Jasim et al.

Iraqi Journal of Science, 2024, Vol. 65, No. 8(SI), pp: 4732-4739 DOI: 10.24996/ijs.2024.65.8(SI).5

ISSN: 0067-2904

Proton Induced Nuclear Excitation Functions of ¹⁰⁰Mo(p,2n)^{99m}Tc Reaction used as a Tracer in Nuclear Medicine

Mahdi Hadi Jasim^{*}, Muna Musa Abbas, Mohammed M. Jawad Al-Khalissi

Al Hadi University College, Department of Radiology Techniques

Received: 21/2/2023 Accepted: 3/8/2023 Published: 10/9/2024

Abstract

Because of the importance of using 99mTc isotope as a radioactive tracer for nuclear medicine, the production of this isotope from accelerating protons at energies 1-70 MeV is investigated carefully through the evaluation of the calculated excitation functions of the ¹⁰⁰Mo(p,2n)^{99m}Tc reaction. For accuracy, the proton ¹⁰⁰Mo, interaction channels with the excitation functions of reactions,¹⁰⁰Mo(p,2n)^{99m}Tc, ¹⁰⁰Mo (p, pn)⁹⁹Mo, and ¹⁰⁰Mo (p, nonelastic) are calculated, using Kalbach Systematic approach in Exciton model gathered with Feshbach-Kerman-Koonin (FKK) statistical theory. The results are compared with the available published data in the experimental nuclear reaction data (EXFOR) version of November 2022. The comparisons show acceptable results for the maximum cross-section of producing ^{99m}Tc at 16 MeV protons. Also, rare data was searched for the reactions, 100 Mo (p, p n) 99 Mo, and 100 Mo (p, nonelastic), to compare the present calculated results.

Keywords: $^{100}\text{Mo}(p,2n)^{99m}\text{Tc}$ reaction cross-section, Exciton model with FKK statistical theory, ^{100}Mo (p, pn) ^{99}Mo and ^{100}Mo (p, non-elastic) reaction cross-sections.

وظائف التهيج النووي المحرض بالبروتونات للتفاعل ¹⁰⁰Mo(p,2n) المستخدم كمتتبع في التهيج النووي المحرض بالبروتونات الطب النووي

مهدي هادي جاسم* , منى موسى عباس , محمد محمد جواد كلية الهادي الجامعة, قسم تقنيات الاشعة

الخلاصة :

نظرا لاهمية أستخدام نظير ^{99m}Tc كمتتبع اشعاعي للطب النووي, فقد تم التحقيق بعناية في حساب وتقييم وظائف الاثارة لانتاج هذا النظير من البروتونات المتسارعة عند الطاقات 1–70 م أ ف وللتفاعل ¹⁰⁰Mo(p, 2n)^{99m}Tc . لغرض الدقة تم حساب وظائف الاثارة لقنوات تفاعل البروتونات مع النظير ¹⁰⁰Mo والتي تشمل النفاعلات:

¹⁰⁰Mo (p, pn)⁹⁹Mo (p, 2n)^{99m}Tc, ¹⁰⁰Mo (p, pn)⁹⁹Mo معلى التوالي . أستخدم نموذج (p,NON و Mo (p, 2n)^{99m}Tc, ¹⁰⁰Mo (p, pn)⁹⁹Mo مع النظرية الاحصائية FKK في الحسابات . قورنت النتائج مع البيانات التجريبية المنشورة والمتاحة EXFION أصدار تشرين الثاني 2022 . تظهر المقارنات نتائج مقبولة عند أقصى مقطع عرضي

^{*}Email: mehdihadi@huc.edu.iq

¹⁰⁰Mo(p, p n عند طاقة البرتون 16 م أف . أيضا تم البحث عن بيانات نادرة للتفاعلات Mo(p, p n م أف . أيضا تم البحث عن بيانات نادرة للتفاعلات Mo(p, p n م أف . أيثناج محسوبة .

1. Introduction

The metastable state of the isotope technetium-99 (^{99m}Tc) is extensively used in medical applications; it has a half-life of 6.01 hours and a convenient photopeak emission of 141keV energy [1].

