

ISSN: 0067-2904

Weakly 2-Prime Sub-Modules

Mohammed Qader Rahman ${ }^{1}$, Alaa A. Elewi ${ }^{\mathbf{2}}$, Mustafa Mohammed Hameed ${ }^{\mathbf{1}}$
${ }^{1}$ Republic of Iraq, Diyala Governorate, The General Directorate for Education of Diyala,
${ }^{2}$ Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq,

Received: 20/2/2023 Accepted: 27/4/2023 Published: 29/2/2024

Abstract

Let R be a commutative ring containing a unit, and let M be a left R -module. We define a proper sub-module N of an R -module M to be a weakly 2-prime sub-module if whenever $0 \neq r m \in N, r \in R, m \in M$, then either $m \in N$ or $r^{2} \in[N: M]$. This concept is an expansion of the idea of a weakly 2 -prime ideal, where an ideal P of R is said to be a weakly 2-prime ideal if for all $a, b \in R, 0 \neq a b \in P$ implies $a^{2} \in P$ or $b^{2} \in P$. Several characteristics of sub-modules that are weakly 2-prime are taken into account.

Keywords: prime sub-module, weakly prime sub-module, 2-prime sub-module, weakly 2 -prime sub-module, proper sub-module
المقاسات الجزئية الاولية الضعيفة من النمط -2

$$
\begin{gathered}
\text { 2ـ محافظة دياللى، المديريـة العامة لتربية دياللى الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق }
\end{gathered}
$$

$$
\begin{aligned}
& \text { الخلاصة }
\end{aligned}
$$

[N: M] . في الحقيقة ان هذا المفهوم هو تعميم لمفهوم مثالي اولي ضعيف من النمط -2 , اذ اذ ان مثاليا فعليا

1. Introduction:

Throughout this paper, R be a commutative ring with identity and M be a unity R-module. A sub-module N of M is called a prime sub-module if every time $r \in R, m \in M, r m \in N$, implies $m \in N$ or $r \in[N: M$], where $[N: M]=\{r \in R, \quad r M \subseteq N\}$, see [1] and [2]. The authors in [3] introduced 2-prime sub-module when $r m \in N, r \in R, m \in M$, either $m \in N$ or $r^{2} \in[N: M]$, then N is a 2-pirme sub-module, where N is a generalization of prime. The term "weakly prime sub-module" was coined in 2007 by S.E. Atani and F. Farzalipour [4] and in 2009 by I. M. A. Hadi [5]. Keep in mind that if whenever $0 \neq r m \in N, r \in R, m \in M$, then
either $m \in N$ or $r \in[N: M]$, implies N is a weakly prime sub-module of M. Every prime submodule is also a weak prime sub-module, as should be evident.

In this paper, we introduced the idea of a weakly 2 -prime sub-module. A suitable submodule N of an R-module M is weakly 2-prime if and only if for every $0 \neq r m \in N, r \in R, m \in$ M, then either $m \in N$ or $r^{2} \in[N: M]$. As a service to the academic community, we provide an R-sub-module M of type R that is weakly 2-prime. Therefore, $\left[N_{\bar{R}}: M\right.$] is a weakly 2-pirme ideal of \bar{R}, where $\bar{R}=R \mid a n n M$. In 1999, the quasi-prime sub-module was introduced and studied in [6] by Muntaha, anywhere a suitable sub-module if $r_{1} r_{2} m \in N$, for $r_{1}, r_{2} \in R, m \in M$ implies $r_{1} m \in N$ or $r_{2} m \in N$, then N of M is a quasi-prime sub-module of M . In addition, the idea of a weakly primary sub-module was developed by S.E. Atani and F. Farzalipour in [4]: a proper sub-module N of M is a primary sub-module if whenever $r m \in N, r \in R, m \in M$, then either $m \in N$ or $r^{n} \in[N: M]$. A valid sub-module N of M is a weakly primary sub-module.

2. Weakly 2-prime sub-modules

Here we present the idea of a weakly 2-prime sub-module as an extension of a 2-prime submodule, where a valid sub-module N of M is a 2-prime sub-module if whenever $r m \in N, r \in$ $R, m \in M$, then either $m \in N$ or $r^{2} \in[N: M]$, and vice versa (see [3]).

Definition 2.1:

A proper sub-module N of an R-module M is a weakly 2-prime if, whenever, $0 \neq r m \in$ $N, r \in R, m \in M$, then either $m \in N$ or $r^{2} \in[N: M]$ holds.

