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Abstract

Let R be a commutative ring containing a unit, and let M be a left R-module. We
define a proper sub-module N of an R-module M to be a weakly 2-prime sub-module
if whenever0 # rm € N,r € R,m € M, then either m € N or r? € [N: M]. This
concept is an expansion of the idea of a weakly 2-prime ideal, where an ideal P of R
is said to be a weakly 2-prime ideal if for all a,b € R,0 # ab € P implies a? € P
or b? € P. Several characteristics of sub-modules that are weakly 2-prime are taken
into account.
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1. Introduction:

Throughout this paper, R be a commutative ring with identity and M be a unity R-module.
A sub-module N of M is called a prime sub-module if every timer € R,m € M,rm € N,
implies m € N or r € [N: M], where [N:M] ={r €R, rM < N}, see [1] and [2]. The
authors in [3] introduced 2-prime sub-module whenrm € N,r € R,m € M, either m € N
orr? € [N: M], then N is a 2-pirme sub-module, where N is a generalization of prime. The term
"weakly prime sub-module” was coined in 2007 by S.E. Atani and F. Farzalipour [4] and in
2009 by I. M. A. Hadi [5]. Keep in mind that if whenever 0 #rm € N,r € R,m € M, then
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eitherm € N or r € [N: M], implies N is a weakly prime sub-module of M. Every prime sub-
module is also a weak prime sub-module, as should be evident.

In this paper, we introduced the idea of a weakly 2-prime sub-module. A suitable sub-
module N of an R-module M is weakly 2-prime if and only if forevery 0 # rm € N,r € R,m €
M, then either m € N or r2 € [N: M]. As a service to the academic community, we provide an
R-sub-module M of type R that is weakly 2-prime. Therefore, [Nz: M] is a weakly 2-pirme ideal
of R, where R = R|annM. In 1999, the quasi-prime sub-module was introduced and studied in
[6] by Muntaha, anywhere a suitable sub-module if 7,7, m € N, forry,r, € R, m € M implies
r,me€ N orr,m € N, then N of M is a quasi-prime sub-module of M. In addition, the idea of
a weakly primary sub-module was developed by S.E. Atani and F. Farzalipour in [4]: a proper
sub-module N of M is a primary sub-module if whenever rm € N,r € R,m € M, then either
m € N or r™ € [N: M]. A valid sub-module N of M is a weakly primary sub-module.

2. Weakly 2-prime sub-modules

Here we present the idea of a weakly 2-prime sub-module as an extension of a 2-prime sub-
module, where a valid sub-module N of M is a 2-prime sub-module if whenever rm € N,r €
R, m € M, then either m € N orr? € [N: M], and vice versa (see [3]).

Definition 2.1:
A proper sub-module N of an R-module M is a weakly 2-prime if, whenever,0 # rm €
N,r € R,m € M, then either m € N or r? € [N: M] holds.

Remarks and Examples 2.2:

1. Every 2-prime sub-module is weakly 2-prime sub-module.

Proof: It is clear.

2. The converse of (1) is not always true for example: The zero sub-module of the Z-module
Z, is weakly 2-prime sub-module (since it is weakly prime sub-module [2]). However, it is a 2-
prime sub-module, because 2.2 € (0),2 ¢ (0) and 22 = 4 ¢ [(0): Z,].

3. Every weakly 2-prime ideal of R is a sub-module that is weakly 2-prime.

4. All weakly prime sub-modules are weakly 2-prime.

Proof:

Let there N be a weakly prime submodule of an R-module M, and let 0 # rm € N, wherer €
R,m € M. So, either m € N or r € [N: M]. Thus either m € N or r? € [N: M]. Therefore,
N weakly 2-prime sub-module.

5. The convers of (4) is not always true for example: The sub-module N = (4) of the Z-module
Zg is weakly 2-prime sub-module (since it is 2- prime sub-module). But it is a weakly prime
sub-module, since 2.2 € (N),but 2 € (N) and 2 & [N: Zg] .

6. It's not necessary for a weakly 2-prime sub-module to be a quasi-prime, for example: a
weakly 2-prime sub-module of the Z-module Z,, it is zero sub-modules. However, is not quasi-
prime, because (0:, 3) = 4Z is not the prime ideal of Z, (using [3]). Also, quasi-prime need not
be a weakly 2-prime sub-module, for example, the Z-module Z&®Z , N = 2Z&®(0), N is a quasi-
prime sub-module. But N is not a weakly 2-prime sub-module. Since (0,0) # 2(3,0) €
N and(3,0) € N, 22 ¢ [2Z®(0):, ZBZ].