^{99m}Tc is a product of the ⁹⁹Mo decay (Figure 1). ⁹⁹Mo isotope ($t_{1/2}$ =65.94hr) is practically produced from the parent isotope ¹⁰⁰Mo by two methods. The first is to use thermal reactors with High Enriched Uranium (HEU) or activation analysis techniques, and the second is to use electron, proton or deuterium accelerators [2,3].

In 2016, the IAEA launched a coordinated research project called CRP (referring to the Chalk River and Patten reactors after their shutdown in 2007, causing a shortage in ⁹⁹Mo supply). The aim of the project was to develop and improve methods for producing ^{99m}Tc via ¹⁰⁰Mo(p,2n)^{99m}Tc reaction [4]. In studying this reaction, the excitation functions versus the bombardment of protons were measured. The results are convincing compared with theoretical results [5].

Since then, several other studies have been published examining the excitation functions of the reaction ${}^{100}Mo(p,2n)^{99m}Tc$ with conflicting results regarding the extent of the data reported, including discovering errors in some experiments [6].

On the other hand, experimental results related to the decay of radionuclides ⁹⁹Mo and ^{99m}Tc were evaluated, which could partly explain the lower excitation functions reported for the ¹⁰⁰Mo(p,2n)^{99m}Tc reaction. Additional experimental work and data have been published with a significant difference concerning this reaction data [7-13].

After reviewing the results of the publications, including the benchmark declared in the main library of the IAEA [14], which are related to the relationship of proton energies with the values of the interaction excitation functions for evaluating the ${}^{100}Mo(p,2n){}^{99m}Tc$ reaction, a conflict in the experimental and theoretical results was found that prompted us to reevaluate the theoretical side in the present work. In addition, in the current research work, a Kalbach Systematic approach in the Exciton model gathered with Feshbach, Kerman and Koonin (FKK) statistical theory [15] was used to calculate the excitation functions of ${}^{100}Mo$ (p, 2n) ${}^{99m}Tc$, ${}^{100}Mo$ (p, p n) ${}^{99}Mo$, and ${}^{100}Mo$ (p, nonelastic) reactions, and the results were compared with that of the published work.

Figure 1: the decay scheme and production cycle of ^{99m}Tc from parents ¹⁰⁰Mo and ⁹⁹Mo nuclei [2,3].

2. Theory

A pre-equilibrium mechanism of the Exciton Model gathered with FKK statistical theory [16-18] were used to calculate the excitation functions of the $^{100}Mo(p,2n)^{99m}Tc$, $^{100}Mo(p,pn)^{99}Mo$, and $^{100}Mo(p, NON)$ reactions. For the purpose of identifying the details of the equations used in the present work, one can refer to the study of Jasim and Idrees [15] to find the excitation functions of the above reactions.

For an A (a, b) B reaction, the probability of the Compound Nucleus (CN) decaying into the corresponding outgoing channel b is [19]:

$$\sigma(a,b) = \sigma_c(a) \frac{W_b}{\sum_b \Box W_b}$$

where: $\sigma_c(a)$ is the cross-section of the CN formed by projectile a, W_b is the probability of the CN decaying into channel b and $\sum_{b} \bigcup W_{b}$ is the sum of the overall possible decay channels. Therefore, the decay probability of the CN is given by Weisskopf-Ewing evaporation formula [19]:

$$W_b(E,\varepsilon_b) = \frac{2s_b+1}{\pi^2\hbar^3} \mu_b \varepsilon_b \sigma_{b,invers}(\varepsilon_b) \frac{\Omega(U)}{\Omega(E)}$$
(1)

where: s_b is the spin of particle b, μ_b is the reduced mass of particle b, $\sigma_{b,invers}(\varepsilon_b)$ is the inverse reaction cross-section of particle b, $\Omega(U)$ and $\Omega(E)$ are the state densities at excitation energy, respectively, where U=E- ε_b -B_b, E is the interaction energy, ε_b is the channel energy and B_b is the binding energy of particle b.

