

ISSN: 0067-2904 GIF: 0.851

On Two Sided α -*n*-Derivations in Prime near – Rings

Abdul Rahman H. Majeed*, Enaam F. Adhab

Department of Mathematics, College of Science, University of Baghdad. Baghdad, Iraq.

Abstract

In this paper, we investigate prime near – rings with two sided α -*n*-derivations satisfying certain differential identities. Consequently, some well-known results have been generalized. Moreover, an example proving the necessity of the primness hypothesis is given.

Keywords: prime near-ring, semi group ideal, derivation, n-derivation, two sided α -n-derivation.

ثنائية الجانب على الحلقات المقتربة الأولية α-n الاشتقاقات عبد الرحمن حميد مجيد *، إنعام فرحان عذاب

قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة

في هذه الورقة بحثنا في الاشتقاقات α-n ثنائية الجانب على الحلقات المقتربة الأولية . وقمنا بوضع بعض الفرضيات على هذه الاشتقاقات، وتبعا لذلك قمنا بتعميم بعض النتائج المعروفة . كذلك قمنا بإعطاء مثال يبين ضرورة فرض أن الحلقة المقتربة المعطاة تكون أولية.

Introduction

A right near – ring (resp. left near ring) is a set *N* together with two binary operations (+) and (.) such that (i) (N,+) is a group (not necessarily abelian). (ii) (N,.) is a semi group. (iii) For all $a,b,c \in N$; we have (a + b).c = a.c + b.c (resp. a.(b + c) = a.b + b.c. Trough this paper, *N* will be a zero symmetric left near – ring (i.e., a left near-ring *N* satisfying the property 0.x = 0 for all $x \in N$). we will denote the product of any two elements *x* and *y* in *N*, i.e.; *x.y* by *xy*. The symbol *Z* will denote the multiplicative centre of *N*, that is $Z = \{x \in N \mid xy = yx \text{ for all } y \in N\}$. For any *x*, $y \in N$ the symbol [*x*, y] = xy - yx stands for multiplicative commutator of *x* and *y*, while the symbol $x \circ y$ will denote xy + yx. *N* is called a prime near-ring if $xNy = \{0\}$ implies either x = 0 or y = 0. A nonempty subset *U* of *N* is called semigroup left ideal (resp. semigroup right ideal) if $NU \subseteq U$ (resp. $UN \subseteq U$) and if *U* is both a semigroup left ideal and a semigroup right ideal, it will be called a semigroup ideal. For terminologies concerning near-rings ,we refer to Pilz [1].

An additive mapping $\delta : N \to N$ is said to be a derivation if $\delta(xy) = \delta(x)y + x \delta(y)$, (or equivalently $\delta(xy) = x \delta(y) + \delta(x)y$ for all $x, y \in N$, as noted in proposition 1 of [2]). The concept of derivation has been generalized in several ways by various authors. Two sided α -derivation has been introduced already in near-rings by N. Argac [3]. An additive mapping $d:N \to N$ is called two sided α -derivation if there exist a function $\alpha:N \to N$ such that $d(xy) = d(x)y + \alpha(x)d(y)$ and $d(xy) = d(x)\alpha(y) + xd(y)$ for all $x, y \in N$.

Also the notion of permuting *n*-derivations in near-rings has been introduced already by M. Ashraf, M.A. Siddeeque [4, 5].A map $d: \underbrace{N \times N \times \ldots \times N}_{n-\text{times}} \to N$ is said to be permuting if the equation

^{*}Email: ahmajeed6@yahoo.com

 $d(x_1, x_2, \dots, x_n) = d(x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(n)})$ holds for all $x_1, x_2, \dots, x_n \in N$ and for every permutation $\pi \in S_n$ where S_n is the permutation group on $\{1, 2, ..., n\}$.

Let n be a fixed positive integer. An additive (i.e.; additive in each argument) mapping $d: \mathbb{N} \times \mathbb{N} \times ... \times \mathbb{N} \rightarrow N$ is said to be *n*-derivation if the relations

$$d(x_1 \ x_1', x_2, \dots, x_n) = d(x_1 \ , x_2, \dots, x_n) x_1' + x_1 \ d(x_1', x_2, \dots, x_n)$$

$$d(x_1, x_2, x_2', \dots, x_n) = d(x_1, x_2, \dots, x_n) x_2' + x_2 d(x_1, x_2', \dots, x_n)$$

 $d(x_1, x_2, \dots, x_n x_n') = d(x_1, x_2, \dots, x_n) x_n' + x_n d(x_1, x_2, \dots, x_n')$

Hold for all $x_1, x_1', x_2, x_2', ..., x_n, x_n' \in N$. If in addition d is a permuting map then d is called a permuting *n*-derivation of *N*.

In the present paper, inspired by these concepts, we define a two sided α -n-derivation of near-ring *N*, which gives a generalization of *n*-derivation of near-ring.

Let n be a fixed positive integer. An additive (i.e.; additive in each argument) mapping $d: \mathbb{N} \times \mathbb{N} \times ... \times \mathbb{N} \to N$ is said to be two sided α -*n*-derivation if the relations

$$d(x_1 \ x_1', x_2, \dots, x_n) = d(x_1, x_2, \dots, x_n) x_1' + \alpha(x_1) d(x_1', x_2, \dots, x_n) = d(x_1, x_2, \dots, x_n) \alpha(x_1') + x_1 d(x_1', x_2, \dots, x_n)$$

$$d(x_1, x_2x_2', \dots, x_n) = d(x_1, x_2, \dots, x_n)x_2' + \alpha(x_2)d(x_1, x_2', \dots, x_n) = d(x_1, x_2, \dots, x_n)\alpha(x_2') + x_2 d(x_1, x_2', \dots, x_n)$$

 $d(x_1, x_2, ..., x_n x_n') = d(x_1, x_2, ..., x_n) x_n' + \alpha(x_n) d(x_1, x_2, ..., x_n') =$

 $d(x_1, x_2, ..., x_n)\alpha(x_n') + x_n d(x_1, x_2, ..., x_n')$ hold for all $x_1, x_1', x_2, x_2', ..., x_n, x_n' \in N$. If in addition d is a permuting map then d is called a permuting two sided α -n-derivation of N.

