Rahman et al.

Iraqi Journal of Science, 2024, Vol. 65, No. 2, pp: 954-962 DOI: 10.24996/ijs.2024.65.2.30

ISSN: 0067-2904

Weakly 2-Prime Sub-Modules

Mohammed Qader Rahman¹, Alaa A. Elewi², Mustafa Mohammed Hameed¹

¹*Republic of Iraq, Diyala Governorate, The General Directorate for Education of Diyala,* ²*Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq,*

Received: 20/2/2023 Accepted: 27/4/2023 Published: 29/2/2024

Abstract

Let R be a commutative ring containing a unit, and let M be a left R-module. We define a proper sub-module N of an R-module M to be a weakly 2-prime sub-module if whenever $0 \neq rm \in N, r \in R, m \in M$, then either $m \in N$ or $r^2 \in [N:M]$. This concept is an expansion of the idea of a weakly 2-prime ideal, where an ideal P of R is said to be a weakly 2-prime ideal if for all $a, b \in R, 0 \neq ab \in P$ implies $a^2 \in P$ or $b^2 \in P$. Several characteristics of sub-modules that are weakly 2-prime are taken into account.

Keywords: prime sub-module, weakly prime sub-module, 2-prime sub-module, weakly 2-prime sub-module, proper sub-module

المقاسات الجزئية الاولية الضعيفة من النمط -2

محمد قادر رحمان¹ , الاء عباس عليوي² , مصطفى محمد حميد¹ محافظة ديالى، المديرية العامة لتربية ديالى ²قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة

M لتكن R حلقه ابدالية ذا محايد وليكن M مقاسا ايسر على R . تعرف ان مقاسا جزئيا فعليا N في M
يكون اوليا ضعيفا من النمط 2 اذا كان لكل
$$m \in R, m \in R, m \in 0$$
 يؤدي الى or $r^2 \in m \in N$ يؤدي الى $0 \neq rm \in N, r \in R, m \in M$
[$N:M$] . في الحقيقة ان هذا المفهوم هو تعميم لمفهوم مثالي اولي ضعيف من النمط –2 , اذ ان مثاليا فعليا
P في R يسمى اوليا ضعيفا من النمط –2 اذا كان لكل $a, b \in R, 0 \neq ab \in P$ يؤدي الى $a^2 \in P$ او
P في R يسمى اوليا ضعيفا من النمط –2 اذا كان لكل $b \in R, 0 \neq ab \in R$ و تطيبت.
 $b^2 \in P$

1. Introduction:

Throughout this paper, R be a commutative ring with identity and M be a unity R-module. A sub-module N of M is called a prime sub-module if every time $r \in R, m \in M, rm \in N$, implies $m \in N$ or $r \in [N:M]$, where $[N:M] = \{r \in R, rM \subseteq N\}$, see [1] and [2]. The authors in [3] introduced 2-prime sub-module when $rm \in N, r \in R, m \in M$, either $m \in N$ or $r^2 \in [N:M]$, then N is a 2-pirme sub-module, where N is a generalization of prime. The term "weakly prime sub-module" was coined in 2007 by S.E. Atani and F. Farzalipour [4] and in 2009 by I. M. A. Hadi [5]. Keep in mind that if whenever $0 \neq rm \in N, r \in R, m \in M$, then either $m \in N$ or $r \in [N: M]$, implies N is a weakly prime sub-module of M. Every prime sub-module is also a weak prime sub-module, as should be evident.

In this paper, we introduced the idea of a weakly 2-prime sub-module. A suitable submodule N of an R-module M is weakly 2-prime if and only if for every $0 \neq rm \in N, r \in R, m \in M$, then either $m \in N$ or $r^2 \in [N:M]$. As a service to the academic community, we provide an R-sub-module M of type R that is weakly 2-prime. Therefore, $[N_{\overline{R}}:M]$ is a weakly 2-pirme ideal of \overline{R} , where $\overline{R} = R \mid annM$. In 1999, the quasi-prime sub-module was introduced and studied in [6] by Muntaha, anywhere a suitable sub-module if $r_1r_2 m \in N$, for $r_1, r_2 \in R, m \in M$ implies $r_1 m \in N$ or $r_2 m \in N$, then N of M is a quasi-prime sub-module of M. In addition, the idea of a weakly primary sub-module was developed by S.E. Atani and F. Farzalipour in [4]: a proper sub-module N of M is a primary sub-module if whenever $rm \in N, r \in R, m \in M$, then either $m \in N$ or $r^n \in [N:M]$. A valid sub-module N of M is a weakly primary sub-module.