Remarks and Examples 2.2:

1. Every 2-prime sub-module is weakly 2 -prime sub-module.

Proof: It is clear.
2. The converse of (1) is not always true for example: The zero sub-module of the Z-module Z_{4} is weakly 2-prime sub-module (since it is weakly prime sub-module [2]). However, it is a 2prime sub-module, because $2 . \overline{2} \in(\overline{0}), \overline{2} \notin(0)$ and $2^{2}=4 \notin\left[(0): Z_{4}\right]$.
3. Every weakly 2-prime ideal of R is a sub-module that is weakly 2 -prime.
4. All weakly prime sub-modules are weakly 2-prime.

Proof:

Let there N be a weakly prime submodule of an R-module M, and let $0 \neq r m \in N$, where $r \in$ $R, m \in M$. So, either $m \in N$ or $r \in[N: M]$. Thus either $m \in N$ or $r^{2} \in[N: M]$. Therefore, N weakly 2-prime sub-module.
5. The convers of (4) is not always true for example: The sub-module $N=(\overline{4})$ of the Z-module Z_{8} is weakly 2 -prime sub-module (since it is 2 - prime sub-module). But it is a weakly prime sub-module, since $2 . \overline{2} \in(N)$, but $\overline{2} \notin(N)$ and $2 \notin\left[N: Z_{8}\right]$.
6. It's not necessary for a weakly 2-prime sub-module to be a quasi-prime, for example: a weakly 2-prime sub-module of the Z-module Z_{12} it is zero sub-modules. However, is not quasiprime, because $\left(\overline{0}:_{z} \overline{3}\right)=4 Z$ is not the prime ideal of Z, (using [3]). Also, quasi-prime need not be a weakly 2-prime sub-module, for example, the Z-module $Z \oplus \bar{Z}, N=2 Z \oplus(0), N$ is a quasiprime sub-module. But N is not a weakly 2 -prime sub-module. Since $(0,0) \neq 2(3,0) \in$ N and $(3,0) \notin N, 2^{2} \notin[2 Z \oplus(0): Z Z \oplus Z]$.
7. Every weakly 2 -prime sub-module is weakly primary sub-module.

Proof:

If N is a sub-module that is weakly 2-prime, and $0 \neq r m \in N$, where $r \in R, m \in M$ are real numbers. As a result, either $r m \in N$ or $r^{2} \in[N: M]$.
As a result, N is a weakly primary sub-module.
In general, the opposite of (7) can not be true, as the following demonstrates: let M be the Z-module $Z_{6}, N=(\overline{0})$. Clearly, N is a weakly primary sub-module, but it is not a weakly 2 prime sub-module due to the fact that $2 . \overline{3} \in(\overline{0})$, and $\overline{3} \notin(\overline{0}), 2^{2} \notin\left[N:_{z} Z_{6}\right]$.

Theorem 2.3:

Let N be a proper sub-module of an R-module M. Then the following statements are equivalent.

1. N is a sub-module that is a weakly 2 -prime;
2. $r^{2} \in\left[N_{R}: M\right], r \in R$ if and only if, for each $c \in M, c \notin N, r^{2} \in\left[N_{R}:(c)\right]$;
3. $r^{2} \in\left[N_{R}: M\right], r \in R$ if and only if, $r^{2} \in\left[N_{R}: K\right]$, for any sub-module K of M such that, $N \subseteq$ K.

Proof:

$1 \Rightarrow) 2$ Let $c \in M / N$, if $r^{2} \in\left[N_{R}: M\right]$, then $r^{2} \in\left[N_{R}:(c)\right]$, therefore, $0 \neq r(r c) \in N$. It follows that either $r c \in N$ or $r^{2} \in\left[N_{R}: M\right]$ holds if N is a sub-module that is a weakly 2-prime. Nothing can be done if $r^{2} \in\left[N_{R}: M\right]$. If $0 \neq r c \in N$, where N is a weakly prime sub-module, and $c \in N$, then $r^{2} \in\left[N_{R}: M\right]$, so the result is $r^{2} \in\left[N_{R}: M\right]$.
$2 \Rightarrow) 3$ Clear.
$3 \Rightarrow) 1$ Let $0 \neq r m \in N$ and suppose $m \notin N$, where $r \in R, m \in M$. But $K=N+(m)$, so $N \subseteq$ K, then $r^{2} K=r^{2}(N+\langle m\rangle)=r^{2} N+r^{2}\langle m\rangle \subseteq N$. Which means, $r^{2} \in\left[N_{R}: K\right]$. Therefore, N is a weakly 2-prime sub-module of M if and only if (by condition 3) $r^{2} \in\left[N_{R}: M\right]$.

Remark 2.4:

It is generally known that $\left[N_{R}: M\right.$], is the prime ideal of an R -module if and only if N is a prime sub-module of M. However, the (weak) a logos of this statement is not always holding true for example: The zero sub-module of the Z-module Z_{6} is weakly 2 -prime sub-module, but $\left(\overline{0}_{Z}: Z_{6}\right)=6 Z$ not weakly 2-prime ideal, since $2 . \overline{3} \in 6 Z$, but 2^{2} and $3^{2} \notin 6 Z$.