For $\alpha = I_N$, a two sided α -*n*-derivation is of course the usual *n*-derivation.

2. Preliminary results

Through the present paper, d is two sided α -n-derivation associated with an homomorphism α of N. We begin with the following lemmas which are essential in developing the proof of our main results. Proof of the first three lemmas can be seen in [6].

Lemma 2.1. Let N be a prime near-ring and U a nonzero semigroup ideal of N. If $x, y \in N$ and $xUy = \{0\}$ then either x = 0 or y = 0.

Lemma 2.2. Let N be a prime near-ring and U a nonzero semigroup right ideal (resp. semigroup left ideal) and x is an element of N such that $Ux = \{0\}$ (resp, $xU = \{0\}$), then x = 0.

Lemma 2.3. Let N be a prime near-ring and Z contains a nonzero semigroup left ideal or nonzero semigroup left ideal, then N is a commutative ring.

Lemma 2.4. Let N be a near-ring. Then d is a two sided α -n-derivation of N if and only if

$$d(x_{1} \ x_{1}', x_{2}, ..., x_{n}) = x_{1} \ d(x_{1}', x_{2}, ..., x_{n}) + d(x_{1}, x_{2}, ..., x_{n})\alpha(x_{1}')$$

$$d(x_{1} \ x_{2}x_{2}', ..., x_{n}) = x_{2} \ d(x_{1} \ x_{2}', ..., x_{n}) + d(x_{1} \ x_{2}, ..., x_{n})\alpha(x_{2}')$$

$$\vdots$$

$$d(x_{1} \ x_{2}, ..., x_{n}x_{n}') = x_{n} \ d(x_{1} \ x_{2}, ..., x_{n}') + d(x_{1} \ x_{2}, ..., x_{n})\alpha(x_{n}')$$
Proof. By hypothesis, we get
$$d(x_{1} \ (x_{1}' + x_{1}'), x_{2}, ..., x_{n}) =$$

$$d(x_{1} \ x_{2}, ..., x_{n})\alpha(x_{1}' + x_{1}') + x_{1} \ d((x_{1}' + x_{1}'), x_{2}, ..., x_{n}) =$$

$$d(x_{1} \ x_{2}, ..., x_{n})\alpha(x_{1}' + x_{1}') + d(x_{1} \ x_{2}, ..., x_{n})\alpha(x_{1}') +$$

$$x_{1} \ d(x_{1}', x_{2}, ..., x_{n}) + x_{1} \ d(x_{1}', x_{2}, ..., x_{n}) .$$
(1)

And

 $d(x_1 (x_1' + x_1'), x_2, \dots, x_n) = d(x_1 x_1' + x_1 x_1', x_2, \dots, x_n) =$ $d(x_1 \ x_1', x_2, \dots, x_n) + d(x_1 \ x_1', x_2, \dots, x_n) = d(x_1 \ x_2, \dots, x_n)\alpha(x_1') +$ $x_1 d(x_1', x_2, ..., x_n) + d(x_1, x_2, ..., x_n) \alpha(x_1') + x_1 d(x_1', x_2, ..., x_n)$ (2)Comparing the two equations (1) and (2), then we conclude that