2. Weakly 2-prime sub-modules

Here we present the idea of a weakly 2-prime sub-module as an extension of a 2-prime submodule, where a valid sub-module N of M is a 2-prime sub-module if whenever $rm \in N, r \in$ $R, m \in M$, then either $m \in N$ or $r^2 \in [N:M]$, and vice versa (see [3]).

Definition 2.1:

A proper sub-module N of an R-module M is a weakly 2-prime if, whenever, $0 \neq rm \in N, r \in R, m \in M$, then either $m \in N$ or $r^2 \in [N:M]$ holds.

Remarks and Examples 2.2:

1. Every 2-prime sub-module is weakly 2-prime sub-module.

Proof: It is clear.

2. The converse of (1) is not always true for example: The zero sub-module of the Z-module Z_4 is weakly 2-prime sub-module (since it is weakly prime sub-module [2]). However, it is a 2-prime sub-module, because $2.\overline{2} \in (\overline{0}), \overline{2} \notin (0)$ and $2^2 = 4 \notin [(0): Z_4]$.

3. Every weakly 2-prime ideal of R is a sub-module that is weakly 2-prime.

4. All weakly prime sub-modules are weakly 2-prime.

Proof:

Let there *N* be a weakly prime submodule of an *R*-module *M*, and let $0 \neq rm \in N$, where $r \in R, m \in M$. So, either $m \in N$ or $r \in [N:M]$. Thus either $m \in N$ or $r^2 \in [N:M]$. Therefore, *N* weakly 2-prime sub-module.

5. The convers of (4) is not always true for example: The sub-module $N = (\overline{4})$ of the Z-module Z_8 is weakly 2-prime sub-module (since it is 2- prime sub-module). But it is a weakly prime sub-module, since $2, \overline{2} \in (N)$, but $\overline{2} \notin (N)$ and $2 \notin [N: Z_8]$.

6. It's not necessary for a weakly 2-prime sub-module to be a quasi-prime, for example: a weakly 2-prime sub-module of the Z-module Z_{12} it is zero sub-modules. However, is not quasi-prime, because $(\overline{0}_{:z}\overline{3}) = 4Z$ is not the prime ideal of Z, (using [3]). Also, quasi-prime need not be a weakly 2-prime sub-module, for example, the Z-module $Z \oplus \overline{Z}$, $N = 2Z \oplus (0)$, N is a quasi-prime sub-module. But N is not a weakly 2-prime sub-module. Since $(0,0) \neq 2(3,0) \in N$ and $(3,0) \notin N$, $2^2 \notin [2Z \oplus (0)_{:z} Z \oplus Z]$.

7. Every weakly 2-prime sub-module is weakly primary sub-module.

Proof:

If *N* is a sub-module that is weakly 2-prime, and $0 \neq rm \in N$, where $r \in R, m \in M$ are real numbers. As a result, either $rm \in N$ or $r^2 \in [N:M]$. As a result, N is a weakly primary sub-module.

In general, the opposite of (7) can not be true, as the following demonstrates: let *M* be the *Z*-module Z_6 , $N = (\overline{0})$. Clearly, N is a weakly primary sub-module, but it is not a weakly 2-prime sub-module due to the fact that $2.\overline{3} \in (\overline{0})$, and $\overline{3} \notin (\overline{0}), 2^2 \notin [N_z Z_6]$.

Theorem 2.3:

Let N be a proper sub-module of an R –module M. Then the following statements are equivalent.

1. N is a sub-module that is a weakly 2-prime;

2. $r^2 \in [N_R: M], r \in R$ if and only if, for each $c \in M, c \notin N, r^2 \in [N_R: (c)]$;

3. $r^2 \in [N_R: M], r \in R$ if and only if, $r^2 \in [N_R: K]$, for any sub-module K of M such that, $N \subseteq K$.

Proof:

 $1 \Longrightarrow)2$ Let $c \in M/N$, if $r^2 \in [N_R: M]$, then $r^2 \in [N_R: (c)]$, therefore, $0 \neq r(rc) \in N$. It follows that either $rc \in N$ or $r^2 \in [N_R: M]$ holds if N is a sub-module that is a weakly 2-prime. Nothing can be done if $r^2 \in [N_R: M]$. If $0 \neq rc \in N$, where N is a weakly prime sub-module, and $c \in N$, then $r^2 \in [N_R: M]$, so the result is $r^2 \in [N_R: M]$. $2\Longrightarrow)3$ Clear.

