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Abstract

In this paper, a mathematical model consisting of the prey- predator model with
treatment and disease infection in prey population is proposed and analyzed. The
existence, uniqueness and boundedness of the solution are discussed. The stability
analyses of all possible equilibrium points are studied. Numerical simulation is
carried out to investigate the global dynamical behavior of the system.
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1. Introduction

Ecological populations suffer from the various infectious diseases and these diseases have a
significant role in regulating population size. Thus, it is worthwhile to study the combined effect of
epidemiological and demographic features on the real ecological populations. Mathematical study of
such eco-epidemiological model has explored various unknown aspects of ecological population [1].
However, in ecosystem, the interaction between the predator and prey is a nonlinear and complex
process. This complexity has attracted the attention of both theoretical and mathematical ecologists to
have extensive investigation concerning the interaction which calls for development of mathematical
models that are essential tools in understanding the interaction mechanisms for persistence or
extinction of species in natural systems.

Eco-epidemiology is a new branch in mathematical biology which considers both the ecological
and epidemiological issues simultaneously [2]. Since [3] modeled firstly a disease spreading among
interacting populations, scientists are paying increasing interests to this new field due to its theoretical
and empirical importance [2-4]. As a result, the study of diseases in a prey -predator system has also
become a very popular topic in eco-epidemiology and made a significant progress in understanding
different scenarios for disease transmission [2-5]. Among these studies, most considered the
transmission of disease in prey populations. However, epidemic diseases can attack predators through
various means,such as food, mating and parasites, then infectious diseases in prey species has need to

*Email: nidhal.f1980@yahoo.com
2654


mailto:nidhal.f1980@yahoo.com

Ali and Aaid Iraqi Journal of Science, 2015, Vol 56, N0.3C, pp: 2654-2673

be explored. Mathematical models had become important tools to analyze the spread and control of
disease. These models, which known as epidemiological models, are used to study the spread and
control of diseases in human or animal populations. One of the major mathematical model in the field
of epidemiology that describe the transition of disease from susceptible to infected and then to
removal individuals had been formulated by Kermack and Mckendric in 1927. On the other hand, the
Mathematical models which describe the dynamical behavior of an interacting species in ecology are
known as ecological model. The first mathematical model in the field of ecology that describes the
interactions between biological species was formulated, independently, by Lotka (American physical
chemist) in 1925 and Volterra (Italian mathematician) in 1926. The researchers had been studied the
dynamics of the mathematical models of these two fields (epidemiology and ecology) independently
for long years, see for example [5-14]. However during the last four decades the ideas oriented to
study the dynamical behavior of the mathematical models involving both the fields simultaneous,
these models are known as an eco-epidemiological models.

On contrast to all of the above studies, in this paper a prey-predator model with treatment and
disease (SIS) infection in Prey population is proposed and analyzed. Disease dose not spread outside
the specific prey species instead the disease transmitted within the same species by contact, according
to ratio-dependent incidence. Instead the disease transmitted within the same species by contact,
between susceptible individuals and infected individuals. Further, in this model, non linear type of
functional response, represented by Holloing type 11 is used.

2. Mathematical Model.
In this section, an eco-epidemiological model is proposed for study. The model consists of a prey,
whose total population density at time T is denoted by N(T), interacting with predator population

whose density at time T is denoted by Z(T) and population of infected prey under treatment is
denoted by T,(T). Further, the following assumptions are made in formulating the basic eco-

epidemiological model:
1. There is an SIS epidemic disease in prey population divides the prey population into two
classes namely X(T) that represents the density of susceptible prey species at time T

andY (T), which represents the density of infected prey species at time T . Therefore at any
T we have

N(T) = X(T)+Y(T).

2. The susceptible prey is capable of reproducing in logistic fashion with carrying
capacity K >0, intrinsic growth rater > 0. In addition the disease has the capability to
compete with the susceptible.

3. Disease dose not spread outside the specific species prey instead the disease transmitted
within the same species by contact, according to ratio-dependent incidence the susceptible rate
with infection rate constant A > 0. Further the disease disappears and infected individuals
become susceptible again at the recover rate  >0.

4. The disease in prey may causes mortality with a constant mortality rate represented by d; > 0.

5. The predator consumes the prey according to Holling type-1l1 of functional response with
maximum attack rate « >0 and £ >0 from susceptible prey and infected prey respectively.
However the constant m >0 represent the half saturation for the susceptible and infected
predator respectively.

6. In the absence of the prey the predator decays exponentially with natural death rated, > 0.

7. The infected prey is treated at the rate a>0and removed without immunity at the
rate & > 0while d3 >0 is the death of infected prey under treatment.

Considering the above basic assumptions the prey-predator model can be represented in the
following set of differential equations.
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With X(0)>0;Y(0)>0;Z(0)>0;T,(0)>0 andO<e; <1; i=12 represent the conversion rate

constants. Consequently, the flow of the food, disease and treatment in system (1) can be described in
the following block diagram.

Treatmentprey T, Iq dsT,
X +Y
l" (1 J XY \
X Y dyy
I Susceptible prey X I Infectiveprey Y H

e axXZ
m+ X I m+Y

predator z

d,z

Figure 1- Block diagram of the prey —predator model given by system (1).