7. Every weakly 2-prime sub-module is weakly primary sub-module.
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Proof:

If N is a sub-module that is weakly 2-prime, and 0 # rm € N, wherer € R,m € M are
real numbers. As a result, either rm € N or r? € [N: M].
As aresult, N is a weakly primary sub-module.

In general, the opposite of (7) can not be true, as the following demonstrates: let M be the
Z-module Z, , N = (0). Clearly, N is a weakly primary sub-module, but it is not a weakly 2-
prime sub-module due to the fact that 2.3 € (0),and 3 & (0),22 & [N:, Zg].

Theorem 2.3:

Let N be a proper sub-module of an R —module M. Then the following statements are
equivalent.
1. N is a sub-module that is a weakly 2-prime;
2. 12 € [Ng: M],r € Rifand only if, foreach c € M,c & N, r? € [Ng: (0)];
3. 2 € [Ng: M],r € R if and only if, 72 € [Ng: K], for any sub-module K of M such that, N <
K.
Proof:
1=)2 Letc € M/N, ifr? € [Ng:M], thenr? € [Ng:(c)], therefore, 0 # r(rc) EN. It
follows that either rc € N or r? € [Ng: M] holds if N is a sub-module that is a weakly 2-prime.
Nothing can be done if 2 € [Ng: M]. If 0 # rc € N, where N is a weakly prime sub-module,
and ¢ € N, then r? € [Ng: M], so the result isr? € [Ng: M].
2=)3 Clear.
3=)1 Let0 # rm € N and suppose m & N, wherer € R,m € M.ButK = N + (m),soN €
K,thenr?K = r%(N + (m)) = r2N + r%(m) € N. Which means, r? € [Ng: K]. Therefore, N
is a weakly 2-prime sub-module of M if and only if (by condition 3) 72 € [Ng: M].

Remark 2.4:

It is generally known that [Ng: M], is the prime ideal of an R-module if and only if N is a
prime sub-module of M. However, the (weak) a logos of this statement is not always holding
true for example: The zero sub-module of the Z-module Z, is weakly 2-prime sub-module, but
(0,:Z;) = 6Z not weakly 2-prime ideal, since2.3 € 6Z,but 22 and 32 ¢ 6Z.

Recall that an R-module M is called a faithful module ifann(M) = 0, where
ann(M) ={r e R| rx =0, Vx € M}, see [7].

The last remark satisfy under certain condition as the following proposition shows:

Proposition 2.5:

If N is a weakly 2-prime sub-module of a faithful R-module M, then [Ng: M] is a weakly 2-
prime ideal of R.

Proof:

Leta,b € R, if0 # ab € [Ng: M], thenabM < N. Sinec, M is faithful, abM # 0 hence 0 #
abM € N, so by Theorem (2.3), either bM S N or a? € [Ng: M], that is either a® € [Ng: M]
or b? € [Ng: M]. Thus [Ng: M] is a weakly 2-pirme ideal of R.

Remark 2.6:

As the following example shows, the opposite of the statement (2.4) is not always true: The
Z-module Z®Z ,N = (0)®2Z, then [Ng: M] = (0), which is a weakly 2-pirme ideal of R.
Since (0,0) # 2(0,3) € N and(0,3) € N, 22 ¢ [(0)D2Z:, ZDZ].

956



Rahman et al. Iragi Journal of Science, 2024, Vol. 65, No. 2, pp: 954- 962

Proposition 2.7:

Let N be a sub-module of M over a ring R that is a proper sub-module. If for each r € R,
[Ng: (r)] is a sub-module of M that is weakly 2-prime, then N is a sub-module of M that is
weakly 2-prime
Proof:

=) If 0 = am € [Ny: ()], wherea € R,m € R. Then 0 # arm € N. Since N is a sub-
module of M that is weakly 2-prime, we get either mr € N or a? € [Ng: M]. If mr € N, then
m € [Ny: ()] and if a? € [Ng: M], hence a?Mr € N. Soa?Mr € Nr € N. This implies
that a?Mr € N. So a?M < [[Ng: (r)] g: M]. Thus [Ng: ()] is a sub-module of M that is
weakly 2-prime, for every r € R.
&) Let0 am € N, wherea € R,m€ R, s0 0 # amr € Nr € N and thus 0 # amr € N.
Therefore 0 = am € [Ny: (r)]. But [Ny: (r)] is a weakly 2-prime sub-module, we get either
m € [Ny: ()] or a? € [[Ng: ()] g: M]. If m € [N,: ()], take r = 1. Then
m € N. And if a? € [[Ng: (r)] r: M] = [a?: M]. Therefore N is a sub-module of M that is
weakly 2-prime.

Using Theorem 2.3, we get the following conclusion:
Proposition 2.8:

N is a weakly 2-prime R-sub-module of M only if and only if N is a weakly 2-prime R /I-
sub-module of M, where I € annN.
Proof:

>)If(r+1)eR/Iandme Mandlet] # (r+I)x e N,sol #rm+1€N,ie.rm &
[.Thus 0 # rm € N. However, N is a R-sub-module that is weakly 2-prime, therefore, m € N
orr? € [Ng: M], must hold v2M € N and hence (r?+1)M S N (given that € annN).
Therefore, (r2 + 1) € [Ng,;: M|, i.e. N is a weakly 2-prime R /I-submodule.
&) Clear

Correct standard Weakly 2-prime ideal P of R is an ideal such that for any a,b in R,

0 # ab € P implies a® € P or b2 € P, [8].

Proposition 2.9:

For every R-module M, if N is a weakly 2-prime R-sub-module of M, then [Nz: M] is a weakly
2-prime ideal of R, where R = R/annM.

Proof:

Where N is a weakly 2-prime R-sub-module, this implies that N is a weakly 2-prime R-
submodule, by Proposition 2.8. However, because R is a faithful, we can prove that [Nz: M] is
a weakly 2-pirme ideal of R by Proposition 2.5.

Recall that R-module M is a multiplication module if N=IM for any ideal | of R, see [9].

In the class of finitely generated of faithful and multiplication modules, we have the following:

Theorem 2.10:
Let M be a faithful finitely generated multiplication R-module, and let N be a proper sub-
module of M. Thus, the following statements are equivalent.
1. Nis a sub-module of M that is a weakly 2-prime;
2. The ideal [Ng: M] of R is a weakly 2-prime ideal;
3. For a weakly 2-prime ideal | of R, N=IM.

Proof:

1 =)2 By Proposition 2.5.
2=)3 As N = [Ni: MM where [Ng: M] is a weakly 2-prime ideal of R, this is self-evident.
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3=)1 By (3) N =IM and I is a weakly 2-prime ideal of R. Since N = [Nz: MM, andd I =
[Ng: M], follows from [9, Theorem 3.1], M is a finitely produced faithful multiplication R-
module. Now, set r € Ramdm € M such that0 # rm € N. But (m) < M, so that (0) #
rKM S N = [Ng: M]M and by [9, Theorem 3.1] rK S [Ng: M]. Moreover, rK # (0). But
[Ng: M] = I which is a weakly 2-prime ideal, so either 2 € [Ng: M] or K € [Ng: M], that is
either r2 € [Np: M] or (m) = KM S N. This means either r? € [Nz: M] orm € N. As aresult,
N is a sub-module of M that is a weakly 2-prime.

Proposition 2.11:

Consider the sub-module N of an R-module M that is a weakly 2-prime then [Nz: M|N = 0
if and only if N is not a 2-prime.
Proof:

Assuming that[Ng: M]N =+ 0, we shall demonstrate that N is a weakly 2-prime sub-module.
Letrm € N. Suppose rm # 0, since N is a weakly 2-prime sub-module, so either m € N
orr% € [Ng: M]. Now, suppose rm = 0, first suppose N # 0, so there existst € N, 0 # rt €
N. Hence 0 # rt = r(m +t) € N. In other words, either m + t € N or r? € [Ng: M]. Hence
either m € N orr? € [Nz: M]. Now, we can assume that rN =0 and [Nz: M]m = 0.
Since [Ng: M]N + 0, there exists s € [Ng: M] and t € N such that 0 # st € N. Then (r +
sy im+t)=rm+sm+rt+st=0+0+ 0+ st. Thatis
0# (r+s)(m+t)=steN. But N is a weakly 2-prime sub-module, so either m +t €
Nor (r + s)? € [Ng: M]. Since m € N or r? € [Ng: M] then N is a 2-prime sub-module.