3⇒)1 Let $0 \neq rm \in N$ and suppose $m \notin N$, where $r \in R, m \in M$. But K = N + (m), so $N \subseteq K$, then $r^2K = r^2(N + \langle m \rangle) = r^2N + r^2\langle m \rangle \subseteq N$. Which means, $r^2 \in [N_R: K]$. Therefore, N is a weakly 2-prime sub-module of M if and only if (by condition 3) $r^2 \in [N_R: M]$.

Remark 2.4:

It is generally known that $[N_R: M]$, is the prime ideal of an R-module if and only if N is a prime sub-module of M. However, the (weak) a logos of this statement is not always holding true for example: The zero sub-module of the Z-module Z_6 is weakly 2-prime sub-module, but $(\overline{0}_Z: Z_6) = 6Z$ not weakly 2-prime ideal, since $2.\overline{3} \in 6Z$, but 2^2 and $3^2 \notin 6Z$.

Recall that an *R*-module *M* is called a faithful module if ann(M) = 0, where $ann(M) = \{r \in R \mid rx = 0, \forall x \in M\}$, see [7].

The last remark satisfy under certain condition as the following proposition shows:

Proposition 2.5:

If N is a weakly 2-prime sub-module of a faithful R-module M, then $[N_R: M]$ is a weakly 2-prime ideal of R.

Proof:

Let $a, b \in R$, if $0 \neq ab \in [N_R: M]$, then $abM \subseteq N$. Sinec, M is faithful, $abM \neq 0$ hence $0 \neq abM \subseteq N$, so by Theorem (2.3), either $bM \subseteq N$ or $a^2 \in [N_R: M]$, that is either $a^2 \in [N_R: M]$ or $b^2 \in [N_R: M]$. Thus $[N_R: M]$ is a weakly 2-pirme ideal of R.

Remark 2.6:

As the following example shows, the opposite of the statement (2.4) is not always true: The Z-module $Z \oplus \overline{Z}$, $N = (0) \oplus 2Z$, then $[N_R: M] = (0)$, which is a weakly 2-pirme ideal of R. Since $(0,0) \neq 2(0,3) \in N$ and $(0,3) \notin N$, $2^2 \notin [(0) \oplus 2Z_{Z} Z \oplus Z]$.

Proposition 2.7:

Let N be a sub-module of M over a ring R that is a proper sub-module. If for each $r \in R$, $[N_R:(r)]$ is a sub-module of M that is weakly 2-prime, then N is a sub-module of M that is weakly 2-prime

Proof:

⇒) If $0 \neq am \in [N_M: (r)]$, where $a \in R, m \in R$. Then $0 \neq arm \in N$. Since N is a submodule of M that is weakly 2-prime, we get either $mr \in N$ or $a^2 \in [N_R: M]$. If $mr \in N$, then $m \in [N_M: (r)]$ and if $a^2 \in [N_R: M]$, hence $a^2Mr \subseteq N$. So $a^2Mr \subseteq Nr \subseteq N$. This implies that $a^2Mr \subseteq N$. So $a^2M \subseteq [[N_R: (r)]_R: M]$. Thus $[N_R: (r)]$ is a sub-module of M that is weakly 2-prime, for every $r \in R$.

⇐) Let $0 \neq am \in N$, where $a \in R, m \in R$, so $0 \neq amr \in Nr \subseteq N$ and thus $0 \neq amr \in N$. Therefore $0 \neq am \in [N_M: (r)]$. But $[N_M: (r)]$ is a weakly 2-prime sub-module, we get either $m \in [N_M: (r)]$ or $a^2 \in [[N_R: (r)]_R: M]$. If $m \in [N_M: (r)]$, take r = 1. Then

 $m \in N$. And if $a^2 \in [[N_R:(r)]_R:M] = [a^2:M]$. Therefore N is a sub-module of M that is weakly 2-prime.

Using Theorem 2.3, we get the following conclusion:

Proposition 2.8:

N is a weakly 2-prime R-sub-module of M only if and only if N is a weakly 2-prime R/I-sub-module of M, where $I \subseteq annN$.

