

ISSN: 0067-2904 GIF: 0.851

Small Pointwise M-Projective Modules

Mukdad Qaess Hussain*

Department of Computer Science, College of Education for Pure Science, Diyala University, Diyala, Iraq

Abstract

Let R be a ring and let M be a left R-module. In this paper introduce a small pointwise M-projective module as generalization of small M- projective module, also introduce the notation of small pointwise projective cover and study their basic properties.

Keywords: projective, M- projective, small M- projective.

المقاسات الاسقاطية الصغيرة نقطيا نسبة لمقاس M

مقداد قيس حسين *

قسم الحاسبات , كلية التربية للعلوم للصرفة , جامعة ديالي , ديالي , العراق

الخلاصة

لتكن R حلقة ولتكن M مقاس ايسر معرف على R .قدمت في هذا البحث مفهوم المقاسات الاسقاطية الصغيرة نقطيا نسبة لمقاس M بصفته تعميما لمفهوم المقاسات الاسقاطية الصغيرة نسبة لمقاس M . كذلك قدمت مفهوم غطاء المقاسات الاسقاطية الصغيرة نقطيا. ودرست بعض الخواص الاساسية.

الكلمات المفتاحية: المقاسات الاسقاطية – المقاسات الاسقاطية نسبة لمقاس M – المقاسات الاسقاطية الصغيرة نسبة لمقاس M

Introduction

Let R be a ring and M be a left R-module. A submodule N of an R-module M is called small submodule of M if N+L = M for any submodule L of M implies L = M [1]. An epimorphism g:A \rightarrow B is called small provided ker g is small submodule in B [2]. An R-module M is called small projective module if for each small epimorphism $g:A \rightarrow B$ where A and B are any R-modules and for each homomorphism f:M \rightarrow B there exists a homomorphism h:M \rightarrow A such that $g \circ h = f$ [2].Let U and M be modules, then U is M-projective if for each epimorphism $g:M \rightarrow N$ and each homomorphism f:U \rightarrow N, there exists a homomorphism h:U \rightarrow M such that $g \circ h = f$ [3].Let M and N be modules. N is called pointwise M-projective, if for every epimorphism $g:M \rightarrow B$ and any homomorphism $f:N \rightarrow B$, then for every m \in M there exists a homomorphism h:N \rightarrow M, such that $g \circ h(m) = f(m)$. Let M and N be modules. N is called small M-projective, if for every small epimorphism $g:M \rightarrow B$ and any homomorphism $f:N \rightarrow B$, there exists a homomorphism $h:N \rightarrow M$, such that $g \circ h = f$. In this paper introduce the concept of small pointwise M-projective module as follows: Let M and N be modules. N is called small pointwise M-projective, if for every small epimorphism $g:M \rightarrow B$ and any homomorphism f:N \rightarrow B, then for every m \in M there exists a homomorphism h:N \rightarrow M, such that g \circ h(m) = f(m).A submodule V of M is called supplemented of a submodule U of M if V is a minimal element in the set of submodules L of M with U+L = M [1]. An R-module M is called supplemented if for every submodule of M has supplemented in M [1]. An R-module M is called small pointwise projective module if for each small epimorphism $g:A \rightarrow B$ where A and B are any R-modules and for each

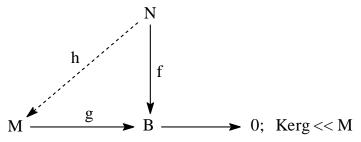
^{*}Email: mukdadqaess@yahoo.com

homomorphism f:M \rightarrow B then for every m \in M there exists a homomorphism h:M \rightarrow A such that $g \circ h(m) = f(m)$. A pair (P,f) is a small pointwise projective cover for a module M, if there exists a small epimorphism from P onto M, where P is a small pointwise projective module. Finally, introduce the concept of a small pointwise projective cover as generalization of small projective cover and give some properties of this notion.

1. Some Characterization of Small pointwise M-Projective Modules

In this section, introduce the concept of small pointwise M-projective modules and give some characterizations of small pointwise M-projective modules. Let start with the following:

Let M and N be modules. N is called small pointwise M-projective, if for every small epimorphism $g:M \rightarrow B$ and any homomorphism $f:N \rightarrow B$, then for every $m \in M$ there exists a homomorphism $h:N \rightarrow M$, such that $g \circ h(m) = f(m)$ (i.e.) the following diagram is commutative:



Every small M-projective module is small pointwise M-projective module since every M-projective module is a pointwise M-projective module.