Here in this work, Equation (1) was characterized in terms of Exciton particle and hole, $(p_{\pi}, h_{\pi}, p_{\nu}, h_{\nu})$ (where π denotes proton and ν neutron). The interaction energy and excitation energy are corrected to surface effect, pairing, shell structure and Pauli corrections, and so Equation (1) becomes [15,16-18]:

$$W_b((p_{\pi}, h_{\pi}, p_{\nu}, h_{\nu}, E, \varepsilon) = \frac{2s_b + 1}{\pi^2 \hbar^3} \mu_b \varepsilon_b \sigma_{b,invers}(\varepsilon_b) \times$$

$$\sum_{T_B} \lim [C_b(T, T_B]^2 \frac{\Omega_{eff}((p_{\pi} - Z_b, h_{\pi}, p_{\nu} - N_b, h_{\nu}, U))}{\Omega((p_{\pi}, h_{\pi}, p_{\nu}, h_{\nu}, E)}$$
(2)

where, the effective corrected particle-hole state density is:

 $\Omega_{eff}((p_{\pi} - Z_b, h_{\pi}, p_{\nu} - N_b, h_{\nu}, U) = \sum_{i=i_{min}}^{h_{\pi}} \lim_{u \to \infty} \sum_{j=j_{min}}^{h_{\nu}} \lim_{u \to \infty} \Omega((p_{\pi} - Z_b, i, p_{\nu} - N_b, j, U))$ T_B is the isospin quantum number in the residual nucleus B, $C_b(T, T_B)$ is the isospin coupling Clebsch-Gordan coefficient in the exit channel; the sum extends over all the allowed isospins in the residual nucleus, and Ω is the particle-hole state density with different corrections [20-22].

The total energy spectrum of the pre-equilibrium model for the emitted particle b at energy, E, and spin dependent formulations is [16-18,20,23-25]:

$$\frac{d\sigma_{a,b}(E,T)}{d\varepsilon_{a}}|_{pre} = \sum_{T} \boxtimes \frac{d\sigma_{a,b}(E,T)}{d\varepsilon_{a}}|_{pre} = \sigma_{a}(\varepsilon_{a}) \sum_{T} \boxtimes [C_{a}(T,T_{A}]^{2} \times \sum_{P} \boxtimes \sum_{P_{\pi}} \boxtimes S_{pre}(p,p_{\pi},T) \times \Omega_{b}(p,p_{\pi},E,\varepsilon,T)$$
(3)

where: T is the composite isospin, $\sigma_a(\varepsilon_a)$ is the cross-section of the complex nucleus, $S_{pre}(p, p_{\pi}, T)$ is the average amount of time spent in each class of configuration channel and $p=A_a+1$, $A_a=n=p$ [15-18].

The systematics of the present model expand to calculate the angular distributions with Multistep Direct (MSD) and Multistep compound (MSC), regarding both the necessity of considering the unbound particle degree of freedom at each stage of reaction and that all particles are bound of reaction. The basic formula suggested by Kalbach for the double differential cross-section for including the mechanism in the reaction A(a,b)B can be written as [12]:

$$\frac{d^2\sigma}{d\omega d\varepsilon_b} = \frac{1}{4\pi} \frac{d\sigma}{d\varepsilon_b} \frac{a_{ex}}{\sinh \sinh (a_{ex})} \left[\cosh \cosh \left(a_{ex} \cos \theta\right) + f_{msd} \sinh \left(a_{ex} \cos \theta\right)\right]$$
(4)

where: a_{ex} is the slope parameter associated with the Exciton model and its related components, $f_{msd}(\varepsilon_b)$ is the fraction of the cross-section at the specified emission energy and θ is the scattering angle in the center of mass system [6].

Equations (3) and (4) were applied to find out the appropriate proton energy for the highest production of 99m Tc from the 99m Tc the 100 Mo(p,2n) 99m Tc reaction, and to compare the excitation functions of the products of 100 Mo(p,pn) 99 Mo, 100 Mo(p,2p) 99 Nb and 100 Mo(p, non-elastic) reactions.