Proof:

⇒) If $(r + I) \in R/I$ and $m \in M$ and let $I \neq (r + I)x \in N$, so $I \neq rm + I \in N$, i.e. $rm \notin I$. Thus $0 \neq rm \in N$. However, N is a R-sub-module that is weakly 2-prime, therefore, $m \in N$ or $r^2 \in [N_R:M]$, must hold $r^2M \subseteq N$ and hence $(r^2 + I)M \subseteq N$ (given that $I \subseteq annN$). Therefore, $(r^2 + I) \in [N_{R/I}:M]$, i.e. N is a weakly 2-prime R/I-submodule. ⇐) Clear

Correct standard Weakly 2-prime ideal *P* of *R* is an ideal such that for any *a*,*b* in *R*, $0 \neq ab \in P$ implies $a^2 \in P$ or $b^2 \in P$, [8].

Proposition 2.9:

For every *R*-module *M*, if *N* is a weakly 2-prime *R*-sub-module of M, then $[N_{\overline{R}}: M]$ is a weakly 2-prime ideal of \overline{R} , where $\overline{R} = R/annM$.

Proof:

Where *N* is a weakly 2-prime *R*-sub-module, this implies that *N* is a weakly 2-prime \overline{R} -submodule, by Proposition 2.8. However, because R is a faithful, we can prove that $[N_{\overline{R}}:M]$ is a weakly 2-pirme ideal of \overline{R} by Proposition 2.5.

Recall that R-module M is a multiplication module if N=IM for any ideal I of R, see [9].

In the class of finitely generated of faithful and multiplication modules, we have the following:

Theorem 2.10:

Let M be a faithful finitely generated multiplication R-module, and let N be a proper submodule of M. Thus, the following statements are equivalent.

1. *N* is a sub-module of *M* that is a weakly 2-prime;

2. The ideal $[N_R: M]$ of *R* is a weakly 2-prime ideal;

3. For a weakly 2-prime ideal *I* of *R*, *N*=*IM*.

Proof:

1 ⇒)2 By Proposition 2.5. 2⇒)3 As $N = [N_R: M]M$ where $[N_R: M]$ is a weakly 2-prime ideal of *R*, this is self-evident. $3 \Longrightarrow$)1 By (3) N = IM and *I* is a weakly 2-prime ideal of *R*. Since $N = [N_R: M]M$, and $I = [N_R: M]$, follows from [9, Theorem 3.1], *M* is a finitely produced faithful multiplication *R*-module. Now, set $r \in R$ and $m \in M$ such that $0 \neq rm \in N$. But $(m) \leq M$, so that $(0) \neq rKM \subseteq N = [N_R: M]M$ and by [9, Theorem 3.1] $rK \subseteq [N_R: M]$. Moreover, $rK \neq (0)$. But $[N_R: M] = I$ which is a weakly 2-prime ideal, so either $r^2 \in [N_R: M]$ or $K \subseteq [N_R: M]$, that is either $r^2 \in [N_R: M]$ or $(m) = KM \subseteq N$. This means either $r^2 \in [N_R: M]$ or $m \in N$. As a result, *N* is a sub-module of *M* that is a weakly 2-prime.

Proposition 2.11:

Consider the sub-module N of an R-module M that is a weakly 2-prime then $[N_R: M]N = 0$ if and only if N is not a 2-prime.

Proof:

Assuming that $[N_R: M]N \neq 0$, we shall demonstrate that N is a weakly 2-prime sub-module. Let $rm \in N$. Suppose $rm \neq 0$, since N is a weakly 2-prime sub-module, so either $m \in N$ or $r^2 \in [N_R: M]$. Now, suppose rm = 0, first suppose $rN \neq 0$, so there exists $t \in N$, $0 \neq rt \in N$. Hence $0 \neq rt = r(m + t) \in N$. In other words, either $m + t \in N$ or $r^2 \in [N_R: M]$. Hence either $m \in N$ or $r^2 \in [N_R: M]$. Now, we can assume that rN = 0 and $[N_R: M]m = 0$. Since $[N_R: M]N \neq 0$, there exists $s \in [N_R: M]$ and $t \in N$ such that $0 \neq st \in N$. Then (r + s)(m + t) = rm + sm + rt + st = 0 + 0 + 0 + st. That is

 $0 \neq (r+s)(m+t) = st \in N$. But N is a weakly 2-prime sub-module, so either $m+t \in N$ or $(r+s)^2 \in [N_R:M]$. Since $m \in N$ or $r^2 \in [N_R:M]$ then N is a 2-prime sub-module.