 $d(x_1, x_2, ..., x_n)\alpha(x_1') + x_1 d(x_1', x_2, ..., x_n) =$

$$\begin{array}{l} x_1 \, d(x_1', x_2, \ldots, x_n) + d(x_1, x_2, \ldots, x_n) \alpha(x_1') \\ \text{Similarly we can prove the remaining (n=1) relations. Converse can be proved in a similar manner. \\ \text{Lemma 2.5. Let N be a near-ring admitting a two sided α-n-derivation of Then (d(x_1, x_2, \ldots, x_n)x_1' + a(x_1) d(x_1', x_2, \ldots, x_n)y) = d(x_1, x_2, \ldots, x_n)x_1'y + a(x_2) d(x_1, x_2, \ldots, x_n)x_2' + \alpha(x_2) d(x_1, x_2', \ldots, x_n)y) \\ (d(x_1, x_2, \ldots, x_n)x_2' + \alpha(x_2) d(x_1, x_2', \ldots, x_n)y) = d(x_1, x_2, \ldots, x_n)x_n'y + a(x_2) d(x_1, x_2', \ldots, x_n)y) \\ \vdots \\ (d(x_1, x_2, \ldots, x_n)x_n' + \alpha(x_n) d(x_1, x_2, \ldots, x_n')y) = d(x_1, x_2, \ldots, x_n)x_n'y + \alpha(x_n) d(x_1', x_2, \ldots, x_n')y) \\ \text{Hold for all } x_1, x_1', x_2, x_2', \ldots, x_n, x_n', y \in \mathbb{N}. \\ \text{Proof. for all } x_1, x_1', x_2, x_2', \ldots, x_n, x_n' \in \mathbb{N}. \\ \text{Proof. for all } x_1, x_1', x_2, x_2', \ldots, x_n, x_n' \in \mathbb{N}. \\ \text{for } a(x_1, x_2, \ldots, x_n)) = d(x_1, x_2, \ldots, x_n)x_1' + a(x_1, x_1') d(x_1', x_2, \ldots, x_n) \\ = (d(x_1, x_2, \ldots, x_n)x_1' + a(x_1) d(x_1', x_2, \ldots, x_n)) \\ = (d(x_1, x_2, \ldots, x_n)x_1' + a(x_1) d(x_1', x_2, \ldots, x_n)) \\ = (d(x_1, x_2, \ldots, x_n)x_1' x_1' + a(x_1) d(x_1', x_2, \ldots, x_n)) \\ = (d(x_1, x_2, \ldots, x_n)x_1' x_1' + a(x_1) d(x_1', x_2, \ldots, x_n)) \\ = d(x_1, x_2, \ldots, x_n)x_1' x_1' + a(x_1) d(x_1', x_2, \ldots, x_n) \\ = d(x_1, x_2, \ldots, x_n)x_1' x_1' + a(x_1) d(x_1', x_2, \ldots, x_n) \\ = d(x_1, x_2, \ldots, x_n)x_1' x_1' + a(x_1) d(x_1', x_2, \ldots, x_n) \\ = d(x_1, x_2, \ldots, x_n)x_1' x_1' + a(x_1) d(x_1', x_2, \ldots, x_n) \\ = d(x_1, x_2, \ldots, x_n)x_1' + a(x_1) d(x_1', x_2, \ldots, x_n) \\ = d(x_1, x_2, \ldots, x_n)x_1' + a(x_1) d(x_1', x_2, \ldots, x_n))y \\ \text{futting y in place of x_1'' we find that \\ (d(x_1, x_2, \ldots, x_n)x_1' + a(x_1) d(x_1', x_2, \ldots, x_n)x_1'y + a(x_1) d(x_1', x_2, \ldots, x_n)x_1'y \\ (a(x_1) d(x_1, x_2', \ldots, x_n) + d(x_1, x_2, \ldots, x_n))y + d(x_1, x_2, \ldots, x_n)x_1'y \\ (a(x_1) d(x_1, x_2', \ldots, x_n) + d(x_1, x_2, \ldots, x_n)y + d(x_1, x_2, \ldots, x_n)x_1'y \\ (a(x_1) d(x_1, x_2', \ldots, x_n) + d(x_1, x_2, \ldots, x_n)y + d(x_1, x_2, \ldots, x_n)x_1'y \\ (a(x_1, x_2', \ldots, x_n) + d(x_1, x_2, \ldots, x_n)y) = (a(x_1, x_2', \ldots, x_n)y + d(x_1, x_2, \ldots, x_n)x_1'y \\ (a(x_1, d(x_$$

(7)

 $d(N, N, \ldots, N) = \{0\}.$

Proof. By our hypothesis, we have $d(U_1, U_2, ..., U_n)x = \{0\}$, i.e.; $d(u_1, u_2, ..., u_n) = 0$. (5) for all $u_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$. putting u_1r_1 for u_1 in(5), where $r_1 \in N$, we get then $0 = d(u_1 r_1, u_2, ..., u_n) = u_1 d(r_1, u_2, ..., u_n) + d(u_1, u_2, ..., u_n) \alpha (r_1) = u_1 d(r_1, u_2, ..., u_n)$, hence $u_1 t d(r_1, u_2, ..., u_n) = 0$, where $t \in N$, i.e.; $U_1 N d(r_1, u_2, ..., u_n) = \{0\}$. But $U_1 \neq \{0\}$ and N is prime near ring, we conclude that $d(r_1, u_2, ..., u_n) = 0$ (6)

Now putting $r_2 u_2 \in U_2$ in place of u_2 , where $r_2 \in N$, in (6) and proceeding as above we get $d(r_1, r_2, ..., u_n) = 0$. Proceeding inductively as before we conclude that $d(r_1, r_2, ..., r_n) = 0$ for all $r_1, r_2, ..., r_n \in N$, this shows that $d(N, N, ..., N) = \{0\}$.

Lemma 2.8. Let *N* be a prime near ring, *d* a nonzero two sided α -*n*-derivation of *N*, and $U_1, U_2, ..., U_n$ be a nonzero semigroup ideals of N.

(i) If $x \in N$ and $d(U_1, U_2, ..., U_n)x = \{0\}$, then x = 0.

(ii) If $x \in N$ and $xd(U_1, U_2, ..., U_n) = \{0\}$, then x = 0.

Proof. (i) By our hypothesis, we have $d(U_1, U_2, ..., U_n)x = \{0\}$, i.e.;

 $d(u_1, u_2, \dots, u_n)x = 0$

for all $u_1 \in U_1$, $u_2 \in U_2$, ..., $u_n \in U_n$. Putting $r_1 u_1$ for u_1 in(7), where $r_1 \in N$, we get

0 = $d(r_1u_1, u_2, ..., u_n)x = \alpha$ $(r_1)d(u_1, u_2, ..., u_n)x + d(r_1, u_2, ..., u_n)$ u_1x . Using the hypothesis again we get $d(r_1, u_2, ..., u_n)u_1x = 0$. Replacing u_1 by u_1s where $s \in N$ in preceding relation we obtain $d(r_1, u_2, ..., u_n)u_1sx = 0$, i.e.; $d(r_1, u_2, ..., u_n)u_1x = \{0\}$. Since N is a prime near-ring, either $d(r_1, u_2, ..., u_n)u_1 = 0$ or x = 0. Our claim is that $d(r_1, u_2, ..., u_n)$ $u_1 \neq 0$, for some $r_1 \in N$, $u_1 \in U_1$, $u_2 \in U_2$, ..., $u_n \in U_n$. For otherwise if $d(r_1, u_2, ..., u_n)u_1 = 0$ for all $r_1 \in N$, $u_1 \in U_1$, $u_2 \in U_2$, ..., $u_n \in U_n$. For otherwise if $d(r_1, u_2, ..., u_n)u_1 = 0$ for all $r_1 \in N$, $u_1 \in U_2$, ..., $u_n \in U_n$, then $d(r_1, u_2, ..., u_n)t_1 = 0$ where $t \in N$, i.e.; $d(r_1, u_2, ..., u_n)Nu_1 = \{0\}$. As $U_1 \neq \{0\}$, primeness of N yields $d(r_1, u_2, ..., u_n) = 0$ for all $r_1 \in N$, $u_2 \in U_2$, ..., $u_n \in U_n$. Now proceeding as in the proof of lemma 2.7, we can show that $d(N, N, ..., N) = \{0\}$ leading to a contradiction. Therefore, our claim is correct and now we conclude that x = 0. (ii) It can be proved in a similar way.

