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Abstract  

     In this paper, principally supplemented (𝛿-supplemented), and principally lifting 

(𝛿-lifting) semimodules are defined as generalizations of principally supplemented 

(𝛿-supplemented), and principally lifting (𝛿-lifting) modules. Let 𝑅 be a semiring. An 

𝑅-semimodule 𝐴 is called a principally supplemented (𝛿-supplemented) semimodule, 

if for all 𝑎 ∈ 𝐴 there exists a subsemimodule 𝑁 of 𝐴 with 𝐴 = 𝑅𝑎 + 𝑁 and (𝑅𝑎) ∩ 𝑁 

small (𝛿-small) in 𝑁. In this paper, we examine properties of principally 𝛿-

supplemented semimodules and generalize results on principally 𝛿-supplemented 

modules to semimodules. Besides, we characterize 𝛿-semiperfect semimodules as a 

generalization of 𝛿-semiperfect modules.  

 

Keywords: Supplemented (𝛿-supplemented) semimodules, Principally supplemented 

(𝛿-supplemented) semimodules, Principally lifting (𝛿-lifting) semimodules, 

Semiperfect semimodules.  

 

الرفع وشبه مقاسات تعميمات شبه المقاسات التكميلية   
 

 أحمد حسن علوان
ذي قار, ذي قار, العراق  جامعةالتربية للعلوم الصرفة,  كلية قسم الرياضيات,   

 
  الخلاصة 

وشبه مقاسات الرفع    ، ( الرئيسية δ-المقاسات التكميلية )التكميلية من النمط  تم تعريف شبه  في هذا البحث،      
النمط من  النمط 𝛿 - )الرفع  من  )التكميلية  التكميلية  للمقاسات  كتعميم  الرئيسية   )- δ الرئيسية الرفع  ،  (  ومقاسات 
يدعى تكميلي )تكميلي    𝑅على شبه الحلقة  𝐴شبه المقاس  ،شبه حلقة    𝑅 لتكن .دلتا( الرئيسية -)الرفع من النمط

𝐴بحيث    𝐴من    𝑁ئي مقاس يوجد شبه مقاس جز اللكل عنصر في شبه  كان  ( رئيسي اذا  δ - من نمط = 𝑅𝑎 +

𝑁    و(𝑅𝑎)⋂𝑁    صغيرة في𝑁 .   نمتحن خصائص شبة المقاسات التكميلية من النمط  ، في هذا البحث - δ   و
نميز شبه المقاسات المثالية   ،. أيضاالى شبه المقاسات  δ -نعمم نتائج من المقاسات التكميلية الرئيسية من النمط

 .𝛿 - كتعميم للمقاسات المثالية من النمط 𝛿 - من النمط
 

1. Introduction 

      Firstly, let us point that, 𝑅 will indicate a commutative semiring with identity and 𝐴 with 

indicate an unitary left 𝑅-semimodule throughout this article. A (left) 𝑅-semimodule 𝐴 (denoted 

by R𝐴) is a commutative additive semigroup which has a zero element 0𝐴, together with a 

mapping from 𝑅 × 𝐴 into 𝐴 (sending (𝑟,𝑎) to 𝑟𝑎) such that (𝑟 + 𝑠)𝑎 = 𝑟𝑎 + 𝑠𝑎, 𝑟(𝑎 + 𝑏) =
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𝑟𝑎 + 𝑟𝑏, 𝑟(𝑠𝑎) = (𝑟𝑠)𝑎 and 0𝑎 = 𝑟0𝐴 = 0 for all 𝑎, 𝑏 ∈ 𝐴 and 𝑟, 𝑠 ∈ 𝑅. Let 𝑁 be a subset of 

𝐴. We say that 𝑁 is an 𝑅-subsemimodule of 𝐴 denoted by 𝑁 ≤ 𝐴, precisely when 𝑁 is itself an 

𝑅-semimodule with respect to the operations for 𝐴 [1-3]. 𝐿 ≤ 𝐴 is said to be essential in 𝐴, 

denoted by 𝐿 ≤𝑒 𝐴, if 𝐿 ∩ 𝑁 ≠ 0 for each nonzero subsemimodule 𝑁 ≤ 𝐴 [4]. A semimodule 

𝐴 is said to be singular if 𝐴 ≅
𝑁

𝐿
 for some semimodule 𝑁 and an essential subsemimodule 

𝐿 ≤𝑒 𝑁. Also, we call 𝐴 singular if 𝐴 = 𝑍(𝐴), where 𝑍(𝐴)  =  {𝑥 ∈  𝐴 ∶ 𝑙𝑅(𝑥) is essential in 

R𝑅}, and 𝑙𝑅(𝑥) = {𝑎 ∈ 𝑅 |𝑎𝑥 = 0}. For a semimodule 𝐴, 𝑍(𝐴), and 𝑍2(𝐴) are the singular 

subsemimodule and the Goldie torsion subsemimodule of 𝐴, respectively. 𝑍2(𝐴) is defined by 

𝑍(𝐴 𝑍(𝐴)) = 𝑍2(𝐴) 𝑍(𝐴)⁄⁄ . If 𝐴 = 𝑍2(𝐴), we say that 𝐴 is Goldie torsion. If 𝑍(𝐴) = 0, 𝐴 is 

called non-singular [5].  

 

     The subsemimodule 𝑁 of 𝐴 is called small in 𝐴 (we write 𝑁 ≪ 𝐴), if for every 

subsemimodule 𝑋 ≤ 𝐴, with 𝑁 + 𝑋 = 𝐴 involves that 𝑋 = 𝐴 [6]. The radical of an 𝑅-

semimodule 𝐴, symbolized by 𝑅𝑎𝑑(𝐴), is the sum of all small subsemimodules of 𝐴 [6]. 𝐴 is 

called hollow, if every proper subsemimodule of 𝐴 is small in 𝐴. And, 𝐴 is called local, if it has 

a unique maximal subsemimodule, i.e., a proper subsemimodule which contains all other 

subsemimodules. If 𝐴 has no proper subsemimodule then 𝐴 is named simple, and if 𝐴 is a direct 

sum of its simple subsemimodules then 𝐴 is semisimple[4]. The socle of 𝐴, symbolized by 

𝑆𝑜𝑐(𝐴), is the sum of all simple subsemimodules of 𝐴 [4]. Let 𝐿, 𝐾 ≤ 𝐴. 𝐾 is called a 

supplement of 𝐿 in 𝐴 if it is minimal with respect to 𝐴 = 𝐿 + 𝐾. A subsemimodule 𝐾 of 𝐴 is a 

supplement (weak supplement) of 𝐿 in 𝐴 if and only if 𝐴 = 𝐿 + 𝐾 and 𝐿 ∩ 𝐾 ≪ 𝐾 (𝐿 ∩ 𝐾 ≪
𝐴) [7]. 𝐴 is supplemented (weakly supplemented) if each subsemimodule 𝐿 of 𝐴 has a 

supplement in 𝐴. Openly, supplemented semimodules are weakly supplemented. 𝐿 ≤ 𝐴 has 

ample supplements in 𝐴 if each subsemimodule 𝐾 of 𝐴 such that 𝐴 = 𝐿 + 𝐾 contains a 

supplement of 𝐿 in 𝐴. A semimodule 𝐴 is named amply supplemented if every subsemimodule 

of 𝐴 has ample supplements in 𝐴. Hollow semimodules are ample supplemented. 𝐿 ≤ 𝐴 is 

named a 𝛿-supplement of 𝑁 in 𝐴 if 𝐴 = 𝑁 + 𝐿 and 𝑁 ∩ 𝐿 is 𝛿-small in L, and 𝐴 is named 𝛿-

supplemented in case every subsemimodule of 𝐴 has a 𝛿-supplement in 𝐴 [5]. 𝐴 is named lifting 

(𝛿-lifting) if, for all 𝑁 ≤ 𝐴, there exists a decomposition 𝐴 = 𝑋 ⊕ 𝑌 such that 𝑋 ≤ 𝑁 besides 

𝑁 ∩ 𝑌 is small (𝛿-small) in 𝐴 [5]. 𝑁 ≤ 𝐴 is a subtractive subsemimodule of 𝐴 if 𝑎, 𝑎 + 𝑏 ∈ 𝑁 

then 𝑏 ∈ 𝑁 [3]. If every 𝑁 ≤ 𝐴 is subtractive, then 𝐴 is named subtractive. If 𝐶 is a subtractive 

subsemimodule, then 
𝐴

𝐶
 is an 𝑅-semimodule [3, p.165]. 

 

     In this work, principally supplemented and lifting semimodules are introduced. In addition, 

we explore their properties. Besides, we define principally semiperfect (𝛿-semiperfect) 

semimodules. 𝐴 is called principally semiperfect (𝛿-semiperfect) if, for each 𝑎 ∈ 𝐴, 𝐴 𝑅𝑎⁄  has 

a projective cover (𝛿-cover). Original descriptions of principally 𝛿-semiperfect semimodules 

are obtained via principally 𝛿-supplemented semimodules. In addition, we introduce the notion 

of ⨁-supplemented semimodules. 

 

     In whatever follows, by ℕ, ℕ0, ℤ, ℚ, ℤ𝑛  besides ℤ 𝑛ℤ⁄  we indicate, respectively, natural 

numbers, non-negative integers, integers, rational numbers, the semiring of integers modulo 𝑛 

besides the ℤ-semimodule of integers modulo 𝑛.  

 

2. 𝜹-Small and 𝜹-supplement subsemimodules  

       In this section, we revision and state some points of 𝛿-supplement subsemimodules which 

are vital later. In [8], 𝛿-small submodules are introduced. Small (resp., 𝛿-small) 

subsemimodules are considered in [6 and 5]. 
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Definition 2.1: Let 𝑁 ≤ 𝐴. 𝑁 is said to be 𝛿-small in 𝐴 if 𝑁 + 𝐾 ≠ 𝐴 for any proper 

subsemimodule 𝐾 of 𝐴 with 𝐴 𝐾⁄  singular. We use 𝑁 ≪𝛿 𝐴 to indicate that 𝑁 is a 𝛿-small 

subsemimodule of 𝐴. 