3. Some properties of weakly 2-prime sub-modules

In this section, we will give some basic results and properties for weakly 2-prime submodules.

Proposition 3.1:

Let $f: M \to M'$ be an *R*-epimorphism, and *N* is a weakly 2-prime sub-module of *M* containing kerf. Then f(N) is a weakly 2-prime sub-module of M'. **Proof:**

Let $0 \neq rm \in f(N)$, for same $r \in R, m \in M'$. Therefore, there is $x \in N$, the likes of which $0 \neq rm = f(x)$, since f is an R-epimorphism, we can write $m = f(x_1)$, for some $x_1 \in M$. Thus $f(rx_1 - x) = 0$ and so $rx_1 - x \in kerf \subseteq N$, we have $0 \neq rx_1 \in N$. If $x_1 \in N$ or $r^2 \in [N_R: M]$, then $m = f(x_1) \in f(N)$ or $r^2 \in [f(N)_R: M']$, because N is a sub-module of M that is weakly 2-prime. Therefore, f(N) is a sub-module of M' that is weakly 2-prime.

Proposition 3.2:

Let $f: M \to M'$ be an *R*-monomorphism, and let N' be a submodule of M' that is weakly 2-prime. Then $f^{-1}(N')$ is a sub-module of M that is weakly 2-prime. **Proof:**

Let $0 \neq rm \in f^{-1}(N')$, for some $r \in R, m \in M$. Therefore, there is $x \in N$, such that $0 \neq rm = f(x)$, since f is an R-monomorphism, then $0 \neq f(rx_1 - x) \subseteq N'$ for some $x_1 \in M$. Thus $0 \neq f(r)f(x_1 - x) \in N'$. Since N' is a submodule of M' that is weakly 2-prime, we get either $f(x_1 - x) \in N'$ or $f(r)^2 \in [N'_R:M']$ and thus yields $m = x_1 - x \in f^{-1}(N')$ or $r^2 \in [f^{-1}(N')_R:M]$. Accordingly, $f^{-1}(N')$ is a sub-module of M that is weakly 2-prime. **Proposition 3.3:**

If N is a submodule of M that is weakly 2-prime and contains another submodule of M, K, then N/K is a sub-module of M/K that is weakly 2-prime.

Proof:

Consider the epimorphism $\pi: M \to M/K$, which is define as $\pi(m) = m + K$, for

every $m \in M$. Also, keep in mind that $Ker\pi = K \subseteq N$. By Proposition 3.1 N/K is a submodule of M/K that is a weakly 2-prime.

Proposition 3.4:

Let $K \subseteq N$ be two are sub-modules of M. If N/K is a sub-module of M/K that is weakly 2-prime and K is a 2-prime sub-module of M. Then N is a 2-prime sub-module of M. **Proof:**

Let $rm \in N$ for some $r \in R, m \in M$. If $rm \in K$, it follows that $m \in K$ or $r^2 \in [K_R: M]$. Since K is a sub-module of M with 2-prime. Now let's say that $rm \notin K$, this implies that $0_{M/K} \neq (r + K)(m + K) \in N/K$. As N/K is a sub-module of M/K that is a weakly 2-prime, we get either $(m + K) \in N/K$ or $(r + K)^2 = r^2 + K \in [N/K_R: M/K]$, which implies that $m \in N$ or $r^2 \in [N_R: M]$. As a result, N is a sub-module of M which is a 2-prime.

Proposition 3.5:

Let $K \subseteq N$ be two are sub-modules of M. If N/K is a sub-module of M/K that is a weakly 2-prime, and K is a sub-module of M that is a weakly 2-prime. Then N is a sub-module of M which is a weakly 2-prime.

Proof:

It is similar to Proposition 3.4.

Proposition 3.6:

Let *N* be a sub-module of *M* that is a weakly 2-prime, and let *M*'be a subring of *M* with $M' \subseteq N$. Then $N \cap M'$ is a sub-module of M' that is a weakly 2-prime.

Proof:

Consider the monomorphism $i: M' \to M$, defined as i(m) = m, for any $m \in M'$. Since N is a submodule of M that is a weakly 2-prime, by Proposition 3.2 $i(N) = N \cap M'$ is a sub-module of M' that is weakly 2-prime.