3. Main results

In the year 1987 H. E. Bell ([7], Theorem 2) proved that if a 2-torsion free zero symmetric prime near-ring N admits a nonzero derivation d for which $d(N) \subseteq Z$, then N is a commutative ring. Further, this result was generalized by K. H. Park ([8], Theorem 3.1) in the year 2010 for permuting triderivation, who showed that if 3!-torsion free zero symmetric prime near-ring N admits a nonzero permuting tri-derivation d for which $d(N,N,N) \subseteq Z$, then N is a commutative ring. M. Ashraf, M.A. Siddeeque in the year 2013 showed that 2-torsion free and 3!-torsion free restrictions in the above results used by Bell and Park are superfluous. In fact, Ashraf ([4], theorem 3.2) have obtained that if d is a nonzero permuting n-derivation of prime near-ring N such that $d(N,N,...,N) \subseteq Z$, then N is a commutative ring. In the year 2014 Ashraf ([5],Theorem 3.3) proved that if N is a prime near-ring and d is a nonzero n-derivation of N such that $d(U_1, U_2, \ldots, U_n) \subseteq Z$, where U_1, U_2, \ldots, U_n are nonzero semigroup right ideals of N, then N is a commutative ring. L. Oukhtite , A. Raji ([9] theorem 1) in 2015 proved that if N is a prime near-ring and I is a nonzero semigroup ideal of N and d is a nonzero two sided α -derivation such that $d(I) \subseteq Z(N)$, then N is a commutative ring Motivated by these results we have proved the following theorem in the setting of two sided α - n-derivation associated with an homomorphism α :

Theorem 3.1. Let N be a prime near ring , d a nonzero two sided α - n-derivation of N , and $U_1, U_2, ..., U_n$ be a nonzero semigroup ideals of N. If $d(U_1, U_2, ..., U_n) \subseteq Z$, then N is a commutative ring. **Proof**. We are given that $d(u_1, u_2, ..., u_n) \in Z$ for all $u_1 \in U_1$, $u_2 \in U_2$, ..., $u_n \in U_n$. (8)

Hence $t d(u_1 u_1', u_2, ..., u_n) = d(u_1 u_1', u_2, ..., u_n) t$ for all u_1 , $u_1' \in U_1$, $u_2 \in U_2$, ..., $u_n \in U_n$, $t \in N$. By lemma 2.6 (iii) we get

 $tu_1d(u_1', u_2, ..., u_n) + td(u_1, u_2, ..., u_n)\alpha (u_1') = u_1d(u_1', u_2, ..., u_n) t + d(u_1, u_2, ..., u_n) \alpha (u_1') t.$

Using (8) again ,we obtain

 $d(u_1', u_2, ..., u_n) t u_1 + d(u_1, u_2, ..., u_n) t \alpha (u_1') =$

$$d(u_1', u_2, ..., u_n) u_1 t + d(u_1, u_2, ..., u_n) \alpha (u_1') t.$$
(9)

Replacing t by α (u₁') in (9) ,we get

 $\begin{array}{ll} d(u_1',u_2,...,u_n) \; \alpha \; (u_1') \quad u_1 = d(u_1',u_2,...,u_n) \; u_1 \; \alpha \; (u_1') \quad \text{for all } u_1 \;, \; u_1' \; \varepsilon U_1 \;, u_2 \varepsilon \; U_2,...,u_n \; \varepsilon U_n, \; \text{hence} \\ d(u_1',u_2,...,u_n) N[\alpha \; (u_1') \;, \; u_1] = 0 \;, \text{primeness of N yields either } d(u_1',u_2,...,u_n) = 0 \; \text{or } [\alpha \; (u_1') \;, \; u_1] = 0 \;. \text{If} \\ d(u_1',u_2,...,u_n) \; = \; 0 \; \; \text{then } \; \text{by lemma } \; 2.7 \; \text{ we conclude } \; \text{that } \; d(N,N,...,N) \; = \; \{0\}, \\ \text{leading to a contradiction as } d \; \text{is a nonzero } d \; \text{two sided } \alpha \text{- n-derivation of N. Therefore there exist } x_1 \varepsilon \\ U_1,x_2 \varepsilon \; U_2,...,x_n \; \varepsilon U_n \; \text{all being nonzero such that } d(x_1,x_2,\cdots,x_n) \neq 0 \; \text{such that } \alpha \; (x_1)u \; = \; u\alpha \; (x_1) \; \text{for all } u \varepsilon \\ U_1. \; \text{Replacing u by ut where } t \varepsilon \; N, \; \text{we get } \; U_1[\; \alpha \; (x_1) \;, \; t \;] = \{0\}, \; \text{for all } t \; \varepsilon \; N. \; \text{By lemma } 2.2 \; \text{we get } \alpha \\ (x_1) \; \varepsilon \; Z \; . \; \text{Taking } x_1 \; \text{instead of } u_1', \; x_2 \; \text{instead of } u_2,..., x_n \; \text{instead of } u_n \; \text{in } (9) \; \text{, we obtain } d(x_1,x_2,...,x_n) \; t \; u_1 \\ = \; d(x_1,x_2,...,x_n) \; u_1 \; \text{ for all } u_1 \; \varepsilon \; N, \; \text{i.e.}; \end{array}$

 $d(x_1, x_2, ..., x_n)$ [t, u_1] = 0, accordingly $d(x_1, x_2, ..., x_n)N$ [t, u_1] = 0 for all $u_1 \in U_1$, $t \in N$. Primeness of N and $d(x_1, x_2, ..., x_n) \neq 0$ yield that $U_1 \subseteq Z$, by lemma 2.3 we conclude that N is a commutative ring.

