1-ylin	nino)indolin	-2-one		

Table	2: Physical properties of	compounds b					
No.	Compound structure	Molecular formula	Reaction time (hours)	M.Wt (g/mol)	m.p. (°C)	Color	Yield (%)
B1		C ₁₇ H ₁₅ N ₃ O ₂	16	293.33	82-84	Brown	80
	B1 - 1-(<i>p</i> -to	olyl)spiro[imidazo	olidine-2,3'-i	indoline]-2	2',5-dione		
B2		C ₁₆ H ₁₂ ClN ₃ O ₂	22	313.74	126-128	Yellow brown	65
	B2 - 1-(4-chlore	ophenyl)spiro[im	idazolidine-2	2,3'-indolii	ne]-2',5-dior	ne	
В3		C ₁₅ H ₁₂ N ₄ O ₂	17	280.29	120-122	Light brown	88
	B3 - 1-(pyridi	n-2-yl)spiro[imid	azolidine-2,	3'-indoline]-2',5-dione		
B4	HN N O N HS HS	$C_{16}H_{13}N_3O_2S$	24	311.36	90-92	Brown	90
	B4 - 1-(2-mercap	tophenyl)spiro[ir	nidazolidine	e-2,3'-indol	ine]-2',5-dio	one	
В5		$C_{16}H_{14}N_4O_2$	22	294.31	128-130	Light brown	81
	B5 - 1-(5-methylp)	yridin-2-yl)spiro[imidazolidir	ne-2,3'-ind	oline]-2',5-d	ione	
B6		$C_{16}H_{12}N_4O4$	20	324.30	120-122	Dark brown	84
	B6 - 1-(3-nitro	phenyl)spiro[imio	dazolidine-2	,3'-indolin	e]-2',5-dion	e	
B7	HN N N N N N N N N N N N N N N N N N N	C ₂₁ H ₁₉ N ₅ O ₃	20	398.42	152-154	Red	76
B7	- 1-(1,5-dimethyl-3-oxo-2-pher	• •		-yl)spiro[i	midazolidin	e-2,3'-indol	line]-2',5-
B8	HN HO HO HO	C ₁₆ H ₁₂ N ₄ O ₅	ione 14	340.30	120-122	Dark brown	83
	B8 - 1-(2-hydroxy-5	-nitrophenyl)spir	o[imidazolic	line-2,3'-in	doline]-2',5	-dione	


Table 2: Physical properties of compounds**B1-12**

В9		$C_{18}H_{17}N_3O_2$	16	307.35	118-120	Deep yellow	92
	B9 - 1-(2,4-dimet	hylphenyl)spiro[i	midazolidin	e-2,3'-indo	line]-2',5-di	one	
B10	O H H Z Z T	$C_{16}H_{13}O_3N_3$	18	295.30	93-95	Red brown	83
	B10 -1-(4-hydrox	xyphenyl)spiro[in	nidazolidine	-2,3'-indol	ine]-2',5-dic	one	
B11	O H Z H Z H	C ₁₇ H ₁₅ O ₃ N ₃	12	309.33	100-102	Red brown	90
	B11 - 1-(4-metho	xyphenyl)spiro[ii	nidazolidine	e-2,3'-indo	line]-2',5-di	one	
B12	HN NO	$C_{20}H_{15}O_2N_3$	19	329.36	152-154	Brown	92
	B12 - 1-(naphtha	alen-1-yl)spiro[in	nidazolidine	-2,3'-indoli	ine]-2',5-dio	ne	