Cleary, system (1) included (14) parameters which make the analysis difficult. So, in order to
simplify the system the number of parameters is reduced by using the following dimensionless
variables

t=rT,x=£,y:i,z=£,W=T—r.
K K K K
Thus we obtain the following dimensionless form of the system (1):

dx WXy  WoXZ
d—_x[l (x+y)]- X1+y W32+X-I—WW-I—W5y

dy

E:%—%—(% + W + W)y

d )
z

€W, XZ e,Wg Yz
—ZL-I-Z—W—WQZ
dt W3+X W3 +Yy

dw
——=Wgy — (W + W)W
dt
Here:
A a m S 7 B
W =— Wy =—, W3 =— ,Wg =—,W5 =—,Wg =—,
r r K r r r
dy a d, dj
W7 =—,Wg =—,Wg =—,Wjg=—
r r r r

Represent the dimensionless parameters of the system (2). Further, the interaction functions
Fi(x,y,z,w),i=12,34. are continuously differentiable on
Int.Rf ={(x, v, Z,W) e Rf,x>0,y>0,z>0,w>0}.

In addition to that limF;(x,y,z,w),Vi=1234.and limF(x,y,z,w),Vi=1234,xe Rf. So, if we
(X,y,Z,W)—)(0,0,0,0) (X,Y,Z,W)—)(X,0,0,0)

define that F;(0,0,0,0)=F;(x,0,0,0)=0,Vi=1234. Then with this assumption the interaction

functions of system (2), F;,i=1234. are continuously differentiable on the extended

2656



Ali and Aaid Iraqi Journal of Science, 2015, Vol 56, N0.3C, pp: 2654-2673

domain R% ={(x, y,z,w)eRf,xzo,yzO,zzO,sz}. In fact, they are Lipschizian onR%.
Accordingly, the solution of system (2) with non negative initial condition exists and is unique.
Therefore Rf is invariant for the system (2). Moreover in the following theorem the sufficient

condition for uniformly bounded of the solution of system (2) is established.
Theorem 1. All solutions of system (2) are uniformly bounded.
Proof.  Let (X(t),y(t),z(t),w(t)) be any solution of the system (2). Define the function
M (t) = x(t) + y(t) + z(t) + w(t) , then the time derivative of M (t) along the solution of the system
(2), gives

aMm <2—nM

dt

Where n = min {1, W7,W9,W10}. Now, by using Gronwell lemma, it obtains that:

0<M®<M©e ™+ Za-e )

Which yields lim_,, M(t)S% that is independent of the initial conditions. Thus the proof is
complete.

3. Existence of equilibrium points.

It is observed that, system (2) has at most five biologically feasible equilibrium points, namely Eg,
Ex.Ex;, Exyw and EXyZW . The existence conditions for each of these equilibrium points are
discussed in the following:

1- The vanishing equilibrium point Ey =(0,0,0,0) always exists.

2- The axial equilibrium point E, =(1,0,0,0) always exists.

3- The disease free equilibrium point E,, =(X,0,2,0) ,where:

WaWo s EaWoWa[egwp —(1+ V;3)W9] 3)
E1W2 —Wo W (eqWy —Wg)

Exists uniquely in the interior of first quadrant of Xz - plane under the following necessary and
sufficient condition:

e Wp > (1+ W3)W9 (4)
4- The predator free equilibrium point E,y,, = (X,y,0,W) ,where:

R:

~ - 2
% by Cq= Y ang J= ab(wy —b) + (wy —b)“[w,wg + aws —ab] 5)
wy —Db Wa+Wio abw
Here a= (W4 + WlO) andb = W5 + W7 + W8 (5&)

exists uniquely in the interior of first quadrant of Xyw - octant under the following necessary and
sufficient conditions:
w; >b and w,wg +aws > ab (6)

5- The positive equilibrium point E" = (x*, y*, z*,w*) Where:

*
W =ay

*
Wa +a
X" = 13%3Y 1% )
Waap + agy

3 2

* * *
* —b(Z5y +oagy +agy +oqp

Z =

*2 *
Welasy +azy +agl
while y* represents a positive root of the following eighth order polynomial equation

|1y8+|2y7 +|3y6+|4y5+ |5y4+|6y3+|7y2+|8y+|9 :0 (8)
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where:
|1 =Wgasag + 0(523.10 + W3aga17;
|2 =Wgasag + Wgagaz:g + 8.17[2W3W6a20£§ + a52a7] + 2W3(12a5a]_0 + 0!528.11;
|3 =Qgdg + Wgasady +a7ay + W3a§a25 + 323[2W3W6a26{52 + a§a7]
+aq7an1 + W%azzalo + 2W30(20C53.11 + 0(523.12;
|4 =Wgasgaz +aydy + agdq + W3a§’a24 + 3.23[2W3W6a20l§ + 0(52a7]
+agoay7 + W%azzall + 2W3a2a5a12 + a52a13;
|5 =Wgasay + ayaz + agan + 8.24[2W3W60!20(52 +a52a7]
2 .2 2 2 2 .
+ap18p5 + a0 + W3agagayy + Wapa1p + 2W3apa5813 + 05814,
lg =Weasas +a7ay + agag +ap18p4 +appaps + W§a22a6323 + W§a22313
+ 2W30!20(53.10 + a52a13
|7 =Wgagdg + a7dg + agdy +agodoy + W§a22a6a25 + W§a22a14 + 2W30£2(Z58.15
+ a52a16
lo = 2 .2 2.2 )
g =078 + Agds T Wyagagang + Wyarpa s + W358 6
lg =apag +Wiarag
And
Wg
g =— >0,0[2 =Wy —Wg, a3 =Wg —€oWg, a4y =W1—(W7 +Wg +W5)
Wy + W
a5 =09 +er)Wg,
ag =WaWg >0, a7 =Ws(arp +3) , arg = Waargary —Wa (W +Wg +Ws ) (@22 +azs)
2 2
ag = oy (W3ag +ag) —apW3 (W7 +Wg +Ws) , a1 = Wa Qg , 11 = Waars (a3 + s)
2 2
agp = as(ag +W3ag) + agWg(az +as) a3 = az(ag +W3ap) + agWz(ag +as)