Recall that an R-module M is called a faithful module ifann $(M)=0$, where $\operatorname{ann}(M)=\{r \in R \mid r x=0, \quad \forall x \in M\}$, see [7].

The last remark satisfy under certain condition as the following proposition shows:

Proposition 2.5:

If N is a weakly 2 -prime sub-module of a faithful R-module M, then $\left[N_{R}: M\right.$] is a weakly 2 prime ideal of R.

Proof:

Let $a, b \in R$, if $0 \neq a b \in\left[N_{R}: M\right]$, then $a b M \subseteq N$. Sinec, M is faithful, $a b M \neq 0$ hence $0 \neq$ $a b M \subseteq N$, so by Theorem (2.3), either $b M \subseteq N$ or $a^{2} \in\left[N_{R}: M\right]$, that is either $a^{2} \in\left[N_{R}: M\right]$ or $b^{2} \in\left[N_{R}: M\right]$. Thus [$N_{R}: M$] is a weakly 2-pirme ideal of R .

Remark 2.6:

As the following example shows, the opposite of the statement (2.4) is not always true: The Z-module $Z \oplus \bar{Z}, N=(0) \oplus 2 Z$, then $\left[N_{R}: M\right]=(0)$, which is a weakly 2-pirme ideal of R . Since $(0,0) \neq 2(0,3) \in N$ and $(0,3) \notin N, 2^{2} \notin\left[(0) \oplus 2 Z:_{Z} Z \oplus Z\right]$.

Proposition 2.7:

Let N be a sub-module of M over a ring R that is a proper sub-module. If for each $r \in R$, [$N_{R}:(r)$] is a sub-module of M that is weakly 2 -prime, then N is a sub-module of M that is weakly 2-prime

Proof:

\Rightarrow) If $0 \neq a m \in\left[N_{M}:(r)\right]$, where $a \in R, m \in R$. Then $0 \neq \operatorname{arm} \in N$. Since N is a submodule of M that is weakly 2-prime, we get either $m r \in N$ or $a^{2} \in\left[N_{R}: M\right]$. If $m r \in N$, then $m \in\left[N_{M}:(r)\right]$ and if $a^{2} \in\left[N_{R}: M\right]$, hence $a^{2} M r \subseteq N$. So $a^{2} M r \subseteq N r \subseteq N$. This implies that $a^{2} M r \subseteq N$. So $a^{2} M \subseteq\left[\left[N_{R}:(r)\right]_{R}: M\right]$. Thus $\left[N_{R}:(r)\right]$ is a sub-module of M that is weakly 2-prime, for every $r \in R$.
$\Longleftarrow)$ Let $0 \neq a m \in N$, where $a \in R, m \in R$, so $0 \neq a m r \in N r \subseteq N$ and thus $0 \neq a m r \in N$. Therefore $0 \neq a m \in\left[N_{M}:(r)\right]$. But $\left[N_{M}:(r)\right]$ is a weakly 2-prime sub-module, we get either $m \in\left[N_{M}:(r)\right]$ or $a^{2} \in\left[\left[N_{R}:(r)\right]_{R}: M\right]$. If $m \in\left[N_{M}:(r)\right]$, take $r=1$. Then
$m \in N$. And if $a^{2} \in\left[\left[N_{R}:(r)\right]_{R}: M\right]=\left[a^{2}: M\right]$. Therefore N is a sub-module of M that is weakly 2-prime.

Using Theorem 2.3, we get the following conclusion:

Proposition 2.8:

N is a weakly 2-prime R -sub-module of M only if and only if N is a weakly 2-prime $R / I-$ sub-module of M, where $I \subseteq \operatorname{ann} N$.

Proof:

$\Rightarrow)$ If $(r+I) \in R / I$ and $m \in M$ and let $I \neq(r+I) x \in N$, so $I \neq r m+I \in N$, i.e. $r m \notin$ I. Thus $0 \neq r m \in N$. However, N is a R -sub-module that is weakly 2-prime, therefore, $m \in N$ or $r^{2} \in\left[N_{R}: M\right]$, must hold $r^{2} M \subseteq N$ and hence $\left(r^{2}+I\right) M \subseteq N$ (given that $I \subseteq a n n N$). Therefore, $\left(r^{2}+I\right) \in\left[N_{R / I}: M\right]$, i.e. N is a weakly 2-prime R / I-submodule.
\Longleftarrow) Clear
Correct standard Weakly 2-prime ideal P of R is an ideal such that for any a, b in R, $0 \neq a b \in P$ implies $a^{2} \in P$ or $b^{2} \in P$, [8].