Every M-projective module is small pointwise M-projective module since every M-projective module is small M-projective module.

Every pointwise M-projective module is small pointwise M-projective module since every M-projective module is small M-projective module.

A module M is self-projective if M is M-projective [3].

A module M is called self-small pointwise projective, if M is small pointwise M-projective.

A module M is called self-pointwise projective, if M is pointwise M-projective.

Every self-small projective module is self-small pointwise projective module.

Every self-projective module is self-small pointwise projective module.

Every self-pointwise projective module is self-small pointwise projective module.

The following proposition gives a characterization for small pointwise M-projective module.

Proposition (1.1) Let U and M be modules, the following are equivalent

1. U is a small pointwise M-projective module;

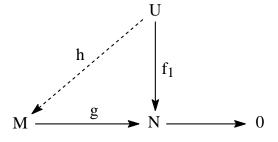
2. For every small short exact sequence with middle term

$$0 \longrightarrow K \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0, \text{ the sequence } 0 \longrightarrow Hom(U, K)$$

$$\xrightarrow{Hom(1,f)} Hom(U, M) \xrightarrow{Hom(1,g)} Hom(U, N) \longrightarrow 0 \text{ is short exact;}$$

3. For every small submodule K of M, every homomorphism $h: U \to \frac{M}{k}, \frac{M}{k}$ factor through the natural epimorphism $\pi: M \to \frac{M}{k}$

<u>Proof:</u> (1 \Rightarrow 2) It is enough to show that, Hom(I,g) is an epimorphism.Let $f_1 \in Hom(U,N)$ and consider the following diagram:



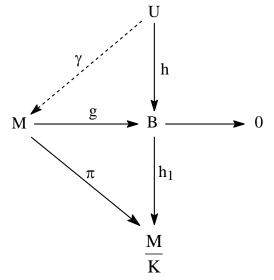
Since g is a small epimorphism and U is a small pointwise M-projective module then for every $m \in M$ there exists a homomorphism $h: U \rightarrow M$ such that $g \circ h(m) = f_1(m)$.Now, $(Hom(I,g)(h))(m) = g \circ h(m) = f_1(m)$ and hence $Hom(I,g)(h) = g \circ h = f_1$.

 $(2\Rightarrow3)$ Let K be a small submodule of M and let $h:U \rightarrow \frac{M}{k}$ be an epimorphism. Consider the following small short exact sequence

$$0 \longrightarrow K \xrightarrow{i} M \xrightarrow{\pi} \frac{M}{K} \longrightarrow 0$$

where i is the inclusion homomorphism and π is the natural epimorphism.By(2), the homomorphism Hom (I,π) :Hom $(U,M) \rightarrow$ Hom $(U,\frac{M}{k})$ is an epimorphism. This implies, the existence of a homomorphism $f \in$ Hom(U,M) such that h =Hom $(I,\pi)(f) = \pi \circ f$.

 $(3\Rightarrow1)$ Let g:M \rightarrow B be a small epimorphism and let h:U \rightarrow B be any homomorphism. Consider the following diagram:

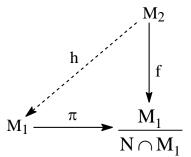


Where K = Ker g, $\pi: M \to \frac{M}{k}$ is the natural epimorphism and $h_1: B \to \frac{M}{k}$ be the usual isomorphism.By (3), there exists a homomorphism $\gamma: U \to M$ such that $\pi \circ \gamma = h_1 \circ h$.One can check easily that $h_1 \circ g(m) = \pi(m)$.Now, $h_1 \circ g \circ \gamma(m) = \pi \circ \gamma(m) = h_1 \circ h(m)$.Thus $g \circ \gamma(m) = h(m)$, since h_1 is an isomorphism.

Proposition (1.2) Let M_1 and M_2 be modules, with $M = M_1 \oplus M_2$, then the following conditions are equivalent:

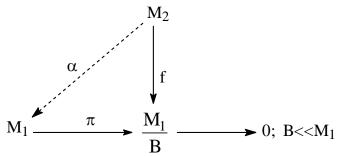
- 1. M_2 is a small pointwise M_1 -projective;
- 2. For any submodule N of M, such that M_1 is a supplemented of N in M, there exists a submodule N_1 of N such that $M = M_1 \oplus N_1$.