2
a1 = ag(ae +W3ap), a9 = —Waazasag,

a; =Waaz[ay (a5 —a7) —asaqp] - asagony

ay =Waaglan1(Waap —ag) + aqo(as —a7) —asansl+aslagi(as —a7) —aseq 5]

ag = Waaglagp(Waap —ag) + ag3(as —az) —asaga]+ aglaga(Waap —ag)
+agp(as —ag) —asay3]

ag = (Waarp —ag)[Waazan o + g o] + (a5 — a7) [Waazan 4 + g 3] — ascs 0 4

a5 = (Waap — ag)[Waazang + apen o] + aganslas — a7)  ag = agan4(Waarp — )

a7 =W Wiz (ag +as) , ag = —WiWslorg (g + Waarp) + g (a3 + at5)]

ag = -Wyag (g + W3 @p) 19 = adWobWeerg , agq = Waag[Waars (bary — atg)]+ adWobarg

a1, = Waaz[wy[basas — (asay + azag)]|+Woagas (bay —ag)

a3 =—WoWgaz[asan g + arag + agag)]l+Waag[basas — (asar +a7ag)]

a4 = —WoWgas[aran o + apag)]—Woaglasan g + azag +agog)]

a5 = —WoWaagaigarg —Waatg[azang + dgag)], g = —Woa g

a7 = aq1(Waeq +Ws) , a1g = oo (Waaq +Ws) , 19 = o 3(Waey + W)

a0 = g4 (Waay +Ws) , 1 = WaWearsarh + 2Waapasary + i arg

2 2
app =W3aja7 +2W3apa506, 893 =87 + 318, 8p4 =89 +8p0, 825 =ag + a9
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The positive equilibrium point E" = (x*, y*, Z*,W*) exists uniquely in Int. Rf if and only if the
following conditions are hold.

|1>0,|2 >0,|3>0,|4>0,|5>0,|6>0 and |8<0 (9a)
OR

(9b)
l{>0,1, >0,13>0,14 >0,15>0,17 <0 and Ig <0
OR

(9¢)
1 >0,1, >0,13>0,14, >0,15 <0,17 <0 and Ig<0
OR

(9d)
l,>0,1,>0,1;>0,1; <0,1;,<0,1, <0 and I;<0
OR

(%)
1 >0,1, >0,14 <0,15 <0,15 <0,17 <0 and Ig<0
OR
| (of)
1>O,|3<0,|4<0,|5<0,|6<0,|7 <0 and |8<0
OR
| (99)
1<0,|2<O,|3<0,|4<O,|5<O,|6<0 and |8>O
OR

(9h)
1 <0,1, <0,13<0,14,<0,I5<0,I7 >0 and Ig>0
OR .

(91)
|1<O,|2<0,|3<0,|4<0,|6>O,|7 >0 and |8>0
> )
|1<0,|2<0,|3<0,|5>0,|6>0,|7>O and |8>0 )
OR

(9K)
1 <0,1,<0,14>0,15>0,1g>0,17 >0 and Ig>0
OR

©n

1 <0,13>0,14>0,I5 >0,Ig >0,1; >0 and Ig>0

EoWg <Wg <e1Wy ,Wp > (W7 +Wg +W5)and ba5y3 < a8y2 +oagy +aqp (9m)
4. Local Stability Analysis of System (2):

In this section, the local stability analyses of system (2) around each of the above equilibrium
points of system (2) are studied with the help of Linearization method as shown in the following

theorems. Note that the symbols Ay, 4y, 4, and 4;,, denote to the eigenvalues of the Jacobian
matrix J(E;); i =0,...5 that describe the dynamics in the Xx- direction- Y direction, z -direction

and W -direction, respectively.
The Jacobian matrix of system (2) at E, can be written as:

J(Eo) =[ vijlaxa (10)

where:

v11=1>0w12 =v13=v14 =0,

Wa1=y23 =24 =0y =-b;

W31 =¥32 = V34 =033 =-Wg <0;

Wa1 =43 =0W42 = Wg;waq = —(Wg +Wy0) <0

Clearly, J(Eg) has the following eigenvalues:

Aox =1>0; gy =—b <0; Ay, =Wy <0; Agyy =—(Ws +Wy0) <0

Here b define in eq.(5a). Since J(EO) has one positive eigenvalue in the X -direction, then by using
the stability theorem, the equilibrium point E is unstable saddle point.

The Jacobian matrix of system (2) at E, can be written as:
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I(Ex)=[kijlaxa (11)
Where:

k11:—1< 0, k12=W5—(1+W1); k13: <O, kl4:W4;
Wy +1

ka1 = kag =Kpq = 0ikpp =Wy —b;

& W2

wy +1

k3; =ksp =k3g =0;ksz = — Wo;

Kggp = K3 =0;Kkgp = WgiKgq = —(Wyg + W)
Clearly, J(E, ) has the following eigenvalues:

eqw
ilx =—1<O;Aly =W1—b; 2’12 =¥—W9; ﬂ'lW =—(W4 +W10)<O
W3 +1

Therefore all the eigenvalues have negative real parts provided that the following conditions are
satisfied:

w, <b (12a)
—elwz < Wgy
Hence the axial equilibrium point E, =(1,0,0,0) of the system (2) is locally asymptotically stable in
the Int.R?.
The Jacobian matrix of system (2) at the disease free equilibrium point E,, =(X,0,2,0) can be written
as:
‘] (EXZ ): |_te J4><4 (13)
Where
e —)?( Wo _1liey, = We — (R+W,):eq = — WX €14 =W,
11 (W3 +9)2 1€12 5 1):©13 Wat+ X 14 = Wy,
e =0 e = W — W62
€21 = €23 = €24 = 0/€5p = Wy —
eWoWaZ | €WeZ | :
1= 51632 = 133 =634 =0;
(w3 + X) W3