Corollary 3.1 ([5] Theorem 3.3). Let *N* be a prime near ring, *d* a nonzero *n*-derivation of N, and U_1 , U_2 , ..., U_n be a nonzero semigroup ideals of N. If $d(U_1, U_2, ..., U_n) \subseteq Z$, then *N* is a commutative ring.

Corollary 3.2.([9], Theorem 1). Let N be a prime near ring, d is a nonzero two sided α -n- derivation of N, and U be a nonzero semigroup ideal of N. If $d(U) \subseteq Z$, then N is a commutative ring.

As an application of theorem 3.1, we get the following theorems.

Theorem 3.2. Let N be a prime near-ring admitting a nonzero two sided α -*n*-derivation. Let U_1, U_2, \ldots, U_n be nonzero semigroup ideals of N. If $d([u_1, u'_1], u_2, \ldots, u_n) = 0$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$, then N is a commutative ring.

Proof. Since $d([u_1, u'_1], u_2, \ldots, u_n) = 0$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, \ldots, u_n \in U_n$. Replacing u'_1 by $u_1u'_1$ in preceding relation and using it again we get $d(u_1, u_2, \ldots, u_n)$ $[u_1, u'_1] = 0$, i.e.;

 $\begin{array}{ll} d(u_1, u_2, \ldots, u_n)u_1u_1'=d(u_1, u_2, \ldots, u_n)u_1' u_1 \\ \text{Replacing } u_1' \ \text{by } u_1'r, \ \text{where } r\in N, \ \text{in relation (10) and using it again we get } d(u_1, u_2, \ldots, u_n) u_1' \ [u_1, r]=0, \ \text{i.e.; } d(u_1, u_2, \ldots, u_n) \ U_1 \ [u_1, r]=\{0\}, \ \text{By using lemma } 2.1, \ \text{we conclude that for each } u_1\in U_1 \\ \text{either } u_1\in Z \ \text{or } d(u_1, u_2, \ldots, u_n)=0. \end{array}$

Let $x_1 \in U_1 \cap Z$, by lemma 2.4 and defining property of d, we have for all $y \in N$,

 $d(x_1y, u_2, \ldots, u_n) = x_1 d(y, u_2, \ldots, u_n) + d(x_1, u_2, \ldots, u_n) \alpha(y) = d(yx_1, u_2, \ldots, u_n) =$

 $d(y, u_2, \ldots, u_n) x_1 + \alpha(y) d(x_1, u_2, \ldots, u_n)$, this implies $d(x_1, u_2, \ldots, u_n) \alpha(y) = \alpha(y) d(x_1, u_2, \ldots, u_n)$.

Hence , for all $u_1 \in U_1$, $u_2 \in U_2$,..., $u_n \in U_n$, $y \in N$ we get

 $d(u_1, u_2, \ldots, u_n) \alpha(y) = \alpha(y) d(u_1, u_2, \ldots, u_n).$

On the other hand, from

 $\begin{array}{l} d(x_{1}t,\,u_{2},\,\ldots\,,\,u_{n})=d(x_{1},\,u_{2},\,\ldots\,,\,u_{n})t+\alpha(x_{1})\,\,d(t,\,u_{2},\,\ldots\,,\,u_{n})=d(tx_{1},\,u_{2},\,\ldots\,,\,u_{n})=td(x_{1},\,u_{2},\,\ldots\,,\,u_{n})+d(t,\,u_{2},\,\ldots\,,\,u_{n})\,\,\alpha(x_{1})\,\,\text{for all }t\in\,N\,,u_{2}\in\,U_{2},...,u_{n}\,\epsilon U_{n}. \label{eq:constraint} \text{It follows that for all }t\in\,N\,,u_{2}\in\,U_{2},...,u_{n}\,\epsilon U_{n}\,\,\text{we get }d(x_{1},\,u_{2},\,\ldots\,,\,u_{n})t+\alpha(x_{1})\,\,d(t,\,u_{2},\,\ldots\,,\,u_{n})=\\ \end{array}$

$$td(x_1, u_2, \ldots, u_n) + d(t, u_2, \ldots, u_n) \alpha(x_1)$$
 (13)

(12)

In particular , taking t \in U₁ in (13) and using (12), we get

 $d(x_1,\,u_2,\,\ldots,\,u_n)\,t=\,t\;d(x_1,\,u_2,\,\ldots,\,u_n)$ for all $t\in\,U_1,u_2\in\,U_2,...,u_n\,\varepsilon U_n$.

Replacing t by ty in the preceding equation , where $y \in N$, we get

t y d(x₁, u₂, . . ., u_n) = d(x₁, u₂, . . ., u_n) t y = td(x₁, u₂, . . ., u_n) y for all t U₁, u₂ U₂,...,u_n U_n, y eN, that is:

t $[d(x_1,\,u_2,\,\ldots,\,u_n)$, y]=0 for all té $U_1\,,u_2 \in \,U_2,...,u_n\, \varepsilon U_n$, $y\, \varepsilon N.$ So that

 U_1 [d(x₁, u₂, . . ., u_n), y] = 0, by lemma 2.2 we get d(x₁, u₂, . . ., u_n) \in Z. According to (11) we conclude that d(u₁, u₂, . . ., u_n) \in Z for all u₁ \in U₁, u₂ \in U₂,...,u_n \in U_n, and hence N is commutative ring by application of theorem 3.1.