Proposition 2.9:

For every R-module M, if N is a weakly 2-prime R-sub-module of M , then $\left[N_{\bar{R}}: M\right.$] is a weakly 2-prime ideal of \bar{R}, where $\bar{R}=R$ /ann M.

Proof:

Where N is a weakly 2-prime R-sub-module, this implies that N is a weakly 2-prime \bar{R} submodule, by Proposition 2.8. However, because R is a faithful, we can prove that $\left[N_{\bar{R}}: M\right.$] is a weakly 2 -pirme ideal of \bar{R} by Proposition 2.5 .
Recall that R-module M is a multiplication module if $N=I M$ for any ideal I of R, see [9].
In the class of finitely generated of faithful and multiplication modules, we have the following:

Theorem 2.10:

Let M be a faithful finitely generated multiplication R-module, and let N be a proper submodule of M. Thus, the following statements are equivalent.

1. N is a sub-module of M that is a weakly 2 -prime;
2. The ideal $\left[N_{R}: M\right]$ of R is a weakly 2-prime ideal;
3. For a weakly 2-prime ideal I of $R, N=I M$.

Proof:

$1 \Rightarrow) 2$ By Proposition 2.5.
$2 \Rightarrow) 3$ As $N=\left[N_{R}: M\right] M$ where $\left[N_{R}: M\right]$ is a weakly 2-prime ideal of R, this is self-evident.
$3 \Rightarrow) 1$ By (3) $N=I M$ and I is a weakly 2-prime ideal of R. Since $N=\left[N_{R}: M\right] M$, andd $I=$ [$N_{R}: M$], follows from [9, Theorem 3.1], M is a finitely produced faithful multiplication R module. Now, set $r \in R$ amd $m \in M$ such that $0 \neq r m \in N$. But $(m) \leq M$, so that (0$) \neq$ $r K M \subseteq N=\left[N_{R}: M\right] M$ and by [9, Theorem 3.1] $r K \subseteq\left[N_{R}: M\right]$. Moreover, $r K \neq(0)$. But $\left[N_{R}: M\right]=I$ which is a weakly 2 -prime ideal, so either $r^{2} \in\left[N_{R}: M\right]$ or $K \subseteq\left[N_{R}: M\right]$, that is either $r^{2} \in\left[N_{R}: M\right]$ or $(m)=K M \subseteq N$. This means either $r^{2} \in\left[N_{R}: M\right]$ or $m \in N$. As a result, N is a sub-module of M that is a weakly 2-prime.

Proposition 2.11:

Consider the sub-module N of an R-module M that is a weakly 2-prime then $\left[N_{R}: M\right] N=0$ if and only if N is not a 2-prime.

Proof:

Assuming that $\left[N_{R}: M\right] N \neq 0$, we shall demonstrate that N is a weakly 2-prime sub-module. Let $r m \in N$. Suppose $r m \neq 0$, since N is a weakly 2-prime sub-module, so either $m \in N$ or $r^{2} \in\left[N_{R}: M\right]$. Now, suppose $r m=0$, first suppose $r N \neq 0$, so there exists $t \in N, 0 \neq r t \in$ N. Hence $0 \neq r t=r(m+t) \in N$. In other words, either $m+t \in N$ or $r^{2} \in\left[N_{R}: M\right]$. Hence either $m \in N$ or $r^{2} \in\left[N_{R}: M\right]$. Now, we can assume that $r N=0$ and $\left[N_{R}: M\right] m=0$. Since $\left[N_{R}: M\right] N \neq 0$, there exists $s \in\left[N_{R}: M\right]$ and $t \in N$ such that $0 \neq s t \in N$. Then $(r+$ $s)(m+t)=r m+s m+r t+s t=0+0+0+s t$. That is
$0 \neq(r+s)(m+t)=s t \in N$. But N is a weakly 2 -prime sub-module, so either $m+t \in$ N or $(r+s)^{2} \in\left[N_{R}: M\right]$. Since $m \in N$ or $r^{2} \in\left[N_{R}: M\right]$ then N is a 2-prime sub-module.

3. Some properties of weakly 2 -prime sub-modules

In this section, we will give some basic results and properties for weakly 2-prime submodules.

Proposition 3.1:

Let $f: M \rightarrow M^{\prime}$ be an R-epimorphism, and N is a weakly 2-prime sub-module of M containing $\operatorname{ker} f$. Then $f(N)$ is a weakly 2-prime sub-module of M^{\prime}.