3. Results and discussion

3.1. Chemistry

The first part of the spiro-compound synthesis was the preparation of the Schiff bases by the reaction of ketone (isatin) and primary substituted aromatic amines, which involved nucleophilic addition. The second part is the cyclization of Schiff bases A1-12 with glycine to give spiro-imdazolidone derivatives B1-12 (Scheme 1). Each product of B1-12 is likely to be a mixture of two enantiomers. The mechanism of spiro-compounds B1-12 formation starting from isatin is hypothesized in Scheme 2. The FT-IR spectral data of A1-12 showed the absence of the carbonyl group of ketone at isatin (1747 cm⁻¹) and showed new absorptions at 1678-1641 cm⁻¹ due to the C=N frequency. Other bands in the spectra included 3313-3188 cm⁻¹ for N-H stretching, 3100-3026 cm⁻¹ for aromatic C-H stretching, 2984-2835 cm⁻¹ for aliphatic C-H stretching, and 1749-1709 cm⁻¹ for amide carbonyl groups [24]. Two absorption bands at 1526 and 1348 cm⁻¹ observed in product 3 for the asymmetric and symmetric stretching vibrations of the NO₂ group, respectively [25]. Table 3 displays all FT-IR spectral data for compounds A1-12. The FT-IR spectra of the spiro-compounds B1-12 revealed the disappearance of the absorption bands at 1678-1641 cm⁻¹ for C=N and the appearance of new absorption bands at 3369-3221 cm⁻¹, 1686-1639 cm⁻¹, and 1199-1053 cm⁻¹, which belong to the stretching vibrations of N-H, C=O, and C-N, respectively, at the imidazolidone ring [24,26]. Table 4 contains all of the FT-IR spectral data for compounds A1-12. The ¹H NMR spectral data of compound **B1** showed a singlet signal at 11.0 ppm due to the N-H proton of the oxoindole ring. Multiple signals between 7.95 and 6.33 ppm are for the N-H of the imidazolidone ring and aromatic protons [24]. Multiple signals at 3.53-3.23 ppm belong to the CH₂ protons of the imidazolidone ring. A singlet signal at 2.36 ppm is attributed to the CH₃ protons. The ¹H NMR spectral data of compound **B4** showed a singlet signal at 11.05 ppm for the N-H proton of the oxoindole ring and a singlet signal at 10.37 ppm due to the S-H proton. There are multiple signals between 8.41 and 6.42 (8 protons) for the N-H of the imidazolidone ring and aromatic protons. Multiple signals belonging to the CH₂ protons were observed at 3.53-3.23 ppm. A singlet signal at 2.36 ppm due to the CH_3 protons. All the ¹H NMR data are shown in Table 5.

Scheme 1: Synthesis of compounds B1-12 over two steps

Scheme 2: Proposed mechanism for the generation of spiro-compounds **B1-12**, commencing from isatin

No.	Compound Structure	N-H Amide	C-H Aromatic	C-H Aliphatic	C=O Amide	C=N Imine	C=C Aromatic	Other bands
A1	Z Z Z Z Z Z Z Z Z	3302	3098	2978	1732	1666	1576	-
A2		3198	3086	-	1728	1647	1587	C-Cl 1101
A3	Z Z Z Z Z Z Z Z Z Z	3198	3026	-	1728	1643	1538	-
A4	SH Z Z H	3273	3080	-	1715	1666	1522	S-H 2368
A5	H ₃ C, Z,	3192	3059	2984	1730	1678	1576	-
A6		3202	3099	-	1717	1651	1576	NO ₂ Asymmetric 1526 Symmetric 1348

Table 3: FT-IR spectral data (v, cm^{-1}) of compounds A1-12

A7		3313	3074	-	1709	1651	1576	-
A8		3269	3076	-	1713	1668	1580	NO ₂ Asymmetric 1522 Symmetric 1344
A9		3250	3067	2972	1749	1664	1562	-
A10	HO N N HO N HO N HO	3188	3060	-	1713	1641	1597	О-Н 3285
A11		3236	3100	2835	1740	1641	1572	C-O-C 1244
A12		3204	3055	-	1730	1655	1576	-

No.	Compound Structure	N-H Amide and Imidazolid one	C-H Arom atic	C-H Alipha tic	C=O Isatin and Imidazolidone	C=C Aromatic	Other bands
B1		3369 3205	3099 3007	2922 2814	1722 1672	1518	-
B2		3319 3286	3182	-	1707 1641	1560	C-Cl 1020
B3		3367 3259	3196 3061	-	1718 1651	1574	C=N 1668
B4		3248 3171	3072 3003	-	1728 1639	1574	S-H 2359
B5		3333 3277	3198 3034	2885 2748	1717 1676	1555	_
B6		3221 3178	3070	-	1730 1686	1580	NO ₂ Asym. 1508 Sym. 1331
B7		3377 3261	3261 3165	2981	1720 1649	1576	-
B8	HN NO2 HN NO2 HN HO HO	3368 3248	3090	-	1717 1666	1580	NO ₂ Asym. 1526 Sym. 1339 OH 3420
B9		3302 3200	3061 3003	2976 2880	1728 1664	1578	-
B10		3240 3142	3061 3013	-	1745 1649	1572	OH 3445

Table 4:	FT-IR spectral of	data (υ , cm ⁻¹)) of compounds B1-1	2
----------	-------------------	--	----------------------------	---