 

        Let 𝑓: 𝐴 ⟶ 𝐵 be an epimorphism of left semimodules; 𝑓 is called 𝛿-small if 

𝐾𝑒𝑟(𝑓) ≪𝛿 𝐴. 

      All small subsemimodule or non-singular semisimple subsemimodule of 𝐴 is 𝛿-small in 𝐴. 

The 𝛿-small subsemimodules of a singular semimodule are small subsemimodules. 

 

 Lemma 2.2 [5]: Let 𝐴 be a subtractive 𝑅-semimodule and  𝑁 ≤ 𝐴. The next are equivalent:                                                             

(1)  𝑁 ≪𝛿 𝐴; 

(2) If 𝐴 = 𝑋 + 𝑁, then 𝐴 = 𝑋⨁𝑌 for a projective semisimple subsemimodule 𝑌 with 𝑌 ≤ 𝑁;  

(3) If 𝑋 + 𝑁 = 𝐴 with 𝐴 𝑋⁄  Goldie torsion, then 𝑋 = 𝐴.                                                                 

 

Lemma 2.3 [5]: Let 𝐴 be an 𝑅-semimodule. 

(1) For subsemimodules 𝑁, 𝐾, 𝐿 of 𝐴 with 𝐾 ≤ 𝑁, we have 

i.𝑁 ≪𝛿 𝐴 if and only if 𝐾 ≪𝛿 𝐴 and 𝑁 𝐾⁄ ≪𝛿 𝐴 𝐾⁄ . 

ii.𝑁 + 𝐿 ≪𝛿 𝐴 if and only if 𝑁 ≪𝛿 𝐴 and 𝐿 ≪𝛿 𝐴.  

(2) 𝐾 ≪𝛿 𝐴 and 𝑓: 𝐴 ⟶ 𝑁 is a homomorphism, then 𝑓(𝐾) ≪𝛿 𝑁. In particular, if 𝐾 ≪𝛿 𝐴 ≤
𝑁, then 𝐾 ≪𝛿 𝑁. 

(3) Let 𝐿1 ≤ 𝐴1 ≤ 𝐴, 𝐿2 ≤ 𝐴2 ≤ 𝐴 and 𝐴 = 𝐴1⨁𝐴2. Then 𝐿1⨁𝐿2 ≪𝛿 𝐴1⨁𝐴2 if and only if 

𝐿1 ≪𝛿 𝐴1 and 𝐿2 ≪𝛿 𝐴2.   

 

Definition 2.4 [5]: Let 𝓅 be the class of all singular simple semimodules. For a semimodule 𝐴, 

let 𝛿(𝐴) = 𝑅𝑒𝑗𝑇(𝓅) =∩ {𝑁 ≤ 𝐴| 𝐴 𝑁 ∈  𝓅}⁄  be the reject in 𝐴 of 𝓅 . 

 

Lemma 2.5: Let 𝐴 and 𝐵 be semimodules.                                                      

(1) 𝛿(𝐴) = ∑{𝐿 ≤ 𝐴|𝐿 is a 𝛿-small subsemimodule of 𝐴}.  

(2) If 𝑓: 𝐴 ⟶ 𝑁 is an 𝑅-homomorphism, then 𝑓(𝛿(𝐴)) ≤ 𝛿(𝐵). Therefore, 𝛿(𝐴) is a fully 

invariant subsemimodule of 𝐴 and 𝛿(RR)𝐴 ≤ 𝛿(𝐴).  

(3)  If 𝐴 = ⨁𝑖∈𝐼𝐴𝑖, then 𝛿(𝐴) = ⨁𝑖∈𝐼𝛿(𝐴𝑖).  

(4) If every proper subsemimodule of 𝐴 is contained in a maximal subsemimodule of 𝐴, at that 

time 𝛿(𝐴) is the unique largest 𝛿-small subsemimodule of 𝐴. 

 

Proof: See [5]. □ 

      Next, we give some descriptions of  𝛿(RR),  and certain properties of 𝑅 related to 𝛿(RR). 

From now on, let 𝛿(R) = 𝛿(RR) and Soc(𝑅) = Soc(RR).  

 

Theorem 2.6 [5]: Given a semiring 𝑅, both of the next sets are equal to 𝛿(𝑅):   

1. 𝑅1 = the intersection of all essential maximal left ideals of 𝑅.                  

2. 𝑅2 = the unique largest 𝛿-small left ideal of 𝑅.  

    We mean by 𝐽(𝑅) and 𝐽(𝑅 Soc(𝑅)⁄ ) to be the Jacobson radical of 𝑅 and 𝑅 Soc(𝑅)⁄ ), 

respectively.  

 

Proposition 2.7 [5]: For a subtractive semiring 𝑅, 𝛿(𝑅) Soc(𝑅)⁄ = 𝐽(𝑅 Soc(𝑅)⁄ ). In particular, 

𝑅 = 𝛿(R) if and only if 𝑅 is a semisimple semiring.  

    Similar to [9, Lemma 2.2], we provide the next lemma.  
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Lemma 2.8: The next are equivalent for a subtractive semimodule 𝐴 and 𝑚 ∈ 𝐴. 

(1) 𝑅𝑚 is not 𝛿-small in 𝐴; 

(2) There is a maximal subsemimodule 𝑁 of 𝐴 such that 𝑚 ∉ 𝑁 and 𝐴/𝑁 singular. 

 

Proof: (1) ⇒ (2) Assume 𝛤 = {𝐵 ≤ 𝐴 | 𝐵 ≠ 𝐴, 𝑅𝑚 + 𝐵 = 𝐴, 𝐴/𝐵 singular}. Because 𝑅𝑚 is 

not 𝛿-small in 𝐴, there exists a proper subsemimodule 𝐵 ≨ 𝐴 such that 𝑅𝑚 + 𝐵 = 𝐴 and 𝐴/𝐵 

singular. Thus 𝛤 is non-empty. Assume Ω be a nonempty totally ordered subset of 𝛤 and 𝐵0 =
 ∪𝐵∈Ω 𝐵. If 𝑚 is in 𝐵0 then there is a 𝐵 ∈ Ω with 𝑚 ∈ 𝐵. At that moment 𝐵 = 𝑅𝑚 + 𝐵 = 𝐴 

which is a contradiction. So, we have 𝑚 ∉ 𝐵0 and 𝐵0 ≠ 𝐴. Since 𝑅𝑚 + 𝐵0 = 𝐴 and 𝐴/𝐵0 

singular, 𝐵0 is upper bound in 𝛤. By Zorn’s Lemma, 𝛤 has a maximal element, say 𝑁. If 𝑁 is a 

maximal subsemimodule of 𝐴 there is not anything to do. Suppose that there exists a 

subsemimodule 𝐾 containing 𝑁 properly. Since 𝑁 is maximal in 𝛤, 𝐾 is not in 𝛤. Since 𝐴 =
𝑅𝑚 + 𝑁 and 𝑁 ≤ 𝐾, so 𝐴 = 𝑅𝑚 + 𝐾. 𝐴/𝐾 as a homomorphic image of singular semimodule 

𝐴/𝑁 is singular. From now 𝐾 must belong to 𝛤. This is the vital contradiction.  

      (2) ⇒ (1) Let 𝑁 be a maximal submodule with 𝑚 ∈ 𝐴\𝑁 and 𝐴/𝑁 singular. We assume 

𝐴 = 𝑅𝑚 + 𝑁. Then 𝑁 ≠ 𝐴, thus  𝑅𝑚 is not 𝛿-small in 𝐴. □ 

 

Lemma 2.9: Let 𝐴 be a semimodule and 𝐾, 𝐿, 𝐻 ≤ 𝐴. If 𝐿 ≪𝛿 𝐾, then 𝐿 ≪𝛿 𝐾 + 𝐻. 

 

Proof: Assume that 𝐿 ≪𝛿 𝐾. Let 𝑈 ≤ 𝐴 with 𝐾 + 𝐻 = 𝐿 + 𝑈 and (𝐾 + 𝐻) 𝑈⁄  singular. Then 

𝐾/(𝑈 ∩ 𝐾) ≅ (𝐾 + 𝑈)/𝑈 = (𝐾 + 𝐻)/𝑈 is singular. On the other hand, we get 𝐾 = 𝐿 + (𝐾 ∩
𝑈). Since 𝐿 is 𝛿-small in 𝐾, 𝐾 = 𝐾 ∩ 𝑈 ≤ 𝑈. So 𝐾 + 𝐻 = 𝑈. □ 

 

Lemma 2.10: Let 𝐿 ≤ 𝐴. If 𝐿 is 𝛿-supplement and 𝑈 ≪𝛿 𝐴 with 𝑈 ≤ 𝐿, then 𝑈 ≪𝛿 𝐿. 

 

Proof: Let 𝐴 = 𝐾 + 𝐿 with 𝐾 ∩ 𝐿 ≪𝛿 𝐿 besides 𝐿 = 𝑈 + 𝑉 with 𝐿/𝑉 singular. We prove that 

𝐿 = 𝑉. Then 𝐴 = 𝐾 + 𝑈 + 𝑉 and 𝐴/(𝐾 + 𝑉) = (𝐾 + 𝐿)/(𝐾 + 𝑉) = ((𝐾 + 𝑉 ) + 𝐿)/(𝐾 +
𝑉 ) ≅ 𝐿/(𝐿 ∩ (𝐾 + 𝑉 )) which is a homomorphic image of singular semimodule 𝐿/𝑉. By 

suggestion 𝐴 = 𝐾 + 𝑉. Then 𝐿 = (𝐿 ∩ 𝐾) + 𝑉 and thus 𝐿 = 𝑉.  □ 

 

Lemma 2.11: Let 𝐶 ≤ 𝐵 and 𝐾 be subsemimodules of 𝐴 and 𝐴 = 𝐶 + 𝐾. If 𝐵 ∩ 𝐾 ≪𝛿 𝐴, then 

𝐵/𝐶 ≪𝛿 𝐴/𝐶. 