Corollary 3.3 ([5], Theorem 3.6). Let N be a prime near-ring admitting a nonzero n-derivation d of N. Let U_1, U_2, \ldots, U_n be nonzero semigroup ideals of N. If $d([u_1, u'_1], u_2, \ldots, u_n) = 0$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$, then N is commutative ring.

Corollary 3.4. ([9], Corollary 2). Let N be a prime near-ring admitting a nonzero two sided α -derivation d. Let U be nonzero semigroup ideal of N. If d([x, y])=0, for all x, y $\in U$, then N is commutative ring.

If N is 2-torsion, the following theorem shows that the conclusion of theorem 3.2 is not true if we replace [x, y] by xoy.

(17)

Theorem 3.3. Let N be a 2-torsion free prime near-ring and U_1, U_2, \ldots, U_n be nonzero semigroup ideals of N, then then there exist no nonzero two sided α - n-derivation d of N such that $d(u_1 \circ u'_1, u_2, \ldots, u_n) = 0$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, \ldots, u_n \in U_n$.

Proof . Assume that

$$d(u_1 \circ u'_1, u_2, \dots, u_n) = 0, \text{ for all } u_1, u'_1 \in U_1, u_2 \in U_2, \dots, u_n \in U_n.$$
(14)

Substituting $u_1 u'_1$ for u'_1 in (14) we obtain $d(u_1(u_1 \circ u'_1), u_2, ..., u_n) = 0$, i.e.;

 $d(u_1, u_2, \ldots, u_n) (u_1 \circ u'_1) + \alpha (u_1)d((u_1 \circ u'_1), u_2, \ldots, u_n) = 0$. By hypothesis we get $d(u_1, u_2, \ldots, u_n) (u_1 \circ u'_1) = 0$, i.e.;

 $d(u_1, u_2, \ldots, u_n) u_1 u'_1 = - d(u_1, u_2, \ldots, u_n) u'_1 u_1$

Putting $u'_{1}z$ for u'_{1} , where $z \in N$, in (15) we get $d(u_{1}, u_{2}, ..., u_{n}) u_{1}u'_{1}z = -d(u_{1}, u_{2}, ..., u_{n}) u'_{1}zu_{1}$ and using (15) again we get($-d(u_{1}, u_{2}, ..., u_{n})u'_{1}u_{1})z = -d(u_{1}, u_{2}, ..., u_{n})u'_{1}zu_{1}$ that is $d(u_{1}, u_{2}, ..., u_{n})u'_{1}(-u_{1})z + d(u_{1}, u_{2}, ..., u_{n})u'_{1}zu_{1} = 0$. Now replacing u_{1} by $-u_{1}$ in preceding relation we have $d(-u_{1}, u_{2}, ..., u_{n})u'_{1}u_{1}z + d(-u_{1}, u_{2}, ..., u_{n})u'_{1}z(-u_{1}) = 0$, i.e.; $d(-u_{1}, u_{2}, ..., u_{n})u'_{1}[u_{1}z, z u_{1}] = 0$, that is $d(-u_{1}, u_{2}, ..., u_{n})u'_{1}(u_{1}z, z u_{1}] = 0$. For each fixed $u_{1} \in U_{1}$ lemma 2.1 yields either $u_{1} \in Z$ or $d(-u_{1}, u_{2}, ..., u_{n}) = 0$. Since $d(u_{1}, u_{2}, ..., u_{n}) = -d(-u_{1}, u_{2}, ..., u_{n})$, so we get

either $u_1 \in Z$ or $d(u_1, u_2, \ldots, u_n) = 0$

(16)

(18)

(19)

which is identical with the relation (11) in theorem 3.2. Now arguing in the same way in the theorem 3.2 we conclude that N is a commutative ring. In this case, returning to hypothesis, we find that $d(u_1 u'_1, u_2, \ldots, u_n) = 0$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, \ldots, u_n \in U_n$. In particular $0 = d((zu_1) u'_1), u_2, \ldots, u_n) = d(z(u_1 u'_1), u_2, \ldots, u_n) = d(z, u_2, \ldots, u_n) = 0$ for all $u_1, u'_1 \in U_1, u_2 \in U_2, \ldots, u_n \in U_n$, z \in N. we conclude that $d(z, u_2, \ldots, u_n) = U_1 u'_1 = 0$, since $U_1 \neq 0$, then by lemma 2.1 we get $d(z, u_2, \ldots, u_n) = 0$ for all $u_2 \in U_2, \ldots, u_n \in U_n$, z \in N which is identical with the relation (6). Now arguing in the same way in the lemma 2.7 we conclude d = 0, which contradicts our original assumption that $d \neq 0$.

Corollary 3.5 ([5], Corollary 3.9). Let N be a prime near-ring , then N admits no n-derivation d such that $d(x_1 o x'_1, x_2, ..., x_n) = 0$, for all $x_1, x'_1, x_2 \in ..., x_n \in N$.

In the following two theorems, we assume that the α is an automorphism.

Theorem 3.4 Let N be a prime near-ring admitting a nonzero two sided α - n-derivation d. Let U_1, U_2, \ldots , U_n be nonzero semigroup ideals of N. If $d([u_1, u'_1], u_2, \ldots, u_n) = \pm [u_1, u'_1]$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, \ldots, u_n \in U_n$, then N is commutative ring.