Proof:

Let $0 \neq r m \in f(N)$, for same $r \in R, m \in M^{\prime}$. Therefore, there is $x \in N$, the likes of which $0 \neq r m=f(x)$, since f is an R-epimorphism, we can write $m=f\left(x_{1}\right)$, for some $x_{1} \in M$. Thus $f\left(r x_{1}-x\right)=0$ and so $r x_{1}-x \in \operatorname{ker} f \subseteq N$, we have $0 \neq r x_{1} \in N$. If $x_{1} \in N$ or $r^{2} \in$ [$\left.N_{R}: M\right]$, then $m=f\left(x_{1}\right) \in f(N)$ or $r^{2} \in\left[f(N)_{R}: M^{\prime}\right]$, because N is a sub-module of M that is weakly 2-prime. Therefore, $f(\mathrm{~N})$ is a sub-module of M^{\prime} that is weakly 2-prime.

Proposition 3.2:

Let $f: M \rightarrow M^{\prime}$ be an R-monomorphism, and let N^{\prime} be a submodule of M^{\prime} that is weakly 2prime. Then $f^{-1}\left(N^{\prime}\right)$ is a sub-module of M that is weakly 2-prime.

Proof:

Let $0 \neq r m \in f^{-1}\left(N^{\prime}\right)$, for some $r \in R, m \in M$. Therefore, there is $x \in N$, such that $0 \neq$ $r m=f(x)$, since f is an R-monomorphism, then $0 \neq f\left(r x_{1}-x\right) \subseteq N^{\prime}$ for some $x_{1} \in M$. Thus $0 \neq f(r) f\left(x_{1}-x\right) \in N^{\prime}$. Since N^{\prime} is a submodule of M^{\prime} that is weakly 2-prime, we get either $f\left(x_{1}-x\right) \in N^{\prime}$ or $f(r)^{2} \in\left[N^{\prime}{ }_{R}: M^{\prime}\right]$ and thus yields $m=x_{1}-x \in f^{-1}\left(N^{\prime}\right)$ or $r^{2} \in$ $\left[f^{-1}\left(N^{\prime}\right)_{R}: M\right]$. Accordingly, $f^{-1}\left(N^{\prime}\right)$ is a sub-module of M that is weakly 2-prime.

Proposition 3.3:

If N is a submodule of M that is weakly 2-prime and contains another submodule of M, K, then N / K is a sub-module of M / K that is weakly 2-prime.

Proof:

Consider the epimorphism $\pi: M \rightarrow M / K$, which is define as $\pi(m)=m+K$, for
every $m \in M$. Also, keep in mind that $\operatorname{Ker} \pi=K \subseteq N$. By Proposition $3.1 N / K$ is a submodule of M / K that is a weakly 2 -prime.

Proposition 3.4:

Let $K \subseteq N$ be two are sub-modules of M. If N / K is a sub-module of M / K that is weakly 2prime and K is a 2-prime sub-module of M. Then N is a 2-prime sub-module of M.

Proof:

Let $r m \in N$ for some $r \in R, m \in M$. If $r m \in K$, it follows that $m \in K$ or $r^{2} \in\left[K_{R}: M\right]$. Since K is a sub-module of M with 2-prime. Now let's say that $r m \notin K$, this implies that $0_{M / K} \neq(r+$ $K)(m+K) \in N / K$. As N / K is a sub-module of M / K that is a weakly 2-prime, we get either $(m+K) \in N / K$ or $(r+K)^{2}=r^{2}+K \in\left[N / K_{R}: M / K\right]$, which implies that $m \in N$ or $r^{2} \in\left[N_{R}: M\right]$. As a result, N is a sub-module of M which is a 2-prime.

Proposition 3.5:

Le $t K \subseteq N$ be two are sub-modules of M. If N / K is a sub-module of M / K that is a weakly 2 prime, and K is a sub-module of M that is a weakly 2 -prime. Then N is a sub-module of M which is a weakly 2-prime.

Proof:

It is similar to Proposition 3.4.

Proposition 3.6:

Let N be a sub-module of M that is a weakly 2-prime, and let M^{\prime} be a subring of M with $M^{\prime} \subseteq$ N. Then $N \cap M^{\prime}$ is a sub-module of M^{\prime} that is a weakly 2-prime.

Proof:

Consider the monomorphism $i: M^{\prime} \rightarrow M$, defined as $i(m)=m$, for any $m \in M^{\prime}$. Since N is a submodule of M that is a weakly 2-prime, by Proposition $3.2 i(N)=N \cap M^{\prime}$ is a sub-module of M^{\prime} that is weakly 2-prime.

Proposition 3.7:

Let M be an R-module. A sub-module N of M is a weakly 2-prime if and only if $\left[N_{R}: I\right]$ is a weakly 2-prime, for every ideal I of R.