Faisal and Dawood

B11		3283 3194	3065 3001	2966 2833	1718 1639	1612 1576	C-O-C 1244
B12	HZ NO	3254 3215	3063	-	1725 1647	1620 1576	-

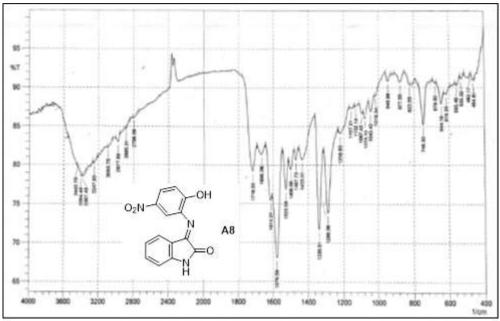


Figure 2: FT-IR spectrum of compound A8

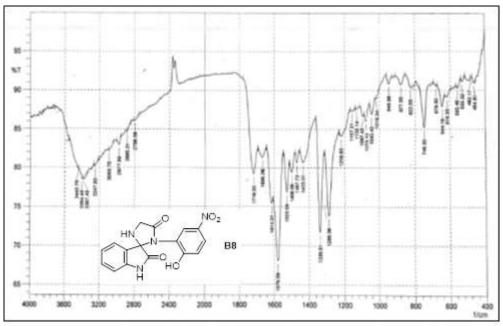


Figure 3: FT-IR spectrum of compound B8

No.	Compound structure	¹ H NMR and ¹³ C NMR spectral data (δ, ppm)
B1		11.0 (1H, s, N-H), 7.95-6.33 (9H, m, N-H and Ar-H), 3.53-3.23 (2H, m, CH ₂), 2.36 (3H, s, CH ₃)
B4	O T T T T T T T T T T T T T	11.05 (1H, s, N-H), 10.37 (1H, s, S-H), 8.41-6.42 (9H, m, N-H and Ar-H), 3.47-3.26 (2H, m, CH ₂)
B10		10.8 (1H, s, N-H), 8.30-6.30 (10H, m, N-H, O-H and Ar-H), 3.52- 3.10 (2H, m, CH ₂)

Table 5: ¹H NMR spectral data (δ , ppm) of compounds **B1**, **B9**, and **B10**

3.2. Biological activity

3.2.1. Antibacterial activity

The tested compounds were found to have a moderately strong inhibitory effect, with compounds **B3** and **B4** showing the highest level of activity against gram-positive bacteria while having relatively weaker activities against gram-negative bacteria. The effect of compound **B9**, on the other hand, was comparable for both gram-positive and gram-negative bacteria. Compounds **B8** and **B11** inhibited only the gram-negative bacteria and had no effect on the gram-negative bacteria. The antibiotic Amikacin was used as a reference, and DMSO was used as a solvent (Table 6).

Compound number	Negative-gram bacteria (<i>Escherichia coli</i>)	Positive-gram bacteria (Staphylococcus aura)
В3	10	16
B4	16	18
B8	12	8
B9	14	14
B11	10	8
Amikacin	30	38
DMSO	8	8

Table 6: Antibacterial activity of the tested prepared compounds

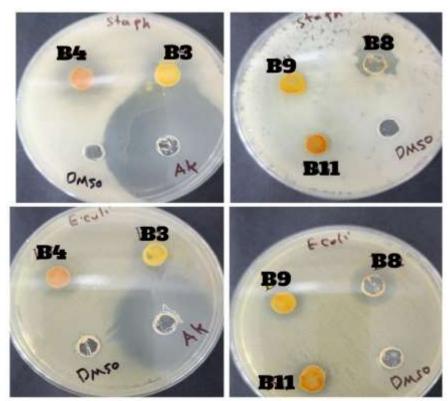


Figure 4: Inhibition zone of compounds B3, B4, B8, B9, and B11 on gram-negative and gram-positive bacteria

3.2.2. Antioxidant activity

The *in vitro* antioxidant activity of compounds **B1**, **B3**, **B4**, **B7**, **B8**, **B9**, **B10**, and **B11** was determined spectrophotometrically using DPPH assay radicals in three concentrations (25, 50, and 100 mg/mL). Compound **B8** gave the best result compared to ascorbic acid, and all the results are in Table 7.