 

Proof: Let 𝐴/𝐶 = 𝐵/𝐶 + 𝐿/𝐶 with 𝐴/𝐿 singular. We have 𝐴 = 𝐵 + 𝐿 and 𝐵 = 𝐶 + 𝐵 ∩ 𝐾. 

Then 𝐴 = 𝐶 + 𝐵 ∩ 𝐾 + 𝐿 = 𝐵 ∩ 𝐾 + 𝐿. Hence 𝐴 = 𝐿 since 𝐵 ∩ 𝐾 ≪𝛿 𝐴 besides 𝐴/𝐿 is 

singular.  □ 

 

Lemma 2.12: Assume 𝐴 is an 𝑅-semimodule besides 𝐾, 𝐿, 𝐹 ≤ 𝐴. At that time, we get the 

next. 

a) If 𝐾 is a 𝛿-supplement of 𝐹 in 𝐴 besides 𝑇 ≪𝛿 𝐴, then 𝐾 is a 𝛿-supplement of 𝐹 + 𝑇 in 𝐴. 

b) Let 𝑓: 𝐴 → 𝐹 be an epimorphism such that 𝐾𝑒𝑟𝑓 ≪𝛿 𝐴. If 𝐿 ≤ 𝐴 is a 𝛿-supplement in 𝐴, 

then 𝑓(𝐿) is a 𝛿-supplement in 𝐹. The reverse holds if 𝐾𝑒𝑟(𝑓) ≪𝛿 𝐿. 

 

Proof: (a) If 𝐾 is a 𝛿-supplement of 𝐹 in 𝐴. At that time 𝐴 = 𝐹 + 𝐾 and 𝐹 ∩ 𝐾 ≪𝛿 𝐾. We 

verify (𝐹 + 𝑇) ∩ 𝐾 ≪𝛿 𝐾. For if, let 𝐿 ≤ 𝐾 with 𝐾 = 𝐿 + (𝐹 + 𝑇) ∩ 𝐾 and 𝐾/𝐿 singular, then 

𝐴 = 𝐿 + 𝐹 + 𝑇 and 𝐴 (𝐿 + 𝐹)⁄ = (𝐾 + 𝐹)/(𝐿 + 𝐹) ≅ 𝐾/(𝐾 + (𝐿 ∩ 𝐹)) is singular as an 

homomorphic image of the singular semimodule 𝐾/𝐿. As 𝑇 ≪𝛿 𝐴, 𝐴 = 𝐿 + 𝐹. Hence 𝐾 = 𝐿 +
𝐾 ∩ 𝐹. Since 𝐾 ∩ 𝐹 ≪𝛿 𝐾 and 𝐾/𝐿 is singular we get 𝐾 = 𝐿. 
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(b) If 𝐿 is a 𝛿-supplement of 𝐾 in 𝐴. At that time 𝐿 is a 𝛿-supplement of 𝐾 + 𝐾𝑒𝑟𝑓 by (1). By 

Lemma 2.10, 𝑓(𝐿) = 𝑓(𝐿 + 𝐾𝑒𝑟𝑓) is also a 𝛿-supplement of 𝑓(𝐾) = 𝑓(𝐾 + 𝐾𝑒𝑟𝑓) in 𝐹. 

Conversely, let 𝐹 = 𝑓(𝐿) + 𝑈 with 𝑓(𝐿) ∩ 𝑈 is 𝛿-small in 𝑓(𝐿) and 𝐾 = 𝑓−1(𝑈). Then 𝐴 =
𝐿 + 𝐾. To end the proof, we show that 𝐿 ∩ 𝐾 ≪𝛿 𝐿. For if 𝐿 = 𝑉 + 𝐿 ∩ 𝐾 with 𝐿/𝑉 singular, 

then 𝑓(𝐿) = 𝑓(𝑉) + 𝑓(𝐿) ∩ 𝑓(𝐾) = 𝑓(𝑉) + 𝑓(𝐿) ∩ 𝑈 since 𝐾𝑒𝑟𝑓 ≤ 𝐾, 𝑓(𝐿 ∩ 𝐾) = 𝑓(𝐿) ∩
𝑓(𝐾). 𝑓(𝐿)/𝑓(𝑉) is singular as a homomorphic image of singular semimodule 𝐿/𝑉. Thus, 

𝑓(𝐿) = 𝑓(𝑉). So 𝐿 = 𝑉 + 𝐾𝑒𝑟𝑓. So 𝐿 = 𝑉.  □ 

 

3. Principally supplemented and principally lifting semimodules 

    Now we introduce two definitions, principally supplemented and principally lifting 

semimodules as generalization of principally supplemented and principally lifting modules.  

      Similar to [10], we introduce the following definition in semimodules.    

 

Definition 3.1: A semimodule 𝐴 is called principally lifting (or has (𝑃𝐷1) for short) if for all 

𝑎 ∈ 𝐴, 𝐴 has a decomposition 𝐴 = 𝑁 ⊕ 𝑆 with 𝑁 ≤ 𝑅𝑎 and 𝑅𝑎 ∩ 𝑆 ≪ 𝐴. 

 

Definition 3.2: A non-zero semimodule 𝐴 is called a principally hollow (briefly, 𝑃-hollow) if 

every proper cyclic subsemimodule is small in 𝐴. Observe that every 𝑃-hollow semimodule 

satisfies the condition (𝑃𝐷1). 

 

Proposition 3.3: The condition (𝑃𝐷1) is inherited by summands. 

 

Proof: Let 𝐴 have the condition (𝑃𝐷1) and 𝐾 a direct summand of 𝐴, if 𝑘 ∈ 𝐾, then 𝐴 has a 

decomposition 𝐴 = 𝑁 ⊕ 𝑆 with 𝑁 ≤ 𝑅𝑘 and 𝑅𝑘 ∩ 𝑆 ≪ 𝐴. It follows that 𝐾 = 𝑁 ⊕ (𝐾 ∩ 𝑆), 

and 𝑅𝑘 ∩ (𝐾 ∩ 𝑆) ≤ 𝑅𝑘 ∩ 𝑆 ≪ 𝐴, so 𝑅𝑘 ∩ (𝐾 ∩ 𝑆) ≪ 𝐾 (due to 𝐾 a direct summand of 𝐴). 

Thus, 𝐾 has (𝑃𝐷1). □ 

      It is known that an indecomposable semimodule is lifting if and only if it is a hollow 

semimodule [14], the next Lemma gives a similarity to this point. 

 

Lemma 3.4: The following are equivalent for an indecomposable semimodule 𝐴: 

(1) 𝐴 has (𝑃𝐷1).  

(2) 𝐴 is a 𝑃-hollow semimodule.  

 

Proof: Follows in a straight line from the defining condition of (𝑃𝐷1).  □ 

 

Lemma 3.5: The next are equivalent for a semimodule 𝐴.  

(1) 𝐴 has (𝑃𝐷1);  

(2) Every cyclic subsemimodule 𝐶 of 𝐴 can be written as 𝐶 = 𝑁 ⊕ 𝑆 with 𝑁 is a direct 

summand in 𝐴 and 𝑆 ≪ 𝐴; 

(3) For each 𝑎 ∈ 𝐴, there exist principal ideals 𝐼 and 𝐽 of 𝑅 such that 𝑅𝑎 =  𝐼𝑎 ⊕ 𝐽𝑎, where 𝐼𝑎 

is a direct summand in 𝐴 and 𝐽𝑎 ≪ 𝐴. 

 

Proof: (1)⇒ (2) It is clear.  

   (2)⇒ (1) Let 𝐶 be a cyclic subsemimodule of 𝐴, then by (2) 𝐶 = 𝑁 ⊕ 𝑆 with 𝑁 is a direct 

summand in 𝐴 and 𝑆 ≪ 𝐴. Write 𝐴 = 𝑁 ⊕ 𝑁′, it follows that 𝐶 = 𝑁 ⊕ 𝐶 ∩ 𝑁′ . Now let 

𝜋: 𝑁 ⊕ 𝑁′ → 𝑁′ be the natural projection, we get 𝐶 ∩ 𝑁′ = 𝜋(𝐶) = 𝜋(𝑁 ⊕ 𝑆) = 𝜋(𝑆) ≪ 𝐴, 

[7, Lemma 2.4]. Thus 𝐴 has (𝑃𝐷1). 

(2) ⇔ (3) Clear.  □ 

     Similar to [11, Lemma 2], we give the following lemma.    
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Lemma 3.6: Let 𝑁 and 𝐿 be subsemimodules of 𝐴. Then the next are equivalent: 

(1) 𝐴 = 𝑁 + 𝐿 and 𝑁 ∩ 𝐿 is small in 𝐿; 

(2) 𝐴 = 𝑁 + 𝐿 and for any proper subsemimodule 𝐾 of 𝐿, 𝐴 ≠ 𝑁 + 𝐾.  

 

Proof: Clear. □ 

     Similar to [11], we give the following definition in semimodule theory.    

 

Definition 3.7: Let 𝑁 be a cyclic subsemimodule of 𝐴. A subsemimodule 𝐿 is called a 

principally supplement of 𝑁 in 𝐴 if 𝑁 and 𝐿 satisfy the conditions in Lemma 3.6 and the 

semimodule 𝐴 is called principally supplemented if every cyclic subsemimodule of 𝐴 has a 

principally supplement in 𝐴. 