€41 = €43 =0; €42 = Wg; €44 = —(W4 + W)
Here b define in eq.(5a). Note that the characteristic equation of this Jacobian matrix is given by
[/13 —epd, — 913631][(622 - ﬁ“Zy )(944 - ﬂ'zW)] =0
Hence, straightforward computations show that, the eigenvalues of J(E,,) satisfy the following
relations

Aoy + 45, =844 (14a)
Ao A, =—€13€5 (14b)
Aoy =82 (14c)
Ao =€44 (14d)
Clearly according to the following condition all the eigenvalues have negative real parts.
_ )2
W3(Wl b) < ’2‘ < (W3+X) (15)
We Wp

Hence the equilibrium point E,, is locally asymptotically stable in Rf .
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Theorem 2. The predator free equilibrium point E,,, =(X,¥,0,w) of system (2) is locally

asymptotically stable in the Rf if and only if the following conditions are satisfied:

jvlw—f;f + % < Wy (16a)
3 3

MY (x4¥)2 <min K((e9)” o) 2wy (16h)
[X 2+ W, W+wsy] W5 " 2We Y +2W, WX 2+ XY

Q+Q, >0 (16c¢)

Proof. The Jacobian matrix of system (2) at the predator free equilibrium point E,,, =(X,y,0,W)

can be written as:

I Eqgw )= lijl,., (17)

Here:

®+p> * K (X+9)
=2
— Wy X _ Wiy — WXy Wgy
hy3 = Pug = Wy;hpp = —L—hyp = ———2;hpg = ——2hyy =0;
W (x+Y) (x+Y) W3 +

—Wgy

elWZR‘ 62W6y . _ N _ . _
Wz —Wg; hg1 =hy3=0;hgp =Wg;hyy = =

W3+X Wity

hgy =hgp = hgq =0;hg3 =
Then the characteristic equation of J (Exyw) can be written as:
3 2
(hs3 —ﬂsz)lﬂe +BiA3 +ByAg + BsJ: 0

Here:

By =—(Ry +hys)

BZ = R2 + h44R1

Bs =—(NssRy + Rs)
With Ry =hyq +hyp, Ry = hyshpy —hyohyy and Rg =hyqhyahy)
Note that, according to the element of J (EXyW) , it is easy to verify that:

Ry =| % XY welt_ w7 || WXy
x+y)? X FNE+9)?

_ 5 Wi X wlyz
[WS X(1+<'x*+'y*>2M<'x‘+v>2J

52
Ry = [W1W4W8y ]

(X+9)?
Further, it is easy to verify that A = B;B, — B3 =Q; + Q,, where
Qp =—(Ry +h44)(Ra +hyg4Ry); Qo = (hy4Rz +R3)
Clearly, the eigenvalue A3, in Z- direction has negative real part if and only if condition (16a) holds.
However, B; >0 Vi=13; Q; >0 provided that conditions 16(b) hold. Finally, condition (16¢c )
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guarantees that A>0. So, according to the (Routh-Hawirtiz) criterion the equilibrium point L, is
locally asymptotically stable and the proof is complete.

Similarly the following theorem for locally stability of E._, can be proved easily.

Xyzw

Theorem 3. Assume that the positive equilibrium point E of system (2) exists. Then E

Xyzw Xyzw IS

locally asymptotically stable in the Int. Rf if the conditions (20a)-(20e) and (20f) are satisfied.

Proof. The Jacobian matrix of system (2) at the positive equilibrium point E' = (x*, y*, z*,w*) can
be written as:

‘](Exyzw)z laij J4><4 (18)
where
* % sk _ % * * *
_ * WXy WoX Z Wy W Wgy | _ * W X .
dj1=—X +(X*+ *2+ R P " 7812 =Wg — X 1+*—*2,
y)©  (wz+x) X X (x"+y")

e Wiy ? wyx* Wgz"
WX A M R e 1 6 :
a3 = S =Weap =————a»n =Y ( + ;

* * *\ 2 *\2
W3 + X (X +y) X +y)° (Wa+y’)
* * *
—Wgy . ) EQWoW3Z €oW3WgZ )
A3 =——au =08 =——"— jap=""—"—a;3=a3k =0
W3 +Y (W3 +X7) (W +y")

Accordingly the characteristic equation of J (Exyzw) is given by:

2+ A+ A2+ Ay + A, =0 (19)
where

A =—(o1+844);

Ay =0y +ay401 —03;

Ag =83y05 —a3104 +ay(03 —03) — 0%}

Ay = ay4(a3104 —a3y05) —o07;
With o1 =ay; + 8y, 0p =&y 8y — 81581, 03 = 813831 + 8p3a3y,
Oy = @1p8p3 — Q138,05 = 81183 — 3821, Op = A14821842,

07 = 8148383184>.