Compound	Inhibitio	Inhibition (%) for the concentrations (mg/mL)					
number	100%	50%	25%				
B1	26	44	24				
B3	17	16	23				
B4	84	55	32				
B7	70	81	52				
B8	88	90	86				
B9	33	32	36				
B10	11	24	31				
B11	64	48	40				
Ascorbic acid	93.54	89.25	80.95				

Table 7: Free radical-scavenging activity (%) for some of the prepared compounds

4. Conclusion

With a favorable yield, a set of novel spiro-isatin analogues was produced in two steps, and they were identified using a variety of spectrophotometric techniques. The synthetic compounds displayed a wide variety of extremely promising antibacterial and antioxidant properties. Compounds **B3**, **B4**, and **B9** in particular demonstrated potent inhibitory activity against gram-positive bacteria, while **B8**, **B9**, and **B11** demonstrated potent inhibitory effects against gram-negative bacteria. Furthermore, the antioxidant activity of the compounds was assessed, and the results were remarkably significant and outperformed ascorbic acid. With a concentration of 50%, compound **B8** showed the strongest scavenging effect against the tested free radicals, while compounds **B4** and **B8** showed good scavenging activity at a concentration of 100%.

References

- [1] T. V. Baiju, N. Joseph, J. Ajit, P. Prakash, K. V. Radhakrishnan, S. Varughese and Y. Yamamoto, "Palladium-catalyzed interceptive decarboxylative addition of allyl carbonates with carbonyl group", *Synthetic Letters*, vol. 25, no. 09, pp. 1246-1252, 2014.
- [2] S. K. Ding, Y. Lu, Z. N. Coleska, S. Qiu, Y. Ding, W. Gao, J. Stuckey, K. Krajewski, P. P. Roller, Y. Tomita, D. A. Parrish, J. R. Deschamps, and S. Wang, "Structure-based design of potent non-peptide MDM2 inhibitors", *Journal of the American Chemical Society*, vol. 127, no. 29, pp. 10130-10131, 2005.
- [3] B. K. S. Yeung, B. Zou, M. Rottmann, S. B. Lakshminarayana, S. H. Ang, S. Y. Leong, J. Tan, J. Wong, S. Keller-Maerki, C. Fischli, A. Goh, E. K. Schmitt, P. Krastel, E. Francotte, E. Francotte, D. Plouffe, K. Henson, T. Wagner, E. A. Winzeler, F. Petersen, R. Brun, V. Dartois, T. T. Diagana, and T. H. Keller, "Spirotetrahydro β-carbolines (spiroindolones): a new class of potent and orally efficacious compounds for the treatment of malaria", *Journal of Medicinal Chemistry*, vol. 53, no. 14, pp. 5155-5164, 2010.
- [4] M. James and G. Williams, "The molecular and crystal structure of an oxindole alkaloid (6-hydroxy-2'-(2-methylpropyl)-3,3'-spirotetrahydropyrrolidino-oxindole", *Canadian Journal of Chemistry*, vol. 50, no. 15, pp. 2407-2412, 1972.
- [5] A. Jossang, P. Jossang, H. A. Hadi, T. Sevenet, and B. Bodo, "Horsfiline, an oxindole alkaloid from Horsfieldia superba", *The Journal of Organic Chemistry*, vol. 56, no. 23, pp. 6527-6530, 1991.
- [6] O. Anderton, P. A. Cockrum, S. M. Colegate, J. A. Edgar, K. Flower, I. Vit, R. I. Willing, "Xindoles from phalaris coerulescens", *Phytochemistry*, vol. 48, no. 3, pp. 437-439, 1998.
- [7] L. K. A. Karem, F. Y. Waddai, and N. H. Karam, "Schiff base complexes of some drug substances", *Journal of Pharmaceutical Sciences and Research*, vol. 10, no. 8, pp. 1912-1917, 2018.
- [8] R. Rios, "Enantioselective methodologies for the synthesis of spiro compounds," *Chemical Society Reviews*, vol. 41, no. 3, pp. 1060-1074, 2012.
- [9] M. J. T. Al-Abbasee, A. K. Jebur, and A. S. Shihab, "Synthesis and characterization of some new tropylidene derivatives and studying their biological activities", *Iraqi Journal of Science*, vol. 62, no. 9, pp. 3307-3322, 2021.
- [10] A. Andreani, S. Burnelli, M. Granaiola, A. Leoni, A. Locatelli, R. Morigi, M.Rambaldi, L. Varol, M. A. Cremonini, G. Placucci, R. Cervellati, and E. Greco, "New isatin derivatives with antioxidant activity", *European Journal of Medicinal Chemistry*, vol. 45, no, 4, pp. 1374-1378, 2010.
- [11] A. Sadi, M. Idris, and S. Bashir, "Synthesis, characterization and antimicrobial studies of Ru(II) complexes with Schiff base co-ligand derived from 5,6-diamino-1,10-phenanthroline and benzene-1,4-dicarbaldehyde", *Bayero Journal of Pure and Applied Sciences*, vol. 10, no. 1, pp. 468-476, 2017.
- [12] T. H. Shakir and M. M. J. Al-Mudhafar, "Synthesis and preliminary antimicrobial evaluation of Schiff bases of N-benzyl isatin derivatives", *Systematic Reviews in Pharmacy*, vol. 11, no. 12, pp. 1950-1955, 2020.