       Clearly, every supplemented semimodule and every lifting semimodule, and so every 

principally lifting semimodule is principally supplemented. Also, there is principally 

supplemented semimodules but neither supplemented nor principally lifting. 

 

Examples 3.8: The ℤ-semimodule ℚ of rational numbers has no maximal subsemimodules. At 

that point ℚ is not supplemented. Every cyclic subsemimodule of ℚ is small. However, ℚ is 

principally supplemented ℤ-semimodule. 

 

Lemma 3.9: Consider the next conditions for an indecomposable semimodule 𝐴: 

(1) 𝐴 is a principally lifting semimodule. 

(2) 𝐴 is a principally supplemented semimodule.  

(3) 𝐴 is a principally hollow semimodule. 

Then (1) ⇔ (3) and (3) ⇒ (2). 

 

Proof: (1)⇔ (3) By Lemma 3.4.  

     (3)⇒ (2) Let 𝑎 ∈ 𝐴. By (2) all cyclic subsemimodule is hollow. Then 𝐴 = 𝑅𝑎 + 𝐴 and 

(𝑅𝑎) ∩ 𝐴 ≪ 𝐴.  □ 

     Reminder that (3) ⇒ (2) in Lemma 3.9 does not hold in general as in modules see [10]. 

 

4. Principally 𝜹-supplemented and principally 𝜹-lifting semimodules 

    Here, we present the notion of principally 𝛿-supplemented semimodules. We verify that 

certain marks of supplemented besides 𝛿-supplemented semimodules can be lengthy toward 

principally 𝛿-supplemented semimodules. 

    Similar to [12, Lemma 3.1], we give the next lemma. 

 

Lemma 4.1: Let 𝑎 ∈ 𝐴 and 𝐿 a subsemimodule of 𝐴. Then the following are equivalent. 

(1) 𝐴 = 𝑅𝑎 + 𝐿 and 𝑅𝑎 ∩ 𝐿 ≪ 𝛿 𝐿; 

(2) 𝐴 = 𝑅𝑎 + 𝐿 and for any proper subsemimodule 𝐾 of 𝐿 with 𝐿/𝐾 singular, 𝐴 ≠ 𝑅𝑎 + 𝐾. 

 

Proof: (1) ⇒ (2) Let 𝐾 ≤ 𝐿 and 𝐴 = 𝑅𝑎 + 𝐾 where 𝐿/𝐾 singular. Then 𝐿 = (𝐿 ∩ 𝑅𝑎) + 𝐾. 

Since 𝐿 ∩ 𝑅𝑎 is 𝛿-small in 𝐿, 𝐿 = 𝐾. 

(2) ⇒ (1) If 𝐿 = (𝑅𝑎 ∩ 𝐿) + 𝐾 where 𝐾 ≤ 𝐿 and 𝐿/𝐾 singular, then 𝐴 = 𝑅𝑎 + 𝐿 = 𝑅𝑎 + 𝐾. 

By (2), 𝐾 = 𝐿. So 𝑅𝑎 ∩ 𝐿 is 𝛿-small in 𝐿.  □ 

 

Lemma 4.2: Suppose  𝐿 is a 𝛿-supplement of 𝐾 in 𝐴 and 𝐾 is a 𝛿-supplement of 𝐻 in 𝐴, then 

𝐾 is a 𝛿-supplement of 𝐿 in 𝐴.  

 

Proof: Let 𝐴 = 𝐾 + 𝐿 = 𝐾 + 𝐻, 𝐾 ∩ 𝐿 ≪𝛿 𝐿 and 𝐾 ∩ 𝐻 ≪𝛿 𝐾. To show 𝐾 ∩ 𝐿 ≪𝛿 𝐾. Let 

𝑋 ≤ 𝐴 such that 𝐾 ∩ 𝐿 + 𝑋 = 𝐾 besides 𝐾/𝑋 is singular. Now 𝐴 = (𝐾 ∩ 𝐿) + 𝑋 + 𝐻. Since 
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𝐾 ∩ 𝐿 ≪𝛿 𝐴, using Lemma 2.2, there exists a projective semisimple subsemimodule 𝑌 in 𝐾 ∩
𝐿 with 𝐴 = 𝑌 ⊕ (𝑋 + 𝐻). Henceforth 𝐾 = (𝑌 ⊕ 𝑋) + (𝐾 ∩ 𝐻). Since 𝐾/(𝑋 + 𝑌) is singular 

and 𝐾 ∩ 𝐻 ≪𝛿 𝐾, again by Lemma 2.2, 𝐾 = 𝑋 ⊕ 𝑌. Hence 𝑌 = 0 as 𝐾/𝑋 is singular besides 

𝑌 is semisimple projective. □ 

 

Definition 4.3: Let 𝐴 be a semimodule and 𝑎 ∈ 𝐴. A subsemimodule 𝐿 is named a principally 

δ-supplement of 𝑅𝑎 in 𝐴, if 𝑅𝑎 and 𝐿 satisfy Lemma 4.1 besides the semimodule 𝐴 is named 

principally 𝛿-supplemented if every cyclic subsemimodule of 𝐴 has a principally δ-supplement 

in 𝐴, equivalently, for all 𝑎 ∈ 𝐴 there exists a subsemimodule 𝐶 of 𝐴 with 𝐴 = 𝑅𝑎 + 𝐶 and 

𝑅𝑎 ∩ 𝐶 ≪𝛿 𝐶.  

        Similar to [12], we give the following definition. 

 

Definition 4.4: A semimodule 𝐴 is defined to be principally 𝛿-lifting if, for all 𝑎 ∈ 𝐴, there 

exists a decomposition 𝐴 = 𝑀 ⊕ 𝑁 such that 𝑀 ≤ 𝑅𝑎 and 𝑅𝑎 ∩ 𝑁 is δ-small in 𝑁 

(equivalently, in 𝐴). 

 

      Obviously, supplemented semimodules besides principally 𝛿-lifting semimodule is 

principally 𝛿-supplemented. All singular 𝛿-supplemented semimodule is supplemented, since 

every factor semimodule of a singular semimodule is singular. There are semimodules which 

are not supplemented besides not 𝛿-supplemented but principally 𝛿-supplemented. 

 

Example 4.5: Let ℕ0 and ℚ symbolize the semiring of non-negative integers and rational 

numbers respectively. ℚ is not supplemented, besides ℚ is not 𝛿-supplemented as it is singular 

ℕ0-semimodule. But the ℕ0-semimodule ℚ has no maximal subsemimodules. Any cyclic 

subsemimodule of ℚ is small, so ℚ is 𝛿-supplemented as form principally. 

 

Lemma 4.6: If 𝑓: 𝐴 → 𝐴′ is a homomorphism besides 𝑁 is a 𝛿-supplement in 𝐴 with 𝐾𝑒𝑟𝑓 ≤
𝑁, at that point 𝑓(𝑁) is a 𝛿-supplement in 𝑓(𝐴). 

 

Proof: Let 𝐴 = 𝑁 + 𝐾 with 𝑁 ∩ 𝐾 𝛿-small in 𝑁. Then 𝑓(𝑀) = 𝑓(𝑁 + 𝐾) = 𝑓(𝑁) + 𝑓(𝐾). 

Since 𝐾𝑒𝑟𝑓 ≤ 𝑁, we have 𝑓(𝑁) ∩ 𝑓(𝐾) = 𝑓(𝑁 ∩ 𝐾). By Lemma 2.3 (2), 𝑓(𝑁 ∩ 𝐾) =
𝑓(𝑁) ∩ 𝑓(𝐾) is 𝛿-small in 𝑓(𝑁). Hence 𝑓(𝑁) is a 𝛿-supplement of 𝑓(𝐾) in 𝑓(𝑀). □ 

 

Lemma 4.7: Let 𝐴 be a subtractive principally 𝛿-supplemented semimodule and 𝑁 ≤ 𝐴. If 

every cyclic subsemimodule 𝑅𝑥 has a 𝛿-supplement 𝐵 with 𝑁 ≤ 𝐵, then 𝐴/𝑁 is principally 𝛿-

supplemented. 

 

Proof: Since 𝐴 is a subtractive semimodule, so we have 𝐴/𝑁 is an 𝑅-semimodule. Let 𝐾/𝑁 be 

a cyclic subsemimodule of 𝐴/𝑁. Then 𝐾 = 𝑅𝑎 + 𝑁 for some 𝑥 ∈ 𝐴. There exists 𝐿 ≤ 𝐴 such 

that 𝑁 ≤ 𝐿, 𝐴 = 𝑅𝑥 + 𝐿 with 𝑅𝑥 ∩ 𝐿 𝛿-small in 𝐿. Let 𝜋: 𝐴 → 𝐴/𝑁 natural epimorphism. 

Using Lemma 4.6, 𝜋(𝐿) is 𝛿-supplement of 𝜋(𝑅𝑥) = 𝐾/𝑁, indeed 𝐴/𝑁 = 𝐿/𝑁 + (𝑅𝑥 +
𝑁)/𝑁 = 𝐿/𝑁 + 𝐾/𝑁 besides (𝑁 + (𝐿 ∩ 𝑅𝑥))/𝑁 ≪𝛿 𝐿/𝑁 as it is a homomorphic image of 

𝐿 ∩ 𝑅𝑥 where 𝐿 ∩ 𝑅𝑥 ≪𝛿 𝐿.  □ 

 

Lemma 4.8: Assume 𝐴 is a semimodule, 𝑁 a 𝛿-supplemented subsemimodule of 𝐴 and 𝐹 a 

cyclic subsemimodule of 𝐴. If 𝑁 + 𝐹 has a 𝛿-supplement 𝑇 in 𝐴, then 𝑁 ∩ (𝑇 + 𝐹) has a 𝛿-

supplement 𝑈 in 𝑁. Specific, 𝑇 + 𝑈 is a 𝛿-supplement of 𝐹 in 𝐴. 