Note that, due to Routh-Hurwitz criterion, the necessary and sufficient conditions for E,y,, to be

locally asymptotically stable in the Int. Rf, are Ay >0 fori=12,3,4.and
2 2
A=A~ A3 —A A >0
Straightforward computation shows that, if the following condition holds
a1 < Oiff

x*z(wly*(w3 +X*)2 4+ w2t (X" + y*)2)<

2 (20a)
(x* AT +w5y*j(W3 +X5)2(x* +y*)?
3.22 <0 iff
Wz (X" +y*)2 <wyx* (wg +y*)? (20b)
3.12 < 0iff
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ws (X +y*)? < x*((x* +y*)? +W1x*) (20c)
W s + XY+ y ) (6 +y")2 =X +y)? + v ) -
<Wox*(wgz* (X + y*)? —wy x* (wg + y*)z)
a3005 — 83104 +a44(03 —072) > 0 (20€)
Conditions  (20)-(a-e) guarantees' that o <Ofori=14 and o;>0fori=25 hence
A >0fori=1234.
Finally, substituting the values of A fori=1234. in A= AAA—AZ —A?A, >0 and then
simplifying the resulting term we get that
A =[azy05 — 83104 +a44(03 —02) —0glla3104 — 83205 +01(03 —03) + 0]
+ (o1 + ayg)las4(agslazro5 —az104 — 01(03 — 07)]
+0106) + (01 +a44)07]
Obviously A > Qif and only if in addition to conditions (20)-(a-e) the following condition holds:

a44(344[33205—3310“4]+0106)+(01+344)0“7
Max{ o2 183205 — 83104 —0g ¢ < 01(03 —07)
44

. (20)

5. Global Stability Analysis of System (2)
In this section the global stability for the equilibrium points of system (2) is investigated by using
the Lyapunov method as shown in the following theorems.

Theorem 4. Assume that the axial equilibrium point E, of system (2) is locally asymptotically stable

in the Rf , and the following conditions are satisfied:

W e,bx(x+Y) WaWg } (2 1)

X+y+w <€ <min. (O y) DXL Ws +Wg ) —wy W x T W,y

Then E, is globally asymptotically stable in the Rf.
Proof. Consider the following function:
Uy(X,¥,2,W)=Cy(Xx=1—InX)+Cpy +CaZ +CqwW

where ¢;;1=1,2,3,4 are positive constants to be determined. Clearly Uj : R+4 SRisCt positive

definite function. Now since the derivative of U, along the trajectory of the system (2) can be written

as:

du
T SR S

Wy X WgZ
+Cy y[x+y Wiy (wy +wg + W5)]

eWoX  E,W,
+032[1 2X | € 6Y
Wa+X  Wa+y

Then straightforward computation gives

du
—* =—Cy(x- 1) [ (l+ x+y) %

- [cl(% —(1+ws + %))+ Cob —CqWg ]y

W
—W9]+C4 w2l — (wy +wyg)

W, XZ Wy
—[c, - c3e1]w = [cgwg " +X]z - [C4W10 +—]W

~[c2 ¢ z]vv\ysﬁ,
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So by choosing the positive constants as below and using the upper and lower bounds of prey species:

1

_& —
Ci=Ci=lcCr=Ca=5

It is obtain that:
o T

—[——(1+w +X‘f‘:1y)+ S h—w ]y

According to condition (21), dUl <0 then U, is strictly Lyapunov function. Therefore E, is

globally asymptotically stable in the Rf .
Theorem 5. Assume that the disease free equilibrium point E,, of system (2) is locally

asymptotically stable in the R% and the following conditions are satisfied:

5> max. [1-(x+R)] (w3 +Xx)(W3 +X) 622 -1 (222)
W W3 e
[ X+y Wy @+ R)+w, wy L+ R) +wyg
X+ (X + <X<min. , 22b
(R+D) = x+y Ixry+w { W W, (22b)
{ elWZ W3 2 W2 X A W2 W3 2 e1W2 X
\(Wy+X)(W3+%) Wy +x)z < 4(X X+ (W3 +X)(Wg+X) _1)(\’\’9 - Ws + Xj (22c)

Then E,, is globally asymptotically stable in the sub region of Rf that satisfy the above conditions.
Proof. Consider the following function:

(X v,z W) (=X~ X) (z=2)° Z)

Clearly U, : RJr —>Ris C1 positive definite function. Now since the derivative of U, along the

trajectory of the system (2) can be written as:
dUz WXy WpXz

X+y  Wg+X

+Y+—+W

=(x-=X)x— X2 + Xy — +W4W+W5yJ

[wlx WgZ

Xty Wty (W7 + g +W5)]y

+ (Z _ 2)[elwzxz + e,Wg Yz
W3+X W3+y
+Wgy — (Wy + W)W
Then straightforward computation gives
dU2 =[x+ R -1](x - X)? ll+ i kx R)XY — W, (X — x)( X —L)

—wgz]

X+y Wi+X | Wa+X
+ W W(X — ) + Ws Y (X — X) + yaX _ 62 _ ]
4 5 X+y Wty
_ ( _ % eaWeyz(2-2)
+eW, (2 Z)\W3+x W3+>”<)+ Wty

—Wg (z - 2)% +Wgy — (W, + W)W

From which we obtain

du 2)2 R ; 2)?
5t = (X =R +ea3(x—R)(2-2) —e33(2-2)

yz
—EXY —EWN = EY — €37
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here
X d e e Wo X
811:X+X+M_1,813 1W2W3Z WoX 1833:W9 - 172 X
(W X)(Ws+X) (We+X)(Ws+R) — Wa+x W3 + X
€12 —[1+ X+y}(x X) - Xry €237 Wg[L—e5(z - 2)]; &9 =Wg[L— (X — X)]+ wy;

€4 =Wg[l—(X=X)]+wyp;
Now according to the conditions (22)-(a-b) then all the values of &;1,£33,&15,€23,&7 and &, are
positive values. So by using condition (22c) we obtain