3. Evaluatin and discussion of the results

3.1 ¹⁰⁰Mo (p, 2n) ^{99m} Tc Reaction

The increasing demand for the ^{99m}Tc isotope in medical applications has prompted scientists to use the accelerator method instead of using highly enriched uranium in the reactor because of the limitations imposed. Accordingly, proton acceleration was studied theoretically in this work for the direct production of the isotope ^{99m}Tc as one of the alternative production methods using the reaction ¹⁰⁰Mo(p,2n)^{99m}Tc on a highly enriched target material such as ¹⁰⁰Mo. The calculated excitation functions of this reaction are shown in Figure 2, where the results are compared with the experimental results of other published studies [13,14,16,22,21,24-26]. The comparison distinguished the highest value of the proton energy of 16 MeV, which has the highest probability value for the formation of the isotope ^{99m}Tc with a value close to 300 mb. In addition, the deviation in the cross-section comparisons is definitely due to the accuracy and efficiency of the detection systems for this reaction in the experimental results.

Figure 2: The calculated excitation functions of the ${}^{100}Mo(p,2n){}^{99m}Tc$ reaction at different proton energies with comparison with experimental and theoretical results [13,14,16,21, 22, 24-26].

For the CN [¹⁰⁰Tc] and the primary residual nucleus ^{99m}Tc at excitation energy range between 1-5 MeV, the secondary emission of ^{99m}Tc decay, with 140.5keV gamma, is considered within the energy spectrum behavior of ¹⁰⁰Mo(p,2n)^{99m}Tc reaction, as shown in Figure 3. As shown in this figure, the excitation function behavior for the reaction channel is concentrated at the excitation energy range between 1 and 2 MeV for compound ¹⁰⁰Mo and residual^{99m}Tc nuclei, which are proportional to the incident proton energy E_p and the threshold energy E_{res} values of the channel.

Figure 3: The energy spectrum of the 100 Mo (p, 2n) 99m Tc reaction at different excitation energies for residual 99m Tc and compound 100 Mo nucleuses.

3.2 ¹⁰⁰Mo(p,n+p)⁹⁹Mo Reaction

Figure 4 shows an acceptable agreement with reference [26], noting that the highest cross-section value reaches 0.138mb at proton energy 30 MeV.

Figure 4: Excitation function of 100 Mo(p,n+p) 99 Mo reaction at different proton energy 1- 30 MeV, compared with the TALYS-based evaluated nuclear data library [26] where the present model is found appropriate to calculate the particle emission rates at equilibrium stage.

3.3 ¹⁰⁰Mo (p, non-elastic) reaction

The calculated excitation functions of the reaction are compared with other published data [26-28], as shown in Figure 5, and the convergence of the results appears at the proton

energy range of 1-70 MeV. The fitted maximum probability of the reaction ¹⁰⁰Mo (p, nonelastic) is found at 20-30 MeV proton energy, indicating that this model is appropriate for calculating the transmission coefficients.

Figure 5: Excitation function of 100 Mo (p, NON) reaction at different proton energy compared with different references [26-28], where the present model is appropriate to calculate the transmission coefficients.

4. Conclusion

Due to the importance of the radioactive isotope 99m Tc in medical applications, calculations were made for excitation functions of the reaction 100 Mo(p,2n) 99m Tc when protons are accelerated between 1-70 MeV and the search for the energy to achieve the highest probability of producing such isotope. The Exciton model with FKK statistical theory was implemented. Compared with the experimental results, a match was found with the published data in the EXFOR-2022 issue. Where the highest excitation function value of 300mb was determined at 16 MeV proton energy compared to experimental results: 327 ± 43 mb [6], 307 ± 26 mb [11] and 292 ± 13.38 mb [13] for different research work.