Proof:

Let $0 \neq r m \in\left[N_{M}: I\right]$, where $r \in R, m \in M$ and I be any ideal of R. Then $0 \neq \operatorname{arm} \in N$, for all $a \in I$. However, as N is a weakly 2-prime sub-module of M, we get $a m \in N$ or $r^{2} \in$ [$\left.N_{R}: M\right]$. Therefore, either $m \in\left[N_{R}: I\right]$ or $r^{2} M \subseteq N$. But $N \subseteq\left[N_{R}: I\right]$ and hence $r^{2} M \subseteq$ $\left[N_{R}: I\right]$. It is follows that $r^{2} \in\left[\left[N_{R}: I\right]_{R}: M\right]$. And hence for any ideal I of $R,\left[N_{R}: I\right]$ is a weakly 2-prime sub-module.

Proposition 3.8:

Let N be a weakly 2-prime R-sub-module of M, and S be a multiplicative subset of R with $\left[N_{R}: M\right] \cap S=\oslash$. Then N_{S} is a weakly 2-prime R_{S}-sub-module of M_{S}.

Proof:

Let $0 \neq \frac{a}{b} \frac{m}{c} \in N_{S}$, where $\frac{a}{b} \in R_{S}, \frac{m}{c} \in M_{S}$. Hence $0 \neq \frac{a m}{b c} \in N_{S}$ and so there exists $y \in N \in$ and $d \in S$ such that $\frac{a m}{b c}=\frac{y}{d}$ and suggests the presence of $t \in S$ so $t a d m=t b c y$. On the other hand, $\frac{a m}{b c} \neq \frac{0}{1}=0_{s}$, which implies that fam $\neq 0$ for all $f \in S$. Hence $0 \neq \operatorname{tadm} \in N$. Nonetheless, N is an R-sub-module of M that is a weakly 2-prime, we get either $t d m \in N$ or
$a^{2} \in\left[N_{R}: M\right]$ and hence either $\frac{t d m}{t d c} \in N_{S}$ or $\frac{a^{2}}{b^{2}} \in\left[N_{R}: M\right]_{S}$. Because $\left[N_{R}: M\right]_{S} \subseteq\left[N_{S_{R_{S}}}: M_{S}\right]$, we have either $\frac{m}{c} \in N_{S}$ or $\frac{a^{2}}{b^{2}} \in\left[N_{S_{R_{S}}}: M_{S}\right]$. As a result, N_{S} is a R_{S}-submodule of M_{S} that is a weakly 2-prime.

Theorem 3.9:

Let us assume that A and B are two different modules, and that N is a valid sub-module of M. Then, $W=N \oplus B$ is a sub-module of $M=A \oplus B$ that is weakly 2-prime if and only if N is a sub-module of A that is weakly 2-prime, and for $r \in R, m \in A$ with $r m=0, m \notin N, r^{2} \notin$ [$\left.N_{R}: A\right]$.

Proof:

$\Rightarrow)$ Let $m \in A, r \in R$, such that $0 \neq r m \in N$. Then, $(0,0) \neq r(m, 0) \in W$. However, W is a sub-module that is weakly 2 -prime. We get either $(m, 0) \in W$ or $r^{2} \in\left[W_{R}: M\right]$. Thus either $m \in N$ or $r^{2} \in\left[N_{R}: M\right]$, so that N is a sub-module that is weakly 2-prime. Now if $r \in R, m \in$ A such that $r m=0, m \notin N, r^{2} \notin\left[N_{R}: A\right]$. Assume that $r \notin a n n B$, so there exists $a \in B$ such that $r a \neq 0$. Thus $r(m, a)=(r m, r a)=(0, r a) \neq(0,0)$. Hence $(0,0) \neq r(m, a) \in N \oplus B$ $=\mathrm{W}$. Since W is a sub-module weakly 2-prime, we get either (m, a) $\in N \oplus B$ or $r^{2} \in$ $\left[N \oplus B_{R}: A \oplus B\right]$. Thus either $m \in N$ or $r^{2} \in\left[N_{R}: A\right]$. Which is a contradiction with hypothesis.
$\Rightarrow)$ Let $r \in R,(m, a) \in M$. Assume $(0,0) \neq r(m, a) \in N \oplus B$, so if $r m \neq 0$. Thus either $m \in$ N or $r^{2} \in\left[N_{R}: A\right]$, since N is a 2-prime sub-module, it is weakly, we obtain either $(m, a) \in$ $N \oplus B$ or $r^{2} \in\left[N \oplus B_{R}: A \oplus B\right]$. If $r m=0$. Suppose that $m \notin N, r^{2} \notin\left[N_{R}: A\right]$, then by hypothesis $r \in a n n B$ and so $r(m, a)=(0,0)$. That is an apparent contradiction. Thus either $m \in N, r^{2} \in\left[N_{R}: A\right]$ and hence either $(m, a) \in N \oplus B$ or $r^{2} \in\left[N \oplus B_{R}: A \oplus B\right]$. Therefore, $W=N \oplus B$ is a sub-module of $M=A \oplus B$ that is weakly 2-prime

Theorem 3.10:

Let us assume that A and B are two different modules, and that N is a valid sub-module of M. Then, $W=N \oplus B$ is a sub-module of $M=A \oplus B$ that is weakly 2-prime if and only if N is a sub-module of A that is weakly 2 -prime.