Proposition 3.7:

Let *M* be an *R*-module. A sub-module *N* of *M* is a weakly 2-prime if and only if $[N_R: I]$ is a weakly 2-prime, for every ideal *I* of *R*.

Proof:

Let $0 \neq rm \in [N_M: I]$, where $r \in R, m \in M$ and *I* be any ideal of *R*. Then $0 \neq arm \in N$, for all $a \in I$. However, as *N* is a weakly 2-prime sub-module of *M*, we get $am \in N$ or $r^2 \in [N_R: M]$. Therefore, either $m \in [N_R: I]$ or $r^2M \subseteq N$. But $N \subseteq [N_R: I]$ and hence $r^2M \subseteq [N_R: I]$. It is follows that $r^2 \in [[N_R: I]_R: M]$. And hence for any ideal *I* of *R*, $[N_R: I]$ is a weakly 2-prime sub-module.

Proposition 3.8:

Let N be a weakly 2-prime R-sub-module of M, and S be a multiplicative subset of R with $[N_R: M] \cap S = \emptyset$. Then N_s is a weakly 2-prime R_s -sub-module of M_s .

Proof:

Let $0 \neq \frac{a}{b} \frac{m}{c} \in N_S$, where $\frac{a}{b} \in R_S$, $\frac{m}{c} \in M_S$. Hence $0 \neq \frac{am}{bc} \in N_S$ and so there exists $y \in N \in$ and $d \in S$ such that $\frac{am}{bc} = \frac{y}{d}$ and suggests the presence of $t \in S$ so tadm = tbcy. On the other hand, $\frac{am}{bc} \neq \frac{0}{1} = 0_S$, which implies that $fam \neq 0$ for all $f \in S$. Hence $0 \neq tadm \in N$. Nonetheless, N is an R-sub-module of M that is a weakly 2-prime, we get either $tdm \in N$ or

 $a^2 \in [N_R: M]$ and hence either $\frac{tdm}{tdc} \in N_S$ or $\frac{a^2}{b^2} \in [N_R: M]_S$. Because $[N_R: M]_S \subseteq [N_{S_{R_S}}: M_S]$, we have either $\frac{m}{c} \in N_S$ or $\frac{a^2}{b^2} \in [N_{S_{R_S}}: M_S]$. As a result, N_s is a R_s -submodule of M_s that is a weakly 2-prime.

Theorem 3.9:

Let us assume that *A* and *B* are two different modules, and that *N* is a valid sub-module of *M*. Then, $W = N \bigoplus B$ is a sub-module of $M = A \bigoplus B$ that is weakly 2-prime if and only if *N* is a sub-module of *A* that is weakly 2-prime, and for $r \in R, m \in A$ with $rm = 0, m \notin N, r^2 \notin [N_R:A]$.

Proof:

⇒) Let $m \in A, r \in R$, such that $0 \neq rm \in N$. Then, $(0,0) \neq r(m,0) \in W$. However, W is a sub-module that is weakly 2-prime. We get either $(m,0) \in W$ or $r^2 \in [W_R:M]$. Thus either $m \in N$ or $r^2 \in [N_R:M]$, so that N is a sub-module that is weakly 2-prime. Now if $r \in R, m \in A$ such that $rm = 0, m \notin N, r^2 \notin [N_R:A]$. Assume that $r \notin annB$, so there exists $a \in B$ such that $ra \neq 0$. Thus $r(m, a) = (rm, ra) = (0, ra) \neq (0, 0)$. Hence $(0,0) \neq r(m,a) \in N \oplus B$ =W. Since W is a sub-module weakly 2-prime, we get either $(m,a) \in N \oplus B$ or $r^2 \in [N \oplus B_R: A \oplus B]$. Thus either $m \in N$ or $r^2 \in [N_R:A]$. Which is a contradiction with hypothesis.

⇒) Let $r \in R$, $(m, a) \in M$. Assume $(0,0) \neq r(m, a) \in N \oplus B$, so if $rm \neq 0$. Thus either $m \in N$ or $r^2 \in [N_R:A]$, since N is a 2-prime sub-module, it is weakly, we obtain either $(m, a) \in N \oplus B$ or $r^2 \in [N \oplus B_R: A \oplus B]$. If rm = 0. Suppose that $m \notin N$, $r^2 \notin [N_R:A]$, then by hypothesis $r \in annB$ and so r(m, a) = (0,0). That is an apparent contradiction. Thus either $m \in N$, $r^2 \in [N_R:A]$ and hence either $(m, a) \in N \oplus B$ or $r^2 \in [N \oplus B_R: A \oplus B]$. Therefore, $W = N \oplus B$ is a sub-module of $M = A \oplus B$ that is weakly 2-prime

Theorem 3.10:

Let us assume that *A* and *B* are two different modules, and that *N* is a valid sub-module of *M*. Then, $W = N \bigoplus B$ is a sub-module of $M = A \bigoplus B$ that is weakly 2-prime if and only if *N* is a sub-module of *A* that is weakly 2-prime.