Proof. Since $d([u_1, u'_1], u_2, \ldots, u_n) = \pm [u_1, u'_1]$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, \ldots, u_n \in U_n$. Replacing u'_1 by $u_1u'_1$ in preceding relation and using it again we get $d(u_1, u_2, \ldots, u_n) \alpha([u_1, u'_1]) = 0$, i.e.;

 $\begin{array}{l} d(u_1,\,u_2,\,\ldots\,,\,u_n)\,\alpha\,(u_1)\,\alpha\,(u_1') = d(u_1,\,u_2,\,\ldots\,,\,u_n)\,\alpha\,(u_1'\,)\,\alpha\,(u_1)\ ,\ let\,\alpha\,(U_1) = V_1\ since\,\alpha\ is\ surjective\ ,\ then\ V_1\ is\ a\ semigroup\ ideal\ of\ N\ .\ Now\ let\ \alpha\,(u_1') = v_1\ ,\ where\ v_1\in V_1\ ,\ so\ we\ have \end{array}$

 $d(u_1, u_2, \ldots, u_n) \alpha (u_1) v_1 = d(u_1, u_2, \ldots, u_n) v_1 \alpha (u_1).$

Replacing v_1 by v_1 r, where $r \in N$, in relation (17) and using it again we get

 $d(u_1, u_2, ..., u_n) v_1 [\alpha (u_1), r] = 0$, then we obtain $d(u_1, u_2, ..., u_n) V_1 [\alpha (u_1), r] = \{0\}$, by lemma 2.1 we get for all $u_1 \in U_1$

either α (u₁) \in Z or d(u₁, u₂, ..., u_n) = 0 for all u₂ \in U₂,...,u_n \in U_n.

Let $u \in U_1$ such that $d(u, u_2, ..., u_n) = 0$ for all $u_2 \in U_2, ..., u_n \in U_n$, then

 $d(vu, u_2, ..., u_n) = d(v, u_2, ..., u_n) u + \alpha (v) d(u, u_2, ..., u_n) = d(v, u_2, ..., u_n)u$ and

 $d(vu, u_2, ..., u_n) = d(v, u_2, ..., u_n) \alpha (u) + vd(u, u_2, ..., u_n) = d(v, u_2, ..., u_n) \alpha (u)$

for all $v \in U_1, u_2 \in U_2, ..., u_n \in U_n$.

Combining both expressions of $d(vu, u_2, \ldots, u_n)$, we obtain

$$d(v, u_2, \ldots, u_n) (\alpha (u) - u) = 0 \text{ for all } v \in U_1, u_2 \in U_2, \ldots, u_n \in U_n$$

Replacing v by vw , where w εU_1 , in (19) we get d(v, u_2, . . ., u_n) w(\alpha (u) - u) = 0 for all v, w $\varepsilon U_1, u_2 \varepsilon U_2, ..., u_n \varepsilon U_n$, i.e.; d(v, u_2, . . ., u_n) U_1(\alpha (u) - u) = 0 for all v $\varepsilon U_1, u_2 \varepsilon U_2, ..., u_n \varepsilon U_n$, by lemma 2.1 we conclude that either d(v, u_2, . . ., u_n) = 0 for all v $\varepsilon U_1, u_2 \varepsilon U_2, ..., u_n \varepsilon U_n$ or $\alpha (u) = u$.

If $d(v, u_2, \ldots, u_n) = 0$, then by lemma 2.7 we conclude d = 0, which contradicts our original assumption that $d \neq 0$.

Hence we conclude that α (u) = u , so we get d(α (u), u_2, \ldots, u_n) = 0 . According to (18) we arrive at a conclusion

(20)

 $\alpha(u_1) \in \mathbb{Z}$ or $d(\alpha(u_1), u_2, \ldots, u_n) = 0$ for all $u_1 \in U_1$. It follows that for all $v_1 \in V_1$, we get either $v_1 \in \mathbb{Z}$ or d $(v_1, u_2, ..., u_n) = 0$ which is identical with the relation (11) in theorem 3.2. Now arguing in the same way in the theorem 3.2 we conclude that N is a commutative ring.

Corollary 3.6 ([5], Theorem 3.7) Let N be a prime near-ring admitting a nonzero n-derivation d of N. Let U_1, U_2, \ldots, U_n be nonzero semigroup ideals of N. If $d([u_1, u'_1], u_2, \ldots, u_n) = \pm [u_1, u'_1]$, for all u_1 . $u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$, then N is commutative ring.

Theorem 3.5. Let N be a 2-torsion free prime near-ring and U_1, U_2, \ldots, U_n be nonzero semigroup ideals of N, then N admits no two sided α - n-derivation d associated with a nonzero two sided α - nderivation d such that $d(u_1 \circ u'_1, u_2, \ldots, u_n) = \pm (u_1 \circ u'_1)$, for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$.

Proof. We are assuming that for all $u_1, u'_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$, we have

 $d(u_1 o u'_1, u_2, \ldots, u_n) = \pm (u_1 o u'_1)$

Substituting $u_1 u'_1$ for u'_1 in (20) we obtain $d(u_1(u_1 \circ u'_1), u_2, \ldots, u_n) = \pm u_1(u_1 \circ u'_1)$, i.e.; $d(u_1, u_2, \ldots, u_n) = \pm u_1(u_1, u_2, \ldots, u_n)$., u_n) α ($u_1 \circ u'_1$) + $u_1d((u_1 \circ u'_1), u_2, \ldots, u_n) = \pm u_1(u_1 \circ u'_1)$. By hypothesis we get $d(u_1, u_2, \ldots, u_n) \alpha$ $(u_1 \circ u'_1) = 0$, i.e.;

 $d(u_1, u_2, ..., u_n) \alpha (u'_1) \alpha (u_1) = - d(u_1, u_2, ..., u_n) \alpha (u_1) \alpha (u'_1)$ (21)

, let $\alpha(U_1) = V_1$ since α is surjective, then V_1 is a semigroup ideal of N. Now let $\alpha(u'_1) = v_1$, where $v_1 \in V_1$, so we have

 $d(u_1, u_2, ..., u_n) v_1 \alpha (u_1) = - d(u_1, u_2, ..., u_n) \alpha (u_1) v_1$ (22)