3. Some properties of weakly 2-prime sub-modules

In this section, we will give some basic results and properties for weakly 2-prime sub-

modules.

Proposition 3.1:

Let f:M — M' be an R-epimorphism, and N is a weakly 2-prime sub-module of M
containing kerf. Then f(N) is a weakly 2-prime sub-module of M’.

Proof:

Let 0 = rm € f(N), for same r € R,m € M'. Therefore, there isx € N, the likes of which
0 #rm = f(x), since f is an R-epimorphism, we can write m = f(x;) , for some x; € M.
Thus f(rx; —x) =0 and sorx; —x € kerf €N, we have 0 # rx; E N. If x, E N orr? €
[Ng: M], thenm = f(x;) € f(N)orr? € [f(N)g: M'], because N is a sub-module of M that is
weakly 2-prime. Therefore, f(N) is a sub-module of M’ that is weakly 2-prime.

Proposition 3.2:

Let f: M —» M’ be an R-monomorphism, and let N be a submodule of M’ that is weakly 2-
prime. Then f~1(N") is a sub-module of M that is weakly 2-prime.
Proof:

Let 0 # rm € f~Y(N"), for somer € R,m € M. Therefore, there isx € N, such that 0 =
rm = f(x), since f is an R-monomorphism, then 0 # f(rx; —x) € N’ for some x; € M.
Thus 0 # f(r)f(x; —x) € N'. Since N’ is a submodule of M’ that is weakly 2-prime, we get
either f(x; —x) € N’ or f(r)2 € [N’ x:M'] and thus yields m = x; —x € f~Y(N") orr? €
[f~1(N") g: M]. Accordingly, f~1(N") is a sub-module of M that is weakly 2-prime.
Proposition 3.3:

If N is a submodule of M that is weakly 2-prime and contains another submodule of M, K, then
N /Kis a sub-module of M /K that is weakly 2-prime.

Proof:
Consider the epimorphism m: M - M /K, which is define as m(m) = m + K, for
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every m € M. Also, keep in mind that Kerm = K < N. By Proposition 3.1 N/K is a sub-
module of M /K that is a weakly 2-prime.

Proposition 3.4:

Let K € N be two are sub-modules of M. If N/K is a sub-module of M /K that is weakly 2-
prime and K is a 2-prime sub-module of M. Then N is a 2-prime sub-module of M.

Proof:

Let rm € N for somer € R,m € M. If rm € K, it follows that m € K orr? € [Kg: M]. Since
K is asub-module of M with 2-prime. Now let's say that rm & K, this implies that 0,/ # (r +
K)Y(m+K) e N/K. As N/K is a sub-module of M/K that is a weakly 2-prime, we get
egither(m + K) e N/K or (r + K)> =r?2+ K € [N/K g: M/K], which implies that m € N
orr? € [Ng: M]. As aresult, N is a sub-module of M which is a 2-prime.

Proposition 3.5:

Le tK € N be two are sub-modules of M. If N/K is a sub-module of M /K that is a weakly 2-
prime, and K is a sub-module of M that is a weakly 2-prime. Then N is a sub-module of M
which is a weakly 2-prime.

Proof:

It is similar to Proposition 3.4.

Proposition 3.6:

Let N be a sub-module of M that is a weakly 2-prime, and let M'be a subring of M with M’ <
N.Then N n M" is a sub-module of M’ that is a weakly 2-prime.

Proof:

Consider the monomorphism i: M" — M, defined as i(m) = m, forany m € M'. Since N is a
submodule of M that is a weakly 2-prime, by Proposition 3.2 i(N) = N n M'is a sub-module
of M’ that is weakly 2-prime .

Proposition 3.7:
Let M be an R-module. A sub-module N of M is a weakly 2-prime if and only if [Ng: 1] is a
weakly 2-prime, for every ideal I of R.