- [13] H. F. Al-Shareef, H. A. Elhady, A. H. Aboellil, and E. M. Hussein, "Ammonium chloride catalyzed synthesis of novel Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitriles and evaluation of their antimicrobial and anti-breast cancer activities", *Springer Plus*, vol. 5, pp. 1-10, 2016.
- [14] R. M. Kubba and M. M. Khathem, "Theoretical studies of corrosion inhibition efficiency of two new N-phenyl-ethylidene-5-bromo isatin derivatives", *Iraqi Journal of Science*, vol. 57, no.2B, pp. 1041-1051, 2016.
- [15] R. M. Kubba, S. M. H. Al-Majidi, and A. H. Ahmed, "Synthesis, characterization and quantum chemical studies of inhibition ability of novel 5-nitro isatin derivatives on the corrosion of carbon steel in sea water", *Iraqi Journal of Science*, vol. 60, no. 4, pp. 688-705, 2019.
- [16] A. H. Ahmed, R. M. Kubba, and S. M. H. Al-Majidi, "Synthesis, identification, theoretical and experimental studies of carbon steel corrosion inhibition in sea water by some new diazine derivatives linked to 5-nitro isatin moiety", *Iraqi Journal of Science*, vol. 59, no.3B, pp. 1347-1365, 2018.
- [17] A. J. Abdulghani and S. K. Mohuee, "Synthesis of gold nanoparticles using Schiff base derivative of ceftriaxone sodium with isatin as a reducing and stabilizing agent", *Oriental Journal of Chemistry*, vol. 33, No. 3, pp. 1276-1285, 2017,
- [18] A. Mumtaz, T. Mahmud, M. Elsegood, G. Weaver, J. I. Qazi, and F. Deeba, "Synthesis, characterization and in vitro biological studies of novel Schiff base and its transition metal complexes derived from sulphadoxine", *Farmacia*, vol. 67, pp. 107-110, 2019.
- [19] M. S. Alam, J. H. Choi, and D. U. Lee, "Synthesis of novel Schiff base analogues of 4-amino-1, 5-dimethyl-2-phenylpyrazol-3-one and their evaluation for antioxidant and anti-inflammatory activity", *Bioorganic and Medicinal Chemistry*, vol. 20, no. 13, pp. 4103-4108, 2012.
- [20] O. A. Mohammed and T. M. Al-Mouamin, "Synthesis of 3-thiosemicarbazone and 3-hydrazone derivatives of isatin nucleosides as promising bioactive compounds", *Journal of Pharmaceutical Sciences and Research*, vol. 10, no, 12, pp. 3133-3139, 2018.
- [21] M. Balouiri, M. Sadiki, and S. K. Ibnsouda, "Methods for in vitro evaluating antimicrobial activity: A review", *Journal of Pharmaceutical Analysis*, vol. 6, no. 2, pp. 71-79, 2016.
- [22] F. Fatima, S. Bhat, M. Ullah, F. Abu-duhier, and E. Husain, "In vitro antimicrobial activity of herbal extracts from tabuk region (Kingdom of Saudi Arabia) against nosomial pathogens: A preliminary study", *Global Journal of Health Scinece*, vol. 10, no. 3, pp. 83-89, 2018.
- [23] M. Cuendet, K. Hostettmann, O. Potterat, and W. Dyatmiko, "Iridoid glucosides with free radical scavenging properties from fagraea blumei", *Helvetica Chimica Acta*, vol. 80, no. 4, pp. 1144-1152, 1997.
- [24] R. M. Silverstein, F. X. Webster, and D. J. Kiemle, "Spectrometric identification of organic compounds", 7th edition, John Wiley and Sons, USA, 2005.
- [25] R. S. Dawood and A. S. Hamed, Synthesis and characterization of new 1,3-nenzodioxole derivatives based on Suzuki-Miyaura coupling reaction. *Research Journal of Chemistry and Environment*, vol. 23, Special Issue I, pp. 14-21, 2019.
- [26] A. S. Hamed and R. S. Dawood, "Synthesis and identification of some new derivatives of benzoxazole bearing pyrazole and 1,2,4-triazine rings", *Journal of Global Pharma Technology*, vol. 12, no. 2, pp. 737-744, 2020.