 

Proof: Clearly 𝐴 = (𝑁 + 𝐹) + 𝑇 and (𝑁 + 𝐹) ∩ 𝑇 is 𝛿-small in 𝑇, 𝑁 ∩ (𝐹 + 𝑇) + 𝑈 = 𝑁 and 

(𝐹 + 𝑇) ∩ 𝑈 is 𝛿-small in 𝑈. Then 𝐴 = 𝑁 + 𝐹 + 𝑇 = 𝐹 + 𝑁 ∩ (𝐹 + 𝑇) + 𝑈 = 𝐹 + 𝑇 + 𝑈. As 
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finite sum of 𝛿-small subsemimodules is 𝛿-small using part (3) of Lemma 2.3, 𝐹 ∩ (𝑇 + 𝑈) ≤
𝑇 ∩ (𝐹 + 𝑈) + 𝑈 ∩ (𝐹 + 𝑇) ≤ 𝑇 ∩ (𝐹 + 𝑁) + 𝑈 ∩ (𝐹 + 𝑇),  and so 𝐹 ∩ (𝑇 + 𝑈) ≪𝛿 𝑇 + 𝑈.  

□ 

        Recall that [5] a semimodule 𝐴 is named distributive, if for 𝐾, 𝐿, 𝑁 ≤ 𝐴, we have 𝑁 ∩
(𝐾 + 𝐿) = 𝑁 ∩ 𝐾 + 𝑁 ∩ 𝐿 or 𝑁 + (𝐾 ∩ 𝐿) = (𝑁 + 𝐾) ∩ (𝑁 + 𝐿). 

 

Lemma 4.9: Let 𝐴 = 𝐴1⨁𝐴2 = 𝐾 + 𝑁 and 𝐾 ≤ 𝐴1. If 𝐴 is distributive and 𝐾 ∩ 𝑁 ≪𝛿 𝑁, then 

𝐾 ∩ 𝑁 ≪𝛿 𝐴1 ∩ 𝑁. 

 

Proof: Let 𝐴1 ∩ 𝑁 = (𝐾 ∩ 𝑁) + 𝐿 with (𝐴1 ∩ 𝑁)/𝐿 singular. Since 𝐴 is distributive, 𝑁 = 𝐴1 ∩
𝑁 ⊕ 𝐴2 ∩ 𝑁. We get 𝐴 = 𝐾 + 𝑁 = 𝐾 + 𝐴1 ∩ 𝑁 + 𝐴2 ∩ 𝑁 = 𝐾 + 𝐿 + (𝐴2 ∩ 𝑁) and 𝑁 = 𝐾 ∩
𝑁 + 𝐿 + (𝐴2 ∩ 𝑁). Now 

𝑁/(𝐿 ⊕ (𝐴2 ∩ 𝑁)) = ((𝑁 ∩ 𝐴1) ⊕ (𝑁 ∩ 𝐴2))/(𝐿 ⊕ (𝐴2 ∩ 𝑁)) ≅ (𝑁 ∩ 𝐴1)/𝐿 is singular. 

Hence 𝑁 =  𝐿 ⊕ (𝐴2 ∩ 𝑁). Thus 𝑁 =  (𝑁 ∩ 𝐴1) ⊕ (𝑁 ∩ 𝐴2) and 𝐿 ≤ 𝐴1 ∩ 𝑁 imply 𝐿 =
𝐴1 ∩ 𝑁. So 𝐾 ∩ 𝑁 ≪𝛿 𝐴1 ∩ 𝑁.  □ 

 

Theorem 4.10: In principally 𝛿-supplemented distributive semimodule each direct summand 

is principally 𝛿-supplemented. 

 

Proof: Assume 𝐴 = 𝐴1⨁𝐴2, 𝑥 ∈ 𝐴1. There exists 𝑁 ≤ 𝐴 with 𝐴 = 𝑅𝑥 + 𝑁 besides 𝑅𝑥 ∩
𝑁 ≪𝛿 𝑁. Then 𝐴1 = 𝑅𝑥 + (𝐴1 ∩ 𝑁) and by Lemma 4.9, 𝑅𝑥 ∩ (𝐴1 ∩ 𝑁) is 𝛿-small in 𝐴1 ∩ 𝑁. 

□ 

 

Proposition 4.11: Let 𝐴1 and 𝐴2 be principally 𝛿-supplemented semimodules and 𝐴 = 𝐴1⨁𝐴2. 

If 𝐴 is a distributive semimodule, then 𝐴 is principally 𝛿-supplemented. 

 

Proof: Let 𝐴 = 𝐴1⨁𝐴2 be a distributive semimodule besides 𝑅𝑥 ≤ 𝐴. Then 𝑅𝑥 = (𝑅𝑥 ∩
𝐴1) ⊕ (𝑅𝑥 ∩ 𝐴2). Since 𝑅𝑥 ∩ 𝐴1 and 𝑅𝑥 ∩ 𝐴2 are cyclic subsemimodules of 𝐴1 and 𝐴2 

respectively, there exists 𝑀 ≤ 𝐴1 such that 𝐴1 = (𝑅𝑥 ∩ 𝐴1) + 𝑀 and 𝑀 ∩ (𝑅𝑥 ∩ 𝐴1) = 𝑀 ∩
𝑅𝑥 is 𝛿-small in 𝑀, and  𝑁 ≤ 𝐴2 such that 𝐴2 = (𝑅𝑥 ∩ 𝐴2) + 𝑁, 𝑁 ∩ (𝑅𝑥 ∩ 𝐴2) = 𝑁 ∩ 𝑅𝑥 is 

𝛿-small in 𝑁. Then 𝐴 = 𝑅𝑥 + 𝑀 + 𝑁. 

     We now claim that 𝑅𝑥 ∩ (𝑀 + 𝑁) = (𝑅𝑥 ∩ 𝑀) + (𝑅𝑥 ∩ 𝑁). The inclusion (𝑅𝑥 ∩ 𝑀) +
(𝑅𝑥 ∩ 𝑁) ≤ 𝑅𝑥 ∩ (𝑀 + 𝑁) always holds. For the inverse inclusion,𝑅𝑥 ∩ (𝑀 + 𝑁) ≤ 𝑀 ∩
(𝑅𝑥 + 𝑁) + 𝑁 ∩ (𝑅𝑥 + 𝑀) = 𝑀 ∩ ((𝑅𝑥 ∩ 𝐴1) + 𝐴2) + 𝑁 ∩ (𝐴1 + (𝑅𝑥 ∩ 𝐴2)). On the other 

hand 𝑀 ∩ ((𝑅𝑥 ∩ 𝐴1) + 𝐴2) ≤ (𝑅𝑥 ∩ 𝐴1) ∩ (𝑀 + 𝐴2) + 𝐴2 ∩ ((𝑅𝑥 ∩ 𝐴1) + 𝑀) = 𝑅𝑥 ∩ 𝑀. 

Similarly 𝑁 ∩ (𝐴1 + (𝑅𝑥 ∩ 𝐴2)) ≤ 𝑅𝑥 ∩ 𝑁. Hence (𝑅𝑥 ∩ (𝑀 + 𝑁) ≤ 𝑅𝑥 ∩ 𝑀 + 𝑅𝑥 ∩ 𝑁. 

Therefore, the claim (𝑅𝑥 ∩ (𝑀 + 𝑁) = 𝑅𝑥 ∩ 𝑀 + 𝑅𝑥 ∩ 𝑁 is defensible. Since 𝑅𝑥 ∩ 𝑀 ≪𝛿 𝑀 

and 𝑅𝑥 ∩ 𝑁 ≪𝛿 𝑁, by Lemma 2.3(3), we have 𝑅𝑥 ∩ (𝑀 + 𝑁) ≪𝛿 𝑀 + 𝑁. Hence, 𝐴 is 

principally 𝛿-supplemented. □ 

 

      Similar to that of module theory in [13], if every cyclic subsemimodule is a direct summand 

of 𝐴, we say that a semimodule 𝐴 is principally semisimple. However, in semimodules, one can 

say that (semisimple semimodule → principally semisimple). Any principally semisimple 

semimodule is principally 𝛿-lifting, besides as a result principally 𝛿-supplemented.  

 

Lemma 4.12: Assume a subtractive semimodule 𝐴 is principally 𝛿-supplemented besides 

distributive. At that time 𝐴 𝛿(𝐴)⁄  is a principally semisimple semimodule. 
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Proof: Let �̅� ∈ 𝐴 𝛿(𝐴)⁄ . There exists a 𝑁 ≤ 𝐴 with 𝐴 = 𝑅𝑎 + 𝑁 and 𝑅𝑎 ∩ 𝑁 ≪𝛿 𝑁, so 𝑅𝑎 ∩
𝑁 ≪𝛿 𝐴. Using the distributivity of 𝐴 we get 𝑅𝑎 ∩ (𝑁 + 𝛿(𝐴)) = (𝑅𝑎 ∩ 𝐴) + 𝑅𝑎 ∩ 𝛿(𝐴) =
𝛿(𝐴). Now 

𝐴 𝛿(𝐴)⁄ = ((𝑅𝑎 + 𝛿(𝐴)) 𝛿(𝐴)⁄ + ((𝑁 + 𝛿(𝐴)) 𝛿(𝐴)⁄ = (𝑅�̅� 𝛿(𝐴)⁄ )⨁ ((𝑁 + 𝛿(𝐴)) 𝛿(𝐴)⁄ .  

□  

 

Theorem 4.13: Assume a subtractive semimodule 𝐴 is principally 𝛿-supplemented. Then 𝐴 has 

a subsemimodule 𝐴1 wherever 𝐴1 has an essential socle as well as 𝛿(𝐴)⨁𝐴1 is an essential in 

𝐴. 