Proof:

Let 0 # rm € [Ny:I], where r € R,m € M and I be any ideal of R. Then 0 # arm € N, for
all a € I. However, as N is a weakly 2-prime sub-module ofM, we get am € N orr? €
[Np: M]. Therefore, either m € [Ng:1] orr?2M € N. But N S [Ng:I] and hencer’M <
[Ng:1]. Itis follows that 72 € [[Ng:I] : M]. And hence for any ideal | of R, [N:I] is a weakly
2-prime sub-module.

Proposition 3.8:
Let N be a weakly 2-prime R-sub-module of M, and S be a multiplicative subset of R
with [Nz: M] NS =@. Then N is a weakly 2-prime R¢-sub-module of M; .

Proof:
Let0 # %% € N, where % € RS,% € M. Hence 0 # % € N and so there exists y € N € and

d € S such that % =% and suggests the presence of ¢ € S so tadm = thcy. On the other

hand, % + % = 0,, which implies that fam # 0 for all f €S. Hence 0 # tadm € N.
Nonetheless, N is an R-sub-module of M that is a weakly 2-prime, we get either tdm € N or
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2
a? € [Ng: M] and hence either%: € Ng or% € [Ng: M]s. Because [Ng: M]s © [NSRS: Ms], we

2
have either% € N or % € [NSRS: Ms]. As a result,
N, is a Rg-submodule of M, that is a weakly 2-prime.

Theorem 3.9:

Let us assume that A and B are two different modules, and that N is a valid sub-module of M.
Then, W = N @ B is a sub-module of M = A @ B that is weakly 2-prime if and only if N is a
sub-module of A that is weakly 2-prime, and for r € R,m € A withrm =0,m ¢ N, r? ¢
[Ng: A].

Proof:

=) Let m € A,r € R, such that 0 # rm € N. Then, (0,0) # r(m,0) € W. However, W is a
sub-module that is weakly 2-prime. We get either (m,0) € W or r? € [Wx: M]. Thus either
m € N orr? € [Ng: M], so that N is a sub-module that is weakly 2-prime. Now if r € R,m €
Asuchthatrm = 0,m & N, r? & [Ng: A]. Assume that r € annB, so there exists a € B such
thatra # 0. Thusr(m,a) = (rm,ra) = (0,ra) # (0,0). Hence (0,0) # r(m,a) e N P B
=W. Since W is a sub-module weakly 2-prime, we get either (m,a) E N@® B orr? €
[N@® Br:AD B]. Thus either m € N orr? € [N;:A]. Which is a contradiction with
hypothesis.

=) Letr € R,(m,a) € M. Assume (0,0) # r(m,a) € N @ B, soif rm # 0. Thus either m €
N orr? € [Ng: A], since N is a 2-prime sub-module, it is weakly, we obtain either (m,a) €
N@Borr?2€e[N@Br:AD B]. Ifrm =0. Suppose that m & N, r? & [Ny: A], then by
hypothesis » € annB and so r(m,a) = (0,0). That is an apparent contradiction. Thus either
m € N, r?2 € [Ng: A] and hence either (m,a) e N@ B orr? € [N @ Br: A @ B ]. Therefore,
W = N @ B is asub-module of M = A @ B that is weakly 2-prime

Theorem 3.10:

Let us assume that A and B are two different modules, and that N is a valid sub-module ofM.
Then, W = N @ B is a sub-module of M = A @ B that is weakly 2-prime if and only if N is a
sub-module of A that is weakly 2-prime.

Corollary 3.11:

Let A4, B be are two modules. If (0) is a sub-module of A with 2-prime, then (0) @ B is a sub-
module of M = A @ B that is weakly 2-prime.

Proof:

Let r € R, and (a,b) € A @ B, such that If (0,0) # (a,b) € (0) @ B, thenra =0 andrb €
B. Since (0) is a 2-prime sub-module of A, then either a = 0 or r? € annA.

Thus either (a,b) = (0,b) € (0) D B orr? € [(0) @ Br: A @ B]. Therefore (0) P B is a
sub-module of M = A @ B that is weakly 2-prime.

Proposition 3.12:
Let A and B be two different modules and let N = U @ W be a weakly 2-prime sub-module
inM = A @ B, then U, W are sub-modules of A and B that are weakly 2-prime.

Proof:
The proof is a straight forward, so it is omitted.