Wz [fer(x-2—egaz -2 —s2y-caw

Consequently, U, is strictly Lyapunov function. Therefore E,, is globally asymptotically stable in

the sub region of Rf that satisfy the above condition.
Theorem 6. Assume that the predator free equilibrium point E,,, of system (2) is locally

asymptotically stable in the Rf , and the following conditions are satisfied

vy in (b S\ (x+y)E+Y) }
max . %L ~ e X +e1}< X < min '{W’(% +W1W)m (23a)
y>y+e, (23h)
S Wy XX )2 ( ~ =~ Wy VY _k _ ~
(w5 WYY —X— ey | <KX+ Y+ e —1fb Wy XX ) (23c)
X o i
(wy) <(x+x+y+%—lkw4 + W) (23d)
(W8 )2 < (b —W1Xi)(W4 + WlO) W< W (236)

Then EXyW is globally asymptotically stable in the sub region of Ri" that satisfy the above conditions.
Proof. Consider the following function:
x=%)? . (y-9)* (w-)°
Us(x,y,z,w)="= L
Clearly Uj: RJr —Ris C! positive definite function. Now since the derivative of Uj along the
trajectory of the system (2) can be written as:

dU3 WXY WXz J
=(x=X)|x— X2 XY =50y T e T WaW W5

ol ey ]
O =Yy ~wry Y
+Z[91W2X €Wy W]
W3+X  Wg+Yy

+(w- W)[Wsy —(Wy + WlO)W]

Where b =wy +Wg +Ws. Then straightforward computation gives

s (x- %)% — (4 D)) - (x =)0y - 75) - wy (x - 02, - )

Wy XZ (X — X) %y
0wy R ) =T ) iy - D - 75
—V”J;X;(y—V)—b(y—V)z+z[91%%+3§:“—f§—w9]+w8(y—'y“)(w—v~v)

= (Wy + W) (W— V~V)2
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From which we obtain
sy (X=R)? =gy (=) = gy W= W) + 2y (x = KNy~ T)

+ 204 (X = XYW = W) + Zg (y =YYW = W) = Aag %5 = Aoa 55

here
- - Wy Yy . X -
%1:X+X+y+m_l1/122:b_wlxx’
~ L Ty WX
Aga =Wy +Wyg; Ao = W5 +Wp Yy — X (X+Y)(X+y)’

Ay =Wy, Agp =Wg; 3=Wyo[ X=X —€1]; A3 =wWg[y -y —€;]

Now according to the conditions (23)-(a-b) then all the values of M1, 422,244, M2 M4y a2, a3
and A, are positive values. So by using condition (23) - (c-€) we obtain

| e o-n) (oo oo
—(@(y—m— L;“(w—v*v)jz

Consequently, U3 is strictly Lyapunov function. Therefore E,,, is globally asymptotically stable in

the sub region of Rf that satisfy the above condition.
Theorem 7. Assume that the positive equilibrium point EXyZW of system (2) is locally asymptotically

stable in the Int.Rf, and the following conditions are satisfied:

B11>0,522>0, fzzand 44 >0 (249)
B < 5(B112) (24b)
Pz < § (Buifss) (240)
B < 2(B115a) (24d)
B3 < %(B22fa3) (24e)
Bir < &(Br2Bas) (241)

here f3;;(i, j=12,34) are given in proof. Then Exyzw is globally asymptotically stable in the sub

region of Int. Rf that satisfy the above conditions.
Proof. Consider the following function:

U4(x,y,z,w):[x—x* -x" Ini*)+(y—y* —y*In y)
X y

+(z—z* —Z*ln%j-l-(W—W* —w" Inﬂ*)
z w

Clearly Uy,: R+4 — R is C? positive definite function. Now since the derivative of U, along the
trajectory of the system (2) can be written as:
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du, WXy Wpxz

——(x X)X — X2 XY -y W3+X+W4W+W5yJ

WXy | Weyz —by]
X+y  Wa+y

+(y—-Y")

eWoXZ  €,WgYZ
Z)12 +26)’

+(z-
W3 +X W3 +Yy

—WQZ]

+ (W= wW")[Wgy — (Wy + Wy0)W]
Then after doing some algebraic manipulations we get

dU4 ~Bri(X=X")? = Boa(Y=¥")? = Pas(z-2")% = Baa(w—w")?
+ B (X=X )Y = Y) + Pra(X =X W2 =2") + fra(x=x")(Ww—w")

+ Bos(y - y ) (z-127) + By - y )(w-w)
where
ley* W2W3Z* _1

Pru=X+X +y + Oy)(X+yT) (W x)(ws+x7)

WeWgZ”™ Wy xx" e W2X
— + b , =W, =W, +W, y
Poo = Y] oY) Paz =Wy — ot Bag =W, + Wy,
wyyy” wy xx " _
=W 4+ —2 X —— =W,
Pro =Ws (X+y)(x*+y*) )1y Pia 4
A Cr i _ Welws(e2'-y)-W'] fog =Wg.
Bz = (W, +X)(W, +x) Ps (e

Then using the above conditions (24)-(a-f) we obtain that

2 2

dcljJt4 S_{ ﬂl (X X) ﬂ22 (y y )J ( ﬂl (X X ) ﬁ33 (Z )]
2 2
—[ Py xy- ﬁ““(w—w*)] —( Poz y—yy- [ B3 a- )]

2
[ﬁ”(y V)~ %(w—w*)]

Consequently,U , is strictly Lyapunov function.Therefore Exyzw is globally asymptotically stable

in the sub region of Int. Rf that satisfy the above conditions.