Corollary 3.11:

Let A, B be are two modules. If (0) is a sub-module of A with 2-prime, then (0) \oplus B is a sub-module of $M = A \oplus B$ that is weakly 2-prime.

Proof:

Let $r \in R$, and $(a, b) \in A \oplus B$, such that If $(0,0) \neq (a, b) \in (0) \oplus B$, then ra = 0 and $rb \in B$. Since (0) is a 2-prime sub-module of *A*, then either a = 0 or $r^2 \in annA$.

Thus either $(a, b) = (0, b) \in (0) \oplus B$ or $r^2 \in [(0) \oplus B_R : A \oplus B]$. Therefore $(0) \oplus B$ is a sub-module of $M = A \oplus B$ that is weakly 2-prime.

Proposition 3.12:

Let *A* and *B* be two different modules and let $N = U \bigoplus W$ be a weakly 2-prime sub-module in $M = A \bigoplus B$, then U, W are sub-modules of *A* and *B* that are weakly 2-prime.

Proof:

The proof is a straight forward, so it is omitted.

In general, the opposite of claim (3.12) is not true, as the following example shows: In the Z-modale 0, 2Z (0) are weakly 2-prime in Z-module Z (since there are weakly 2-prime in Z-

module *Z* and by commenting and illustrating (2.2.1), but (0) $\oplus 2Z$ is not weakly 2-pirme submodule in the *Z*-module $Z \oplus Z$, since $(0,0) \neq 2(1,0) \in (0) \oplus 2Z$, but $(1,0) \notin (0) \oplus 2Z$ and $2^2 \in [(0) \oplus 2Z_R : Z \oplus Z] = (0)$.

As a generalization of Cohen theorem, the following was given in [10].

Let M be a finitely generated R-module, then M is noetherian if every prime sub-module is finitely generated.

The following holds because every weakly prime is a sub-module of a weakly 2-prime.

Proposition 3.13:

Let M be a finitely generated, then M is a noetherian if every weakly 2-prime is finitely generated.

Remark 3.14:

The requirement that *M* is a finitely generated, cannot be omitted from the previous Proposition 3.13, as the following example shows: In the *Z*-module $Z_{P\infty}$ is not finitely generated, also it is not noetherian. The zero sub-module which is clearly finitely generated is the only weakly 2-prime sub-module of $Z_{P\infty}$, $G = \langle \frac{1}{pi} + Z \rangle$ for some $i \in Z_+$ and $0 \neq (\frac{1}{pi+1} + Z) \in G$, but $p \in [G: Z_{P\infty}] = 0$, so $p^2 \notin [G: Z_{P\infty}]$, $\frac{1}{pi+1} + Z \notin G$, that is *G* is not weakly 2-prime sub-module.

In the following three results, we will assume that $R = R_1 \times R_2$ and $M = M_1 \times M_2$ be the *R*-module

Proposition 3.15:

If N is a proper R_1 -sub-module of M_1 and M_2 is an R_2 -module, the following statements are equivalent:

- 1. *N* is a 2-pirme R_1 -sub-module of M_1 ;
- 2. $N \times M_2$ is a 2-prime R-sub-module of $M = M_1 \times M_2$.
- 3. $N \times M_2$ is a weakly 2-prime R-sub-module of $M = M_1 \times M_2$

Proof:

 $1 \Longrightarrow)2$ Let $(r_1, r_2) \in R$, $(m_1, m_2) \in M_1 \times M_2$ such that $(r_1, r_2)(m_1, m_2) \in N \times M_2$, then $r_1m_1 \in N$ and $r_2m_2 \in M_2$. But $r_1m_1 \in N$ and N is what's known as a 2-prime R-submodule, so either $m_1 \in N$ or $r_1^2 \in [N_R: M_1]$. Hence either $(m_1, m_2) \in N \times M_2$ or $(r_1^2, r_2)(1, r_2) \in [N \times M_2: M_1 \times M_2], (r_1^2, r_2^2) \in [N \times M_2: M_1 \times M_2]$. Thus $N \times M_2$ constitutes a 2-prime R-sub-module of the module M. $2 \Longrightarrow)3$ It is clear.