 

Proof: We may find a subsemimodule 𝐴1 of 𝐴 such that 𝛿(𝐴)⨁𝐴1 is essential in 𝐴 by Zorn’s 

Lemma. Toward prove 𝑆𝑜𝑐(𝐴1) ≤𝑒 𝐴1, we prove that any cyclic subsemimodule of 𝐴1 has a 

simple subsemimodule. Let 𝑎 ∈ 𝐴1. There exists a subsemimodule 𝑁 of 𝐴 such that 𝐴 = 𝑅𝑎 +
𝑁 besides 𝑅𝑎 ∩ 𝑁 ≪𝛿 𝑁 since 𝐴 is principally 𝛿-supplemented. Then 𝑅𝑎 ∩ 𝑁 = 0. Suppose 𝐾 

be a maximal subsemimodule of 𝑅𝑎. If 𝐾 is unique maximal subsemimodule in 𝑅𝑎, then 𝐾 ≪
𝑅𝑎, thus 𝐾 ≪𝛿 𝑅𝑎 and so 𝐾 ≪𝛿 𝐴. This is not likely since 𝑅𝑎 ∩ 𝛿(𝐴) = 0. So, there exists 𝑥 ∈
𝑅𝑎 with 𝑅𝑎 = 𝐾 + 𝑅𝑥. We claim that 𝐾 ∩ 𝑅𝑥 = 0. 

 

     Otherwise, let 0 ≠ 𝑥1 ∈ 𝐾 ∩ 𝑅𝑥. By hypothesis there exists 𝐵1 such that 𝑅𝑥1 ∩ 𝐵1 ≤ 𝐾 ∩
𝛿(𝐴) = 0. Hence 𝑅𝑎 = 𝑅𝑥1 ⊕ (𝑅𝑎 ∩ 𝐵1) and 𝐾 = 𝑅𝑥1⨁(𝐾 ∩ 𝐵1). If 𝐾 ∩ 𝐵1 is nonzero, let 

0 ≠ 𝑥2 ∈ 𝐾 ∩ 𝐵1. By hypothesis there exists 𝐵2 such that 𝐴 = 𝑅𝑥2 + 𝐵2 with 𝑅𝑥2 ∩ 𝐵2 is δ-

small in 𝐴. So = 𝑅𝑥2⨁𝐵2 , since 𝑅𝑥2 ∩ 𝐵2 ≤ 𝐾 ∩ 𝛿(𝐴) = 0 and 𝐴 is subtractive semimodule. 

Then 𝐾 ∩ 𝐵1 = 𝑅𝑥2⨁(𝐾 ∩ 𝐵1 ∩ 𝐵2). Hence 𝑅𝑎 = 𝑅𝑥1⨁𝑅𝑥2⨁(𝑅𝑎 ∩ 𝐵1 ∩ 𝐵2) and 𝐾 =
𝑅𝑥1⨁𝑅𝑥2⨁(𝐾 ∩ 𝐵1 ∩ 𝐵2), by using subtractive condition of 𝐴 [4]. If 𝐾 ∩ 𝐵1 ∩ 𝐵2 is nonzero, 

similarly there exists 0 ≠ 𝑥3 ∈ 𝐾 ∩ 𝐵1 ∩ 𝐵2 and 𝐵3 ≤ 𝐴 such that 𝐴 = 𝑅𝑥3⨁𝐵3. Then 𝑅𝑎 =
𝑅𝑥1⨁𝑅𝑥2⨁𝑅𝑥3⨁(𝑅𝑎 ∩ 𝐵1 ∩ 𝐵2 ∩ 𝐵3) and 𝐾 = 𝑅𝑥1⨁𝑅𝑥2⨁𝑅𝑥3⨁(𝐾 ∩ 𝐵1 ∩ 𝐵2 ∩ 𝐵3). This 

process must terminate at a finite step, give or take 𝑡. At this step 𝑅𝑎 =
𝑅𝑥1⨁𝑅𝑥2⨁𝑅𝑥3⨁ ⋯ ⨁𝑅𝑥𝑡 and so 𝑅𝑎 = 𝐾 since at 𝑡th step we must have 𝐾 ∩ 𝐵1 ∩ 𝐵2 ∩ ⋯ ∩
𝐵𝑡 ≤ 𝑅𝑎 ∩ 𝐵1 ∩ 𝐵2 ∩ ⋯ ∩ 𝐵𝑡 = 0. This is a illogicality. There exists 𝑥 ∈ 𝑅𝑎 such that 𝑅𝑎 =
𝐾⨁𝑅𝑥. At that point 𝑅𝑥 is a simple semimodule. □ 

 

Now, under some conditions direct summands are principally 𝛿-supplemented. 

Lemma 4.14: Assume 𝐴 = 𝐴1⨁𝐴2 be a decomposition of a subtractive semimodule 𝐴. Then 

𝐴2 is principally 𝛿-supplemented iff for every cyclic subsemimodule 𝑁/𝐴1 of 𝐴/𝐴1, there exists 

a subsemimodule 𝐾 of 𝐴2 such that 𝐴 = 𝐾 + 𝑁 and 𝑁 ∩ 𝐾 ≪𝛿 𝐾. 

 

Proof: Assume 𝐴2 is principally-supplemented. Lease 𝑁/𝐴1 be a cyclic subsemimodule of 

𝐴/𝐴1. Let 𝑁/𝐴1 = (𝑅𝑥 + 𝐴1)/𝐴1 and 𝑥 = 𝑚1 + 𝑚2 where 𝑚1 ∈ 𝐴1, 𝑚2 ∈ 𝐴2. Then 𝑁/𝐴1 =
(R𝑚2 + 𝐴1)/𝐴1. By supposition there exists a 𝐾 ≤ 𝐴2 such that 𝐴2 = (R𝑚2) + 𝐾 with 

(R𝑚2) ∩ 𝐾 is 𝛿-small in 𝐾. Then 𝑁 = 𝑅𝑚2 + 𝐴1 and 𝐴 = 𝑁 + 𝐾. Now, 𝑁 ∩ 𝐾 = ((𝑅𝑚2) +
 𝐴1) ∩ 𝐾 ≤ (R𝑚2) ∩ ( 𝐴1 + 𝐾) + 𝐴1 ∩ (𝐾 + (R𝑚2)) ≤ 𝐾 ∩ (𝐴1+(R𝑚2)) +  𝐴1 ∩ (R𝑚2 +
𝐾). 𝐴1 ∩ (𝑅𝑚2 + 𝐾) = 0 implies (𝐴1 + 𝑅𝑚2) ∩ 𝐾 = (𝑅𝑚2) ∩ ((𝑅m1) +  𝐾). As a result 𝑁 ∩
𝐾 ≤ 𝑅𝑚2. Since (𝑅𝑚2) ∩ 𝐾 ≪𝛿 𝐾, 𝑁 ∩ 𝐾 ≪𝛿 𝐾. 

 

       In opposition, let 𝑁 ≤ 𝐴2 be a cyclic subsemimodule. Assume the cyclic subsemimodule 

(𝑁 + 𝐴1)/𝐴1 of 𝐴/𝐴1. By hypothesis, there exists 𝐾 ≤ 𝐴2 such that 𝐴 = (𝑁 + 𝐴1) + 𝐾 and 

𝐾 ∩ (𝑁 + 𝐴1) ≪𝛿 𝐾. Then 𝐴2 = 𝑁 + 𝐾. We need to whole the proof to show that 𝐾 ∩ (𝐴1 +
𝑁) = 𝑁 ∩ (𝐴1 + 𝐾) = 𝑁 ∩ 𝐾. Now 𝑁 ∩ (𝐴1 + 𝐾) ≤ 𝐴1 ∩ (𝐾 + 𝑁) +  𝐾 ∩  (𝑁 + 𝐴1) =
𝐾 ∩ (𝑁 + 𝐴1) ≤ 𝑁 ∩ (𝐴1 + 𝐾) + 𝐴1 ∩ (𝐾 + 𝑁) = 𝑁 ∩ (𝐴1 + 𝐾) since 𝐴1 ∩ (𝐾 + 𝑁) = 0. 



Alwan                                                        Iraqi Journal of Science, 2024, Vol. 65, No. 7, pp: 3876-3889 

 

3885 

Then 𝑁 ∩ (𝐴1 + 𝐾) = 𝐾 ∩ (𝑁 + 𝐴1). But (𝐴1 + 𝐾) ∩ 𝑁 = 𝐾 ∩ (𝑁 + 𝐴1) = 𝑁 ∩ 𝐾 is clear 

now. So 𝑁 ∩ 𝐾 ≪𝛿 𝐾. □ 

 

Proposition 4.15: Let 𝐴1 and 𝐴2 be principally 𝛿-supplemented semimodules with 𝐴 =
𝐴1⨁𝐴2. Then 𝐴 is principally 𝛿-supplemented if and only if any cyclic subsemimodule 𝑁 of 𝐴 

such that 𝐴 = 𝑁 + 𝐾 for any proper subsemimodule 𝐾 of 𝐴 has a supplement in 𝐴. 

 

Proof: One side is evident. Conversely, assume that for each cyclic subsemimodule 𝑁 of 𝐴 

with 𝐴 = 𝑁 + 𝐾 for any proper direct summand 𝐾 of 𝐴 has a supplement in 𝐴. Let 𝑁 = 𝑅𝑛 be 

a cyclic subsemimodule. If 𝐴 = 𝑁 + 𝐴𝑖  or 𝑁 ≤ 𝐴𝑖  we have done. Otherwise, we may take up 

𝑛 = 𝑛1 + 𝑛2 and 𝑛1 and 𝑛2 are nonzero. By supposition there are 𝐾1 ≤ 𝐴1 and 𝐾2 ≤ 𝐴2 such 

that 𝐴1 = (𝑅𝑛1) + 𝐾1, 𝐴2 = (𝑅𝑛2) + 𝐾2 and (R𝑛1) ∩ 𝐾1 ≪𝛿 𝐾1 and (R𝑛2) ∩ 𝐾2 ≪𝛿 𝐾2. 