Corollary 3.11:

Let A, B be are two modules. If (0) is a sub-module of A with 2-prime, then $(0) \oplus B$ is a submodule of $M=A \oplus B$ that is weakly 2-prime.

Proof:

Let $r \in R$, and $(a, b) \in A \oplus B$, such that $\operatorname{If}(0,0) \neq(a, b) \in(0) \oplus B$, then $r a=0$ and $r b \in$ B. Since (0) is a 2-prime sub-module of A, then either $a=0$ or $r^{2} \in a n n A$.
Thus either $(a, b)=(0, b) \in(0) \oplus B$ or $r^{2} \in\left[(0) \oplus B_{R}: A \oplus B\right]$. Therefore $(0) \oplus B$ is a sub-module of $M=A \oplus B$ that is weakly 2-prime.

Proposition 3.12:

Let A and B be two different modules and let $N=U \oplus W$ be a weakly 2-prime sub-module in $M=A \oplus B$, then U, W are sub-modules of A and B that are weakly 2-prime.

Proof:

The proof is a straight forward, so it is omitted.
In general, the opposite of claim (3.12) is not true, as the following example shows: In the Z-modale $0,2 Z(0)$ are weakly 2-prime in Z-module Z (since there are weakly 2-prime in Z -
module Z and by commenting and illustrating (2.2.1), but (0) $\oplus 2 Z$ is not weakly 2-pirme submodule in the Z-module $Z \oplus Z$, since $(0,0) \neq 2(1,0) \in(0) \oplus 2 Z$, but $(1,0) \notin(0) \oplus 2 Z$ and $2^{2} \in\left[(0) \oplus 2 Z_{R}: Z \oplus Z\right]=(0)$.

As a generalization of Cohen theorem, the following was given in [10].
Let M be a finitely generated R-module, then M is noetherian if every prime sub-module is finitely generated.
The following holds because every weakly prime is a sub-module of a weakly 2-prime.

Proposition 3.13:

Let M be a finitely generated, then M is a noetherian if every weakly 2-prime is finitely generated.

Remark 3.14:

The requirement that M is a finitely generated, cannot be omitted from the previous Proposition 3.13, as the following example shows: In the Z-module $Z_{P \infty}$ is not finitely generated, also it is not noetherian. The zero sub-module which is clearly finitely generated is the only weakly 2 -prime sub-module of $Z_{P \infty}, G=\left\langle\frac{1}{p^{i}}+Z\right\rangle$ for some $i \in Z_{+}$and $0 \neq\left(\frac{1}{p^{i+1}}+\right.$ $Z) \in G$, but $p \in\left[G: Z_{P \infty}\right]=0$, so $p^{2} \notin\left[G: Z_{P \infty}\right], \frac{1}{p^{i+1}}+Z \notin G$, that is G is not weakly 2-prime sub-module.

In the following three results, we will assume that $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ be the R-module

Proposition 3.15:

If N is a proper R_{1}-sub-module of M_{1} and M_{2} is an R_{2}-module, the following statements are equivalent:

1. N is a 2 -pirme R_{1}-sub-module of M_{1};
2. $N \times M_{2}$ is a 2-prime R-sub-module of $M=M_{1} \times M_{2}$.
3. $N \times M_{2}$ is a weakly 2-prime R-sub-module of $M=M_{1} \times M_{2}$

Proof:

$1 \Rightarrow) 2$ Let $\left(r_{1}, r_{2}\right) \in R,\left(m_{1}, m_{2}\right) \in M_{1} \times M_{2}$ such that $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right) \in N \times M_{2}$, then $r_{1} m_{1} \in N$ and $r_{2} m_{2} \in M_{2}$. But $r_{1} m_{1} \in N$ and N is what's known as a 2-prime R-submodule, so either $m_{1} \in N$ or $r_{1}^{2} \in\left[N_{R}: M_{1}\right]$. Hence either $\left(m_{1}, m_{2}\right) \in N \times M_{2}$ or $\left(r_{1}{ }^{2}, r_{2}\right)\left(1, r_{2}\right) \in\left[N \times M_{2}: M_{1} \times M_{2}\right],\left(r_{1}{ }^{2}, r_{2}{ }^{2}\right) \in\left[N \times M_{2}: M_{1} \times M_{2}\right]$. Thus $N \times M_{2}$ constitutes a 2 -prime R-sub-module of the module M.
$2 \Rightarrow) 3$ It is clear.
$3 \Rightarrow) 1$ To show that N is a 2-pirme R_{1}-sub-module of M_{1}. Let $r \in R_{1}, m \in M_{1}$ such that $r m \in$ N. Thus for each $w \in M_{2}, a \neq 0,(0,0) \neq(r, 1)(m, w) \in N \times M_{2}$. However, $N \times M_{2}$ is a R -sub-module of M that is a weakly 2-prime, so either $\left(r^{2}, 1\right) \in\left[N \times M_{2_{R}}: M_{1} \times M_{2}\right]$ or $(m, w) \in$ $N \times M_{2}$ and therefore either $r^{2} \in\left[N_{R}: M_{1}\right]$ or $m \in N$, that is N is a 2-prime R_{1}-sub-module of M_{1}.

To a similar extent, we have

Proposition 3.16:

If N is a proper R_{2}-sub-module of M_{2}, the following statements are similar.

1. N is a 2-pirme R_{2}-sub-module of M_{2}.
2. $M_{1} \times N$ is a 2-prime R -sub-module of $M=M_{1} \times M_{2}$.
3. $M_{1} \times N$ is a weakly 2-prime R-sub-module of $M=M_{1} \times M_{2}$.

Proposition 3.17:

Let M_{1}, M_{2} represent the R_{1} and R_{2}-modules respectively. If $N=N_{1} \times N_{2}$ is a weakly 2prime R-sub-module of $M=M_{1} \times M_{2}$, then either $N=0$ or N is a 2-prime R-sub-module Proof:

Assume $N \neq 0$, so either $N_{1} \neq 0$ or $N_{2} \neq 0$. Suppose that $N_{2} \neq 0$, hence there exists $a \in$ $N_{2}, a \neq 0$. Let $r \in\left[N_{1_{R_{1}}}: M_{1}\right]$ and let $m \in M_{1}$, then $(0,0) \neq(r, 1)(m, a)=(r m, a) \in N_{1} \times$ $N_{2}=N$. Since N is a weakly 2-prime R-sub-module of M, we get either $(m, a) \in N$ or $\left(r^{2}, 1\right) \in\left[N_{1} \times N_{2}: M_{1} \times M_{2}\right]$. Hence if $(m, a) \in N$, then $m \in N_{1}$ and so $M_{1}=N_{1}$. Which implies that $N=M_{1} \times N_{2}$. If $\left(r^{2}, 1\right) \in\left[N_{1} \times N_{2}: M_{1} \times M_{2}\right]$, then $M_{2}=N_{2}$. Which implies that $N=N_{1} \times M_{2}$. Hence by propodition (3.15), (3.16), N is a 2-prime R-sub-module of M.

Conclusions:

In this work, a generalization of a 2-prime sub-module has been introduced which is called a weakly 2-prime sub-module. We also show that if every sub-module of an R-module M is 2prime sub-module, then M is called a weakly 2-prime sub-module. Moreover, many results and properties of this concept are given and discussed.

References

[1] S. A. Saymach, "On prime submodules", University Noc. Tucumare Ser. A, vol. 29, pp.121-136, 1979.
[2] C. P. Lu, "Prime submodule of modules", Comment. Math. Univ. St, Paul, vol.33, pp. 61-69, 1984.
[3] F. D. Jasem and A. A. Elewi, "2-prime submodule of modules," Iraqi journal of science, vol. 36, no. 8, pp. 3605-3611, 2022.
[4] S. E. Atani and F. Farzalipour, Georgien Mathematical Journal, vol. 12, pp.1-7, 2005.
[5] I. M. A. Hadi, "On weakly prime submodules" Ibn AL-Haitham J. For Pure\&Appl. Sci, vol. 22 , no. 3, 2009.
[6] M. A. Hassin, "Quasi-prime modules and Quasi-prime submodules" M.Sc Thesis, Univ. of Baghdad, 1999.
[7] F. Kasch, "Modules and Rings" Acad. Press, London, 1982.
[8] S. Koc, "On weakly 2-prime ideals in commutative rings" Communications in Algebra, Dol: 10.1080|00927872.1897133, 2021.
[9] Z. A. El-Bast and P. F. Smith, "Multipliction modules" Comm. In algebra, 16:755-779, 1988.
[10] E. A. Athab, "Prime and semiprime submodules" MS.c Thesis, Univ. of Baghdad 1996.