 $3 \Longrightarrow 1$ To show that *N* is a 2-pirme R_1 -sub-module of M_1 . Let $r \in R_1$, $m \in M_1$ such that $rm \in N$. Thus for each $w \in M_2$, $a \ne 0$, $(0,0) \ne (r,1)(m,w) \in N \times M_2$. However, $N \times M_2$ is a *R*-sub-module of *M* that is a weakly 2-prime, so either $(r^2, 1) \in [N \times M_{2_R}: M_1 \times M_2]$ or $(m, w) \in N \times M_2$ and therefore either $r^2 \in [N_R: M_1]$ or $m \in N$, that is *N* is a 2-prime R_1 -sub-module of M_1 .

To a similar extent, we have

Proposition 3.16:

If N is a proper R_2 -sub-module of M_2 , the following statements are similar.

- 1. *N* is a 2-pirme R_2 -sub-module of M_2 .
- 2. $M_1 \times N$ is a 2-prime R-sub-module of $M = M_1 \times M_2$.
- 3. $M_1 \times N$ is a weakly 2-prime R-sub-module of $M = M_1 \times M_2$.

Proposition 3.17:

Let M_1, M_2 represent the R_1 and R_2 -modules respectively. If $N = N_1 \times N_2$ is a weakly 2-prime R-sub-module of $M = M_1 \times M_2$, then either N = 0 or N is a 2-prime R-sub-module **Proof:**

Assume $N \neq 0$, so either $N_1 \neq 0$ or $N_2 \neq 0$. Suppose that $N_2 \neq 0$, hence there exists $a \in N_2, a \neq 0$. Let $r \in [N_{1_{R_1}}: M_1]$ and let $m \in M_1$, then $(0,0) \neq (r,1)(m,a) = (rm,a) \in N_1 \times N_2 = N$. Since N is a weakly 2-prime R-sub-module of M, we get either $(m,a) \in N$ or $(r^2, 1) \in [N_1 \times N_2: M_1 \times M_2]$. Hence if $(m, a) \in N$, then $m \in N_1$ and so $M_1 = N_1$. Which implies that $N = M_1 \times N_2$. If $(r^2, 1) \in [N_1 \times N_2: M_1 \times M_2]$, then $M_2 = N_2$. Which implies that $N = N_1 \times M_2$. Hence by propodition (3.15), (3.16), N is a 2-prime R-sub-module of M.

Conclusions:

In this work, a generalization of a 2-prime sub-module has been introduced which is called a weakly 2-prime sub-module. We also show that if every sub-module of an R-module M is 2-prime sub-module, then M is called a weakly 2-prime sub-module. Moreover, many results and properties of this concept are given and discussed.

References

- [1] S. A. Saymach, "On prime submodules", *University Noc. Tucumare Ser. A*, vol. 29, pp.121-136, 1979.
- [2] C. P. Lu, "Prime submodule of modules", Comment. Math. Univ. St, Paul, vol.33, pp. 61-69, 1984.
- [3] F. D. Jasem and A. A. Elewi, "2-prime submodule of modules," *Iraqi* journal of science, vol. 36, no. 8, pp. 3605-3611, 2022.
- [4] S. E. Atani and F. Farzalipour, Georgien Mathematical Journal, vol. 12, pp.1-7, 2005.
- [5] I. M. A. Hadi, "On weakly prime submodules" *Ibn AL-Haitham J. For Pure&Appl. Sci*, vol. 22, no. 3, 2009.
- [6] M. A. Hassin, "Quasi-prime modules and Quasi-prime submodules" M.Sc Thesis, Univ. of Baghdad, 1999.
- [7] F. Kasch, "Modules and Rings" Acad. Press, London, 1982.
- [8] S. Koc, "On weakly 2-prime ideals in commutative rings" *Communications in Algebra*, Dol: 10.1080|00927872.1897133, 2021.
- [9] Z. A. El-Bast and P. F. Smith, "Multipliction modules" Comm. In algebra, 16:755-779, 1988.
- [10] E. A. Athab, "Prime and semiprime submodules" MS.c Thesis, Univ. of Baghdad 1996.