6. Numerical Analysis of System (2).

In this section the dynamical behavior of system (2) is studied numerically for different sets of
parameters and different sets of initial points. The objectives of this study are: first investigate the
affect of varying the value of each parameter on the dynamical behavior of system (2) and second
confirm our obtained analytical results. It is observed that, for the following set of hypothetical
parameters that satisfies stability conditions of positive equilibrium point, system (2) has a globally
asymptotically stable positive equilibrium point as shown in following figure-2.
wy; =0.7,wp, =0.5,w3 =0.5,w, =0.2,wg =0.0L, wg =0.3,

Wy = 0.05, Wg = O.2,Wg =0.1, Wio = 0.1, € = 0.5, €y = 0.4 (25)
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Note that, in Figure-2, we will use that (— ) to describe the trajectory starting at (0.8, 0.7, 0.6, 0.5)
and (.....) to describe the trajectory starting at (0.5, 0.4, 0.3, 0.2).

@ (b)
0.8 . 0.8
)
S 06 5 0.6
=
() o
o) o
2 oaf D 0.4f.
=4 =
o
Q 3}
O 02 = 02
%0 = 0.
g £
n
0 0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Time % 10 Time x 10
(© (d)
0.8 0.5
0.7 > 0.4
= g
=z 0 0.3
8 8 ........
0.5 0.2 s
Q IS
(0]
0.4 =01
3 c r c r r r 0 r c r c r r
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Time Time

x 10" x 10°

Figure 2-Time series of the solution of system (2), (a) trajectories of X as a function of time, (b) trajectories of
Y as a function of time, (c) trajectories of z as a function of time,(d) trajectories of w as a function of

time.
Clearly, Figure-2 shows that the solution of system (2) approaches asymptotically to the positive
equilibrium point Lg =(0.4,0.1,0.2,0.3) starting from two different initial points and this is confirming

our obtained analytical results regarding to global stability of the positive equilibrium point.

Now in order to discuss the effect of the parameters values of system (2) on the dynamical behavior
of the system, the system is solved numerically for the data given in Eqg. (25) with varying one
parameter each time. It is observed that for the data as given in Eq. (25) with varying the parameters
values w;; i =410 do not have any effect on the dynamical behavior of system (2) and the system still

approaches to a positive equilibrium point. It is observed that for the data as given in Eq. (25)
withwy < 0.4, the solution of system (2) approaches asymptotically to Ey; = (%,0,2,0) in the interior
of positive quadrant of xz—plane as shown in Figure-3, however for 0.5<w; the system(2)
approaches to the positive equilibrium point.

1.4

1.2 -

o
1 ———
------- y
—

osé¢ | i w

Population

0.6 |- -

o.4p —

0.2 -

oLt

=r
|

Time

Figure 3- Time series of the solution of system (2) for the data given by Eq. (25) with Wy =0.3, which
approaches to (0.33, 0, 1.11, 0) in the interior of positive quadrant of xz —plane.

By varying the parameter W keeping the rest of parameters values as in Eq. (25), it observed that
for wy <0.2 system (2) approaches asymptotically to E,y, = (X,y,0,W) in the interior of positive
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octant of xyw— space as shown in Figure-4 , while for 0.3<w, the solution of system (2) approaches
to the positive equilibrium point.

population

L
o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time

2
x 10°

Figure 4-Time series of the solution of system (2) for the data given by Eq. (25) with w, = 0.1, which
approaches to (0.29, 0.5, 0, 0.33) in the interior of positive octant of Xyw— space.
On the other hand varying the parameter W3 keeping the rest of parameters values as in Eq. (25), it

observed that for wz < 0.3 system (2) has periodic dynamics in Int. Rf’ as shown in Figure-5, while
for wg > 0.4 the solution Of the system transfer to the positive equilibrium point.

0.9 T

U U U U U N
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};;‘_v___———---—

™ :4;1-____-—
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il T ST,

~.,

~,

o
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Figure 5- Time series of the solution of system (2) for the data given by Eq. (25) withwz =0.4, which

approaches to periodic dynamics in Int. Rf .

Varying the parameter Ws keeping the rest of parameters values as in Eq. (25), showed that for
wg < 0.2 system (2) approaches to a positive equilibrium point , while for 0.3<ws the solution of

system (2) approaches asymptotically to E,, =(X,0,2,0) in the interior of positive quadrant of
xz —plane.

For the parameters values given in Eq. (25) with varying Wg in the range wg <0.3 system (2)
approaches to a positive equilibrium point , while for 0.4 < wj the solution of system (2) approaches
asymptotically to E,, =(X,0,Z,0) in the interior of positive quadrant of xz —plane.

Varying the parameter W7 keeping the rest of parameters values as in Eq. (25), showed that for
w; <0.05 system (2) approaches to a positive equilibrium point , while for 0.06 <w- the solution of
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system (2) approaches asymptotically to E,, =(X,0,2,0) in the interior of positive quadrant of
xz —plane.

Varying the parameter Wg keeping the rest of parameters values as in Eqg. (25), showed that for
wg < 0.2 system (2) approaches to a positive equilibrium point , while for 0.3 <wg the solution of
system (2) approaches asymptotically to E,, =(X,0,Z,0) in the interior of positive quadrant of
xz —plane.

For the parameters values given in Eq. (25) with varying Wg in the range wWg <0.09 system (2)

has periodic dynamics in Int.Rf ., however for wg =0.1 system(2) approaches to a positive
equilibrium point, while for 0.2<wy it is observed that the solution of system (2) approaches
asymptotically to the equilibrium point E,y,, = (X, y,0,W).