𝑅𝑛1 + 𝑅𝑛2 = 𝑁 + 𝑅𝑛2 = 𝑁 +R𝑛1 and = 𝑁 + 𝑅𝑛1 + 𝐾1 + 𝐾2 = 𝑁 + 𝐴1 + 𝐾2. Similarly 𝐴 =
𝑁 + 𝐴2 + 𝐾1. Assume 𝐴 = 𝐴1 + 𝐾2. Then 𝐴2 = 𝐾2  and so 𝑛2 = 0 and 𝑁 ≤ 𝐴1. It leads us to a 

contradiction. Hence 𝐴1 + 𝐾2  is a proper subsemimodule of 𝐴. Similarly, 𝐴2 + 𝐾1 is proper. 

Hence 𝑁 has a supplement in 𝐴.  □ 

 

Definition 4.16: Recall [14] A non-zero semimodule 𝐴 is named 𝛿-hollow if any proper 

subsemimodule is 𝛿-small in 𝐴. 

 

In [9] principally 𝛿-lifting (and principally 𝛿-hollow) modules are defined we now give the 

following definition similar to [9]. 

 

Definition 4.17: A non-zero semimodule 𝐴 is named principally 𝛿-hollow if every proper cyclic 

subsemimodule is 𝛿-small in 𝐴.  

 

Remark 4.18: A finite direct sum of 𝛿-small subsemimodules is 𝛿-small [5], 𝐴 is finitely 𝛿-

hollow if and only if 𝐴 is principally 𝛿-hollow. There are principally 𝛿-hollow semimodules 

nonetheless not 𝛿-hollow. Consider ℕ0 and ℚ symbolize the semiring of non-negative integers 

and rational numbers, respectively. At that time the ℕ0-semimodule ℚ is principally 𝛿-hollow 

because any finitely generated ℕ0-subsemimodule of ℚ is small, so 𝛿-small in ℚ. Assume ℚ1 =

{
𝑎

𝑏
∈ ℚ| 2 does not divide 𝑏} and ℚ2 = {

𝑎

𝑏
∈ ℚ| 2 divides 𝑏}. Thus ℚ = ℚ1 + ℚ2. Since ℚ ℚ1⁄  

and ℚ ℚ2⁄  are singular ℕ0-semimodules, ℚ1 and ℚ2 are not δ-small subsemimodules in ℚ. 

 

Definition 4.19: A non-zero semimodule 𝐴 is named principally 𝛿-lifting if for each one cyclic 

subsemimodule has the δ-lifting property, i.e., for each 𝑎 ∈ 𝐴, 𝐴 has a decomposition 𝐴 = 𝑀 ⊕
𝑁 with 𝑀 ≤ 𝑅𝑎 besides 𝑅𝑎 ∩ 𝑁 ≪𝛿 𝑁. 

 

Remark 4.20: If 𝐴 is a principally 𝛿-lifting semimodule then 𝐴 is principally 𝛿-supplemented. 

Note there are semimodules not principally 𝛿-lifting but principally 𝛿-supplemented. By way 

of a design, we record here Example 4.21. 

 

Example 4.21: Consider 𝐴1 = ℤ 2ℤ⁄  and 𝐴2 = ℤ 8ℤ⁄  as a ℤ-semimodules. As 𝐴1, 𝐴2 are 

principally 𝛿-hollow, so principally 𝛿-supplemented semimodules. Let 𝐴 = 𝐴1 ⊕ 𝐴2. It is 

stated in [9] that 𝐴 is not a principally 𝛿-lifting ℤ-module and so is not principally 𝛿-lifting ℤ-

semimodule. 𝑀1 = (1̅, 2̅)ℤ, 𝑀2 = (1̅, 1̅)ℤ, 𝑀3 = (0̅, 4̅)ℤ and 𝑀4 = (0̅, 2̅)ℤ are the alone 

proper subsemimodules of 𝐴 and all of them are cyclic. 𝑀3 ≪𝛿 𝐴 and 𝑀4 ≪𝛿 𝐴 besides 𝐴 =
𝑀1+𝑀2. Now 𝑀1 ∩ 𝑀2 = 𝑀3 is 𝛿-small in both 𝑀1 as well as 𝑀2. Henceforth, 𝐴 is principally 
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𝛿-supplemented. For any prime integer 𝑝, by the same reasoning, the ℤ-semimodule 𝐴 =
(ℤ 𝑝ℤ) ⊕ (ℤ 𝑝3ℤ⁄⁄ ) is not principally 𝛿-lifting but it is principally 𝛿-supplemented. 

 

Example 4.22: Assume ℕ0 is the semiring of non-negative integer numbers and assume the 

ℕ0-semimodules 𝐴1 = ℕ0 𝑝ℕ0⁄  and 𝐴2 = ℕ0 𝑝3ℕ0⁄ , for any prime integer 𝑝, by the same 

reasoning in Example 4.21, the ℤ-semimodule 𝐴 = 𝐴1 ⊕ 𝐴2 is not principally 𝛿-lifting but is 

principally 𝛿-supplemented. 

 

Lemma 4.23: Consider the following conditions for an indecomposable semimodule 𝐴.  

(1) 𝐴 is a principally 𝛿-lifting semimodule. 

(2) 𝐴 is a principally 𝛿-supplemented semimodule. 

(3) 𝐴 is a principally 𝛿-hollow semimodule. 

Then (1) ⇔ (3) and (3) ⇒ (2). 

 

Proof: (3) ⇔ (1) The proof similar to those for modules in [9]. (3) ⇒ (2) Let 𝑥 ∈ 𝐴.  Any cyclic 

subsemimodule is 𝛿-hollow by (3). Then 𝐴 = 𝑅𝑥 + 𝐴 and 𝑅𝑥 ∩ 𝐴 ≪𝛿 𝐴. Thus 𝐴 is principally 

𝛿-supplemented. □ 

      Reminder that (3) ⇒ (2) in Lemma 4.23 does not hold in general.  

     We now give the following definition similar to [14, p. 95].  

 

Definition 4.24: Let 𝑅 be a semiring. An 𝑅-semimodule 𝐴 is called ⊕-supplemented if for all 

subsemimodule 𝑁 of 𝐴 there is a direct summand 𝐾 of 𝐴 with 𝐴 = 𝑁 + 𝐾 and 𝑁 ∩ 𝐾 ≪ 𝐾. 

Clearly ⊕-supplemented semimodules are supplemented. 

 

Definition 4.25: An 𝑅-semimodule 𝐴 is called ⊕-𝛿-supplemented semimodule if for all 

subsemimodule N of 𝐴 there exists a direct summand 𝐾 with 𝐴 = 𝑁 + 𝐾 and 𝑁 ∩ 𝐾 ≪𝛿 𝐾.  

 

Remark 4.26: In the similar method 𝛿-⊕-supplemented semimodule means for each 

subsemimodule 𝑁 of 𝐴 there is a direct summand 𝐾 with 𝐴 = 𝑁 + 𝐴 and 𝑁 ∩ 𝐴 ≪𝛿 𝐾. It is the 

same as ⊕-𝛿-supplemented semimodule.  

     Now we give the following definitions similar to [12].   

 

Definition 4.27: A semimodule 𝐴 is called principally ⊕-supplemented if for all 𝑎 ∈ 𝐴 there 

exists a direct summand 𝐵 of 𝐴 such that 𝐴 = 𝑅𝑎 + 𝐵 and 𝑅𝑎 ∩ 𝐵 ≪𝛿 𝐵. 

 

Definition 4.28: A semimodule 𝐴 is called principally ⊕-𝛿-supplemented semimodule if for 

all 𝑎 ∈ 𝐴 there exists a direct summand 𝐵 of 𝐴 such that 𝐴 = 𝑅𝑎 + 𝐵 and 𝑅𝑎 ∩ 𝐵 ≪𝛿 𝐵. 

 

Definition 4.29: A semimodule 𝐴 is called a weak principally ⊕-𝛿-supplemented if for all 𝑎 ∈
𝐴 there exists a direct summand 𝐵 such that 𝐴 = 𝑅𝑎 + 𝐵 and 𝑅𝑎 ∩ 𝐵 ≪𝛿 𝐴. 

Weakly supplemented semimodule ⟹ weak principally 𝛿-supplemented.  ⊕-supplemented 

semimodule ⟹ principally ⊕-𝛿-supplemented.  As well as it is obvious that principally ⊕-

supplemented ⟹ weak principally 𝛿-supplemented. In a succeeding article, the author 

examines the interconnections among principally 𝛿-supplemented, weakly principally 𝛿-

supplemented besides principally ⊕-𝛿-supplemented semimodules in feature.    

Similar to modules in [15], we say a semimodule 𝐴 is said to have the summand intersection 

property if the intersection of any two direct summands of 𝐴 is again a direct summand of 𝐴. 

Similar to [16], a semimodule 𝐴 is named refinable if for any subsemimodule 𝑈, 𝑉 of 𝐴 with 

𝐴 = 𝑈 + 𝑉 there is a direct summand 𝑈′ of 𝐴 such that 𝑈′ ≤ 𝑈 and 𝐴 = 𝑈′ + 𝑉. 
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Theorem 4.30: Consider the following conditions for a refinable semimodule 𝐴. 

(1) 𝐴 is principally 𝛿-lifting. 

(2) 𝐴 is principally ⊕-𝛿-supplemented. 

(3) 𝐴 is principally 𝛿-supplemented. 

(4) 𝐴 is weak principally 𝛿-supplemented. 