The relationship of the excitation functions with the excitation potential of the composite nucleus ¹⁰⁰Tc and the primary residual nucleus ^{99m}Tc was investigated. It was found that the maximum probability of the reaction ¹⁰⁰Mo(p,2n) ^{99m}Tc was at the excitation energy range 1-2 MeV, at which the secondary emission ($E\gamma = 140.5 \ keV$) of the isotope occurs, see Figure 3. The highest value of the reaction's excitation functions for the reactions ¹⁰⁰Mo (p, n p) ⁹⁹Mo was 31mb at 16 MeV proton energy, which is consistent with TALYS calculations [26]. In addition, the results of calculating the excitation functions for the reaction ¹⁰⁰Mo (p, NON) were consistent with the results of [26,28], see Figure 5, where the highest probability was found in the proton energy range of 15-30 MeV.

In final conclusion, the most dominant excitation functions at different proton energies were found to be for the reaction $^{100}Mo(p,2n)$ ^{99m}Tc exceeding the values of other channels, ^{100}Mo (p, n p) ^{99}Mo and ^{100}Mo (p, 2p) ^{99}Nb , which nominates the concept of ^{99m}Tc isotope production cycle using cyclotron rather than irradiation ^{100}Mo by thermal reactor.

References

- [1] Frank Barnaby and Egbert Boeker, "Is technetium-99(Tc-99) radiologically significant?" *Medicine, Conflict and Survival Journal*, vol. 15, no. 1, PP. 57-70, 1999.
- [2] Maroor Raghavan Ambikalmajan Pillai, Ashutosh Dash, and F.F. (Russ) Knapp, Jr., "Sustained Availability of ^{99m}Tc: Possible Paths Forward," *J Nucl Med*, vol. 54, no. 2, pp. 313-323, 2013.