For the changing in the value of the parameter e; keeping the rest of parameters values as in Eq.
(25), it observed that for e; < 0.7, system (2) approaches to a positive equilibrium point, however for
0.8 <e; system (2) has a periodic dynamics in Int. Rf .

For the parameters values given in Eq. (25) with varying €, in the range e, <0.8 system (2)
approaches to a positive equilibrium point, however for 0.9 <e, system (2) has a periodic dynamics
in Int.RY.

Finally for the parameters values given in Eq. (25) with w; =0.5andwg = 0.5 the solution of
system (2) approaches asymptotically to E, =(1,0,0,0) as shows in Figure-6 .

1

0.9

0.8

0.7

0.6 -

0.5

population

0.4

0.3

0.2

0.1

0] 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time x 10°

Figure 6- Time series of the solution of system (2) for the data given by Eq. (25) with w; =0.5andwg =0.5
which approaches asymptotically to E, =(1,0,0,0)

Keeping the above in view, the effect of the other parameters on the dynamics of system (2) is
summarized in the following table-1.
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Table 1- of parameters varied in system (2)

Parameters varied in system(2) Numerical behavior of system(2)
w <04 Approaches to stable point in Int.Rf(XZ)

wy > 0.5 Approaches to stable positive point in Int.Rf_‘
wp <0.2 Approaches to stable point in Int.Rf(XyW)
wp 203 Approaches to stable positive point in Int.Rf_‘
w3 <0.3 Approaches to stable point in Int.Rf(XyW)
w3 0.4 Approaches to periodic dynamic in Int.R?

for all values of w;; i=4,10 Approaches to stable positive pointin Int.R?
ws <0.2 Approaches to stable positive point in Int.Rf_‘
w5 > 0.3 Approaches to stable point in Int.Rf(XZ)

We <0.3 Approaches to stable positive point in Int.Rf_‘
we > 0.4 Approaches to stable point in Int.RE(XZ)

w7 <0.05 Approaches to stable positive point in Int.Rf_‘
w7 >0.06 Approaches to stable point in Int.Rf(Xz)

wg <0.2 Approaches to stable positive point in Int.Rf_‘
wg > 0.3 Approaches to stable point in Int.RE(XZ)

Wy <0.9 Approaches to periodic dynamic in Int.Rf_‘

Wg >0.1 Approaches to stable point in Int.Rf(XyW)

e <0.7 Approaches to stable positive point in Int.Rf_‘
€ =038 Approaches to periodic dynamic in Int.Rf_‘

e; <038 Approaches to stable positive point in Int.Rf_‘
€209 Approaches to periodic dynamic in Int.Rf_‘

7. Conclusions and Discussion.

In this paper, an eco-epidemiological model of Holloing type Il of prey-predator model has
proposed and analyzed. The model consists of four non-linear autonomous differential equations that
describe the dynamics of four different population namely susceptible prey X, infected prey VY,

susceptible predator Z, infected prey under treatment W. The boundedness of the system (2) has been
discussed. The dynamical behavior of system (2) has been investigated locally as well as globally.

To understand the effect of varying each parameter on the global dynamics of system (2) and to
confirm our obtained analytical results, system (2) has been solved numerically and the following
results are obtained:

1. For the set of hypothetical parameters values given Eq. (25), the system (2) approaches

asymptotically to globally stable positive equilibrium point E" = (x*, y*, 7, w*) .
2. It is observed that varying the parameters values Wi;i=410 and keeping other parameters as

given by Eg. (25) do not have any effect on the dynamical behavior of system (2) and the system
still approaches to a positive equilibrium point.
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As the infection rate of prey Wj decreases keeping other parameters as in Eq. (25) the system (2)
approaches asymptotically to the equilibrium point E,, = (X,0,Z,0) .Otherwise the system still

have a globally asymptotically stable positive point in the Int. Rf .

As the susceptible prey's maximum attack rate by predator w, decreases keeping the rest of
parameters as in Eqg. (25) the predator will faces extinction and the solution of system (2)
approaches asymptotically to the equilibrium point E,y,, = (X, y,0,w) . Otherwise the system still

have a globally asymptotically stable positive point in the Int. Rf .

As the half saturation constant of the susceptible predator W5 decreases keeping the rest of
parameters as in Eq. (25) will causes destabilizing of system (2) and the solution approaches to
asymptotically stable positive point in the Int. Rf’. Otherwise the system still have a globally

asymptotically stable positive point in the Int. Rf .
As the infected prey's recover rate wg decreases keeping the rest of parameters as in Eq. (25),

system (2) still has a stable positive equilibrium point in the Int.Rf. However increasing the
parameter Wg causes extinction of ( infected and treatment) prey and the solution of system (2)
approaches asymptotically to the equilibrium point E,, =(X,0,2,0). It is observed that the
susceptible prey's maximum attack rate by predator, disease death rate of prey and immunity
under treatment rate Wg, W7 and Wg respectively, have the same effect as Wi .

As natural death rate of predator Wg decreases keeping the rest of parameters as in Eq. (25), the
positive equilibrium point will be unstable and the solution of system (2) approaches

asymptotically positive point in the Int Rf’ .

3
+Hxyw) *

Finally, the conversion rate from susceptible prey to predator €; decreases keeping the rest of
parameters as in Eq. (25), the system has a globally asymptotically stable positive point in the

Otherwise the system still have the solution approaches to a stable limit cycle in IntR

Int.Rf. While increasing e; will causes destabilizing of system (2) and the solution approaches
to stable positive equilibrium. It is observed that the conversion rate from infected prey to
predator e, , have the same effect as e;
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