 Then (1) ⇒ (2) and (2) ⇔ (3) ⇔ (4). If 𝐴 has the summand intersection property then (4) ⇒ 

(1). 

 

Proof: (1) ⇒ (2) ⇒ (3) ⇒ (4) By definitions continuously hold. 

(4) ⇒ (2) Assume 𝐴 is weakly principally 𝛿-supplemented besides 𝑎 ∈ 𝐴. There exists a 𝐵 ≤ 𝐴 

such that 𝐴 = 𝑅𝑎 + 𝐵 besides 𝑅𝑎 ∩ 𝐵 ≪𝛿 𝐴 by (4). By assumption, there exists a direct 

summand 𝑈 of 𝐴 with 𝑈 ≤ 𝐵 and 𝐴 = 𝑅𝑎 + 𝑈 = 𝑈′ ⊕ 𝑈 for some 𝑈′ ≤ 𝐴. We claim that 

𝑅𝑎 ∩ 𝑈 ≪𝛿 𝑈. Assume that 𝑅𝑎 ∩ 𝑈 + 𝐿 = 𝑈 for some 𝐿 ≤ 𝑈 with 𝑈 𝐿⁄  singular. Since 

𝐴 (𝑈′ + 𝐿)⁄  is singular as it is isomorphic to the singular 𝑈 𝐿⁄ . Then 𝐴 = 𝑈′ + (𝑅𝑎 ∩ 𝑈) + 𝐿 

implies 𝐴 = 𝑈′ ⊕ 𝐿 as 𝑅𝑎 ∩ 𝑈 ≪𝛿 𝐴. Thus 𝐿 = 𝑈. Hence 𝐴 is principally ⊕-𝛿-supplemented. 

(4) ⇒ (1) Let 𝑎 ∈ 𝐴 besides 𝐴 has the summand intersection property. Using (4) there exists a 

subsemimodule 𝐵 with 𝐴 = 𝑅𝑎 + 𝐵 besides 𝑅𝑎 ∩ 𝐵 ≪𝛿 𝐴. Using assumption, there exists a 

direct summand 𝑈′
 of 𝐴 with 𝑈1 is contained in 𝐴 besides 𝐴 = 𝑅𝑎 + 𝑈1 = 𝑈1

′ ⊕ 𝑈1. 

Since 𝑈1 is direct summand besides 𝑅𝑎 ∩ 𝐵 ≪𝛿 𝐴, 𝑅𝑚 ∩ 𝑈1 ≪𝛿 𝑈1 by Lemma 2.3 (3). Yet 

again via assumption, there is a direct summand 𝑈2 of 𝐴 such that 𝑈2 is contained in 𝑅𝑎 and 

𝐴 = 𝑈2 + 𝑈1 = 𝑈2 ⊕ 𝑈2
′. By the summand intersection property 𝑈2 ∩ 𝑈1 is a direct summand 

of 𝐴, 𝐴 = (𝑈2 ∩ 𝑈1) ⊕ 𝐾 for some subsemimodule 𝐾 of 𝐴. Then 𝑈1 = ( 𝑈2 ∩ 𝑈1) ⊕ (𝐾 ∩ 𝑈1) 

and 𝐴 = 𝑈2 ⊕ (𝐾 ∩ 𝑈1). By Lemma 2.3 (1), 𝑅𝑎 ∩ (𝐾 ∩ 𝑈1) ≪𝛿 𝑈1 since 𝑅𝑎 ∩ (𝐾 ∩ 𝑈1) ≤
𝑅𝑎 ∩ 𝑈1 ≤ 𝑈1 and 𝑅𝑎 ∩ 𝑈1 ≪𝛿 𝑈1. By Lemma 2.3 (3), 𝑅𝑎 ∩ (𝐾 ∩ 𝑈1) is 𝛿-small in 𝐾 ∩ 𝑈1 as 

𝐾 ∩ 𝑈1 is direct summand of 𝑈1. □ 

 

Definition 4.31 [6]: A homomorphism 𝑓: 𝐴 ⟶ 𝐵 of left 𝑅-semimodules is called 𝑘-

quasiregular if whenever 𝐾 ≤ 𝐴, 𝑎 ∈ 𝐴\𝐾, 𝑎′ ∈ 𝐾, and 𝑓(𝑎) = 𝑓(𝑎′) there exists 𝑠 ∈ Ker(𝑓) 

such that 𝑎 = 𝑎′ + 𝑠. 

 

Definition 4.32 [6]: Let 𝐴 be a semimodule. A semimodule 𝑃 together with an 𝑅-

homomorphism 𝑓: 𝑃 ⟶ 𝐴 is named a projective cover of 𝐴 if: 

(1) 𝑃 is projective, 

(2) 𝑓 is small, epimorphism and 𝑘-quasiregular.  

 

Definition 4.33 [5]: Let 𝐴 be a left 𝑅-semimodule. A left 𝑅-semimodule 𝑃 together with an 𝑅-

homomorphism 𝑓: 𝑃 ⟶ 𝐴 (A pair (𝑃, 𝑝)) is named a projective 𝛿-cover of 𝐴 if: 

(1) 𝑃 is projective,  

(2) 𝑓 is 𝛿-small, epimorphism and 𝑘-quasiregular. 

 

Definition 4.34: A semimodule 𝐴 is called semiperfect if every factor semimodule of 𝐴 has a 

projective cover. Also, 𝐴 is called 𝛿-semiperfect if every factor semimodule of 𝐴 has a 

projective 𝛿-cover. 

Definition 4.35: A semimodule 𝐴 is called principally semiperfect if every factor semimodule 

of 𝐴 by a cyclic subsemimodule has a projective cover. Also, 𝐴 is named principally 𝛿-

semiperfect if every factor semimodule of 𝐴 by a cyclic subsemimodule has a projective 𝛿-

cover. 

      Now, similar to [9, Theorem 4.3], we give the following theorem. 
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Theorem 4.36: Let 𝐴 be a principally 𝛿-semiperfect semimodule. Then 

(1) 𝐴 is principally 𝛿-supplemented. 

(2) All factor semimodule of 𝐴 is principally 𝛿-semiperfect, henceforth any homomorphic 

image besides any direct summand of 𝐴 is principally 𝛿-semiperfect. 

 

Proof: Similar to the proof in the case of modules in [9, Theorem 4.3].  □ 

      Similar to [12, Theorem 3.20], we have the following theorem.   

 

Theorem 4.37: The next conditions are equivalent for a subtractive projective semimodule 𝐴.  

(1) 𝐴 is principally 𝛿-supplemented. 

(2) 𝐴 is principally 𝛿-lifting. 

(3) 𝐴 is principally 𝛿-semiperfect. 

 

Proof: (3) ⇒ (1) By Theorem 4.36. 

      (1) ⇒ (3) Let 𝑎 ∈ 𝐴. Using (1) there exists a subsemimodule 𝐵 with 𝐴 = 𝑅𝑎 + 𝐵 besides 

𝑅𝑎 ∩ 𝐵 ≪𝛿 𝐵. Let 𝑓: 𝐴 → 𝐴 𝑅𝑎⁄  defined by 𝑓(𝑦) = 𝑏 + 𝑅𝑎, where 𝑦 = 𝑟𝑎 + 𝑏 ∈ 𝐴 with 𝑟𝑎 ∈
𝑅𝑎, 𝑏 ∈ 𝐵, and 𝜋: 𝐴 → 𝐴 𝑅𝑎⁄  the natural epimorphism, (since 𝐴 is a subtractive semimodule 

we can say that 𝐴 𝑅𝑎⁄  is an 𝑅-semimodule [3, p. 165]). There exists 𝑔: 𝐴 → 𝐴 such that 𝑓𝑔 =
𝜋. Then 𝐴 = 𝑔(𝐴) + 𝑅𝑎 ∩ 𝐵. Since 𝑅𝑎 ∩ 𝐵 ≪𝛿 𝐵, 𝑅𝑎 ∩ 𝐵 ≪𝛿 𝐴. By Lemma 2.2, there exists 

a semisimple projective subsemimodule 𝑌 of 𝑅𝑎 ∩ 𝐵 such that 𝐴 = 𝑔(𝐴) ⊕ 𝑌 and so that 𝑔(𝐴) 

is projective. Hence 𝑔(𝐴) ≅ 𝐴 𝐾𝑒𝑟(𝑔)⁄  implies 𝐴 = 𝐾𝑒𝑟(𝑔) ⊕ 𝐶 for some subsemimodule C 

of 𝐴 and 𝐶 is projective. Let (𝑓𝑔)|𝐶  indicate the restriction of 𝑓𝑔 on 𝐶. Then 𝐾𝑒𝑟(𝑓𝑔)|𝐶 ≤

𝑅𝑎 ∩ 𝐵. So, 𝐾𝑒𝑟(𝑓𝑔)|𝐶 ≪𝛿 𝐶 and hence (𝑓𝑔)|𝐶 ∶ 𝐶 → 𝐴 𝑅𝑎⁄  is a projective 𝛿-cover of 𝐴.  

      (2) ⇔ (3) Similar to [9, Theorem 4.1].  □ 

 

4. Conclusions 

     In this paper, we have defined and studied principally supplemented (𝛿-supplemented), and 

principally lifting (𝛿-lifting) semimodules as generalizations of principally supplemented (𝛿-

supplemented), and principally lifting (𝛿-lifting) modules. We studied principally 

supplemented and principally lifting semimodules. We proved that if 𝐴 is an indecomposable 

semimodule, then A is principally lifting if and only if 𝐴 is principally supplemented if and only 

if 𝐴 is a principally hollow semimodule. Also, we proved that if 𝐴 is a subtractive projective 

semimodule, then 𝐴 is principally δ-supplemented if and only if 𝐴 is principally δ-lifting if and 

only if 𝐴 is principally 𝛿-semiperfect. 
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