Replacing v_1 by v_1 r, where r \in N, in relation (22) and using it again we get

 $d(u_1, u_2, \ldots, u_n)v_1 r \alpha(u_1) = d(u_1, u_2, \ldots, u_n)v_1 \alpha(u_1) r$, which can be written as for all $u_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n$, $r \in N$

 $d(u_1, u_2, \ldots, u_n) V_1[\alpha(u_1), r] = 0$, then we obtain $d(u_1, u_2, \ldots, u_n) V_1[\alpha(u_1), r] = \{0\}$, by lemma 2.1 we get for all $u_1 \in U_1$

either α (u₁) \in Z or d(u₁, u₂, ..., u_n) = 0 for all u₂ \in U₂,...,u_n \in U_n. (23)

which is identical with the relation (18) in theorem 3.4. An argument similar to that used in the proof of theorem 3.4 shows N is a commutative ring. By 2-torsion freeness of N, we have

$$d(u_1 u'_1, u_2, \dots, u_n) = u_1 u'_1, \text{ for all } u_1, u'_1 \in U_1, u_2 \in U_2, \dots, u_n \in U_n.$$
(24)

 $zu_1 u'_1 = d((zu_1) u'_1), u_2, \ldots, u_n) = d(z(u_1 u'_1), u_2, \ldots, u_n) =$

 $d(z, u_2, \ldots, u_n) \alpha(u_1) \alpha(u'_1) + z d(u_1 u'_1, u_2, \ldots, u_n) =$

 $d(z, u_2, ..., u_n) \alpha (u_1) \alpha (u'_1) + z u_1 u'_1,$

so we get $d(z, u_2, \ldots, u_n) \alpha(u_1) \alpha(u_1') = 0$, for all $u_1, u_1' \in U_1, u_2 \in U_2, \ldots, u_n \in U_n$, $z \in N$. we conclude that $d(z, u_2, \ldots, u_n) v_1 v_1' = 0$ for all $v_1, v_1' \in V_1, u_2 \in U_2, ..., u_n \in U_n$, $z \in N$, consequently by lemma 2.1 we obtain that d = 0, which contradicts our original assumption that $d \neq 0$.

Corollary3.7. Let N be a 2-torsion free prime near-ring and U_1, U_2, \ldots, U_n be nonzero semigroup ideals of N, then thre is no n-derivation d such that $d(u_1 \circ u'_1, u_2, \ldots, u_n) = \pm (u_1 \circ u'_1)$, for all u_1, u'_1 $\in U_1, u_2 \in U_2, ..., u_n \in U_n$.

Corollary3.13([9], Corollary 6) Let N be a 2-torsion free prime near-ring. N admits no a nonzero two sided α -derivation d such that $d(x \circ y) = x \circ y$ for all $x, y \in \mathbb{N}$.

The following example proves that the hypothesis of primness in various theorems is not superfluous. Let S be a 2-torsion free zero-symmetric left near-ring. Let us define :

 $N = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & y \\ 0 & 0 & 0 \end{pmatrix}, x, y, 0 \in S \right\}$ is zero symmetric near-ring with regard to matrix addition and

matrix multiplication.

$$U_{1} = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, x, 0 \in S \right\}$$

Define d: $N \times N \times ... \times N \rightarrow N$ such that n-times

 $d\left(\begin{pmatrix} 0 & 0 & 0 \\ x_1 & 0 & y_1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ x_2 & 0 & y_2 \\ 0 & 0 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 0 & 0 \\ x_n & 0 & y_n \\ 0 & 0 & 0 \end{pmatrix}\right) = \begin{pmatrix} 0 & 0 & 0 \\ x_1 x_2 \dots x_n & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Now we define $\alpha: N \to N$ by

	/0	0	0\		/0	0	0\
α	x	0	у	=	y	0	x)
	/0	0	0/		/0	0	0/

It is easy to verify that N is not prime near-ring, U_1 is a nonzero semigroup ideal of N and d is a nonzero two sided α -n-derivation of N satisfying

(i) $d(U_1, U_1, ..., U_1) \subseteq \mathbb{Z}$ (iv) $d([A,B], A_2, ..., A_n) = [A,B].$

(ii) $d([A,B],A_2,...,A_n) = 0$ (v) $d(A \circ B,A_{2,...,A_n}) = A \circ B$

(iii) $d(A \circ B, A_{2,...,}A_n) = 0$ for all $A, B, A_2, ..., A_n \in U_1$, but N is not commutative ring.

References

- 1. Pilz . G.1983. Near-Rings. Second Edition. North Holland /American Elsevier. Amsterdam.
- 2. Wang. X.K. 1994. Derivations in prime near-rings. Proc. Amer. Math.Soc. 121 (2). 361–366.
- 3. Argac.N. 2004. On near-rings with two-sided α -derivations, Turk. J.Math 28, 195–204.
- 4. M. Ashraf, Siddeeque M.A. 2013. On permuting n-derivations in near-rings. *Commun. Kor. Math. Soc.* 28 (4) .697–707.
- 5. Ashraf. M., Siddeeque M.A., Parveen N. 2014. On semigroup ideals and n-derivations in nearrings. *Science Direct Journal of Taibah University for Science*. V. 9. 126–132.
- 6. Bell H. E. 1997. On Derivations in Near-Rings II. 426. *Kluwer Academic Publishers. Dordrecht.* pp: 191–197.
- 7. Bell H.E., Mason G.1987. On derivations in near-rings. North-Holland Math. Stud. 137: 31–35.
- **8.** Park K. H., Jung Y. S. **2010**. On permuting 3-derivations and commutativity in prime near-rings. *Commun. Korean Math. Soc.* 25(1). 1–9.
- 9. Oukhtite L., Raji A. 2015. Generalized two sided α -derivations in 3-prime near-rings. J. Taibah Univ. Sci. 02.021