- [3] P. Schaffer et al., "Direct Production of ^{99m}Tc via ¹⁰⁰Mo(p,2n) on Small Medical Cyclotrons," *Physics Procedia*, vol. 66, pp. 383 395, 2015.
- [4] S.A. McQuarrie et al., "Accelerator-based alternatives to Non-HEU production of ¹⁰⁰Mo/^{99m}Tc," *IAEA, INIS BOOK, CRP F22062*, 2016.
- [5] J. Beaver, H. Hupf, " Production of ^{99m}Tc on a medical cyclotron: A feasibility study," J. Nucl. Med., vol. 12, no. 11, pp.739-41, 1971.
- [6] V.N. Levkovskij, "Middle mass nuclides (A=40–100) activation cross-sections by medium energy (E=10–50 MeV) protons and alpha particles (experiment and systematics)," *Inter-vesi, Moscow; IAEA,2009, Cyclotron produced radionuclides: Physical characteristics and production methods, technical Reports Series*, no. 468, 1991.
- [7] M.S. Uddin, M. Hagiwara, F. Tarkanyi, F. Ditroi, M. Baba, "Experimental studies on the protoninduced activation reactions of molybdenum in the energy range 22–67MeV," *Appl. Radiat. Isot.*, vol. 60, no. 6, pp. 911–920, 2004.
- [8] M.U. Khandaker, M.S. Uddin, K.S. Kim, Y.S. Lee, G.N. Kim, "Measurement of cross-sections for the (p,xn) reactions in natural molybdenum," *Nucl. Instrum. Methods in Phys. Res. B:Beam Interactions with Materials and Atoms*, vol. 262, no. 2, pp. 171–181, 2007.
- [9] O. Lebeda, M. Pruszyński, "New measurement of excitation functions for (p,x) reactions on ^{nat}Mo with special regard to the formation of ^{95m}Tc, ^{96m+g}Tc, ^{99m}Tc and ⁹⁹Mo," *Appl. Radiat. Isot.*, vol. 68, pp. 55–65, 2010.
- [10] F. Tárkányi, F. Ditrói, A. Hermanne, S. Takács, A.V. Ignatyuk, "Investigation of activation cross sections of proton induced nuclear reactions on ^{nat}Mo up to 40 MeV: new data and evaluations," *Nucl. Instr. Meth. B: Beam Interactions with Materials and Atoms*, vol. 280, pp. 45-73, 2012.
- [11] K. Gagnon, F. Bénard, M. Kovacs, T.J. Ruth, P. Schaffer, J.S. Wilson, S.A. McQuarrie, " Cyclotron production of ^{99m}Tc: Experimental measurement of the ¹⁰⁰Mo(p,x)⁹⁹Mo, ^{99m}Tc and ^{99g}Tc excitation functions from 8 to 18 MeV," *Nucl. Med. Bio.*, vol. 38, pp. 907-916, 2011.
- [12] S. Manenti, U. Holwarth, M. Loriggiola, L. Gini, J, Esposito, F. Groppi, F. Simonelli, "The excitation functions of ¹⁰⁰Mo(p,x)⁹⁹Mo and ¹⁰⁰Mo(p,2n)^{99m}Tc," *Appl. Radiat. Isot.*, vol. 94, pp. 344–348, 2014.
- [13] S.M. Qaim, S. Sudár, B. Scholten, A.J. Koning, H.H. Coenen, " Evaluation of excitation functions of 100Mo(p,d+pn)99Mo and 100Mo(p,2n)99mTc reactions: Estimation of long-lived Tc impurity and its implication on the specific activity of cyclotron-produced ^{99m}Tc," *Applied Radiation and Isotopes*, vol. 85, pp. 101–113, 2014.
- [14] IAEA, Nuclear Data Services: evaluated nuclear data library, 2021.
- [15] Mahdi Hadi Jasim, Maha Taha Idrees," Pre-equilibrium and equilibrium energy emission spectrum of nucleons and light nuclei induced nuclear reactions on ⁶³Cu nuclei, "Iraqi Journal of Science, vol. 57, no. 2A, pp. 910-917, 2016
- [16] Constance Kalbach Walker, "User's Manual for PRECO-2006: Exciton Model Preequilibrium Nuclear Reaction Code with Direct Reactions," *Triangle Universities Nuclear Laboratory report* (February 2007).
- [17] A. A. Selman, M. H. Jasim, Sh., S. Shafik, "Computation of two component transition rates of Pre-equilibrium states," *Iraqi Journal of Science*, vol. 52. no. 2, pp. 186-198, 2011.
- [18] Mahdi Hadi Jasim, "Evaluating the phenomenological approach models in predicting the neutron induced Deuteron emission spectra from different reactions," *Iraqi Journal of Science*, vol. 56, no. 3A, pp. 1964-1971, 2015
- [19] V. F. Weisskopf and D. H. Ewing, "On the yield of nuclear reactions with heavy elements," *Phys. Rev.* vol. 57, pp. 472-485, 1940.
- [20] Mahdi H. Jasim, Zaheda A. Dakhil and Rasha S. Ahmed, "The transition rates for ²³²Th using two components particle-hole density with different corrections," *Iraqi Journal of Physics*, vol. 10, no. 19, pp. 98-109, 2012.
- [21] J. Dobes and E. Betak, "Two -component exciton model," Zeit. Phys. vol. A310, p. 329,1983.
- [22] J. Dobes and E. Betak, " the finite depth of the nuclear potential well in the exciton model of preequilibrium decay," *Zeit. Phys.*, vol. A279, p. 319, 1976.
- [23] C. K. Cline and M. Blann, " The pre-equilibrium statistical model: description of the nuclear equilibrium process and parametrization of the model," *Nucl. Phys.*, vol. A 172, pp. 225-259, 1971.

- [24] C. Kalbach, "Systematics of continuum angular distributions: Extensions to Higher energies," *Phys. Rev. C*, vol. 37, pp. 2350-2370, 1988.
- [25] C. Kalbach, "Two-component exciton model: basic formalism away from shell closure," *Phys. Rev. C* vol. 33, pp. 818-833, 1986.
- [26] TENDL-2021, TALYS-based evaluated nuclear data library, 2021.
- [27] JENDEL-5, JAPAN ATOMIC ENERGY AGENCY, Nuclear data center, 2021.
- [28] JENDL/ImPACT-2018, "a new nuclear data library for innovative studies on transmutation of long-lived fission products," *Journal of Nuclear Science and Technology*, vol. 56, no. 12, pp. 1073-1091, 2019