In general, the opposite of claim (3.12) is not true, as the following example shows: In the
Z-modale 0,2Z (0) are weakly 2-prime in Z-module Z (since there are weakly 2-prime in Z-
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module Z and by commenting and illustrating (2.2.1), but (0) @ 2Z is not weakly 2-pirme sub-
module in the Z-module Z @ Z, since (0,0) # 2(1,0) € (0) & 2Z, but (1,0) ¢ (0) @ 2Z
and2? € [(0) @ 2Zz:Z D Z ]| = (0).

As a generalization of Cohen theorem, the following was given in [10].

Let M be a finitely generated R-module, then M is noetherian if every prime sub-module is
finitely generated.

The following holds because every weakly prime is a sub-module of a weakly 2-prime.

Proposition 3.13:
Let M be a finitely generated, then M is a noetherian if every weakly 2-prime is finitely
generated.

Remark 3.14:
The requirement that M is a finitely generated, cannot be omitted from the previous
Proposition 3.13, as the following example shows: In the Z-module Zp,, is not finitely

generated, also it is not noetherian. The zero sub-module which is clearly finitely generated is
the only weakly 2-prime sub-module of Zp..,, G = (ﬁ + Z) forsome i € Z, and 0 # (Pl.l+1 +
Z) EG,butp € [G:Zp,,] = 0,50 p? ¢ [G: Zpoo],Pl.—1+1+ Z & G, thatis G is not weakly 2-prime
sub-module.

In the following three results, we will assume that R = R; X R, and M = M; X M, be the
R-module
Proposition 3.15:

If N is a proper R,-sub-module of M; and M, is an R,-module, the following statements

are equivalent:
1. N is a 2-pirme R,-sub-module of M;;
2. N X M, is a 2-prime R-sub-module ofM = M; x M,.
3. N x M, is a weakly 2-prime R-sub-module of M = M; X M,

Proof:

1=)2 Let (r,12) €R,(my,my) € My X M, such that (ry,7,)(my,m,) € N X M,
thenrym; € N andr,m, € M,. But rym; € N and N is what's known as a 2-prime R-sub-
module, so either m; € Norr,?2 € [Ng:M;]. Hence either (my,m,)€N XM, or
(r2,1,)(1,15) € [N X My: My X M,], (r;2,1,%) € [N X My: My X M,]. Thus N X M,
constitutes a 2-prime R-sub-module of the module M.
2 =)3 Itisclear.
3 =)1 To show that N is a 2-pirme R;-sub-module of M;. Letr € R, m € M; suchthatrm €
N. Thus for eachw € M,,a # 0, (0,0) # (r,1)(m,w) € N X M,. However, N X M, is a R-
sub-module of M that is a weakly 2-prime, so either (r2,1) € [N X Myp: My X MZ] or(m,w) €
N x M, and therefore either r2 € [N;: M;] or m € N, that is N is a 2-prime R,-sub-module of
M.

To a similar extent, we have

Proposition 3.16:
If N is a proper R,-sub-module o f M,, the following statements are similar.
1. N is a 2-pirme R,-sub-module of M,.
2. M; X N is a 2-prime R-sub-module of M = M; X M,.
3. M; X N is a weakly 2-prime R-sub-module of M = M; X M,.
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Proposition 3.17:

Let M;, M, represent the R;and R,-modules respectively. If N = N; X N, is a weakly 2-
prime R-sub-module of M = M; X M,, then either N = 0 or N is a 2-prime R-sub-module
Proof:

Assume N # 0, so either N; # 0 or N, # 0. Suppose that N, # 0, hence there exists a €

N,,a+#0. Let r € [NlRl:Ml] and letm € M,, then (0,0) # (r,1)(m,a) = (rm,a) € N; X
N, = N. Since N is a weakly 2-prime R-sub-module of M, we get either (m,a) € N
or (r3,1) € [N; X N,: M; x M,]. Hence if (m,a) € N, then m € N; and so M; = N,. Which
implies that N = M; X N,. If (r%,1) € [N; X N,: M; X M,], then M, = N,. Which implies
that N = N; X M,. Hence by propodition (3.15), (3.16), N is a 2-prime R-sub-module of M.

Conclusions:

In this work, a generalization of a 2-prime sub-module has been introduced which is called
a weakly 2-prime sub-module. We also show that if every sub-module of an R-module M is 2-
prime sub-module, then M is called a weakly 2-prime sub-module. Moreover, many results and
properties of this concept are given and discussed.
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