Proof: (1⇒2) Let M_1 be a supplemented of a submodule N of M, then $M = N+M_1$ with $N \cap M_1 \ll M_1$.Let $\pi: M_1 \rightarrow \frac{M_1}{N \cap M_1}$ be the natural epimorphism. Define $f: M_2 \rightarrow \frac{M_1}{N \cap M_1}$ by $f(x) = y+N \cap M_1$, for all $x \in M_2$, we have x = y+n, for some $y \in M_1$ and $n \in N$.Cleary f is well-defined and a homomorphism. Consider the following diagram:



Since M_2 is a small pointwise M_1 -projective, then for every $m \in M_2$ there exists a homomorphism $h:M_2 \rightarrow M_1$, such that $\pi \circ h(m) = f(m)$. Define $N_1 = \{y - h(y): y \in M_2\}$. We claim that $N_1 \leq N$. Let $x \in N_1$, then x = w - h(w), for some $w \in M_2$. Now, $\pi h(w) = f(w)$. Since $M = N + M_1$ and $w \in M_2$, then w = n+v for some $n \in N$ and $v \in M_1$. But $h(w) + N \cap M_1 = f(w) = v + N \cap M_1$. This implies that $h(w) - v \in N$ and thus $w - h(w) \in N$, i.e., $x \in N$. It is easy to show that $M = M_1 + N_1$. Let $w \in M_1 \cap N_1$, so w = y - h(y) for some $y \in M_2$. Thus w + h(y) = y = 0. Therefore w = 0. Hence $M = M_1 \oplus N_1$.

(2⇒1) Let $\pi: M_1 \rightarrow \frac{M_1}{B}$ be the natural epimorphism, where $B << M_1$ and $f: M_2 \rightarrow \frac{M_1}{B}$ be any homomorphism. Define $N = \{x-y:f(x) = \pi(y), where x \in M_2, y \in M_1\}$. It is clear that $M = M_1+N$. Claim that $N \cap M_1 \le B$. Let $w \in N \cap M_1$, so $w \in N$ and hence $w = m_2-m_1$, for some $m_2 \in M_2, m_1 \in M_1$, where $f(m_2) = \pi(m_1)$. Thus $w+m_1 = m_2 = 0$, since $M = M_1 \oplus M_2$. Therefore $\pi(m_1) = 0$ which implies that $m_1 \in B$ and hence $w \in B$. But $B << M_1$, thus $N \cap M_1 << M_1$. Thus M_1 is a supplemented of N in M. By (2), there exists a submodule N_1 of N such that $M = M_1 \oplus N_1$. Define $\alpha: M_2 \to M_1$ by $\alpha(w) = v$, where w = n+v for some $n \in N_1$ and $v \in M_1$. Clearly α is well-defined and a homomorphism. And make the following diagram commutative:



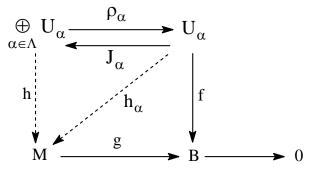
Let $w \in M_2$, then w = n+v, where $n \in N_1$ and $v \in M_1$, but $n \in N$, so n = x-y, where $f(x) = \pi(y)$. Hence w = x-y+v which implies that $w-x = v-y \in M_1 \cap M_2 = 0$. Thus w = x and v = y. Therefore $\pi\alpha(w) = \pi(v) = \pi(y) = f(x) = f(w)$. Consequently M_2 is a small pointwise M_1 -projective module.

2. Some Properties of Small Pointwise M-Projective Module

In this section, give some basic properties of small pointwise M-projective module. Start with the following:

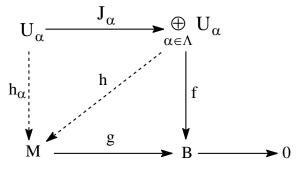
Proposition (2.1) Let M be a module and $\{U_{\alpha}\}_{\alpha \in \Lambda}$ be an indexed set of modules. Then $\bigoplus_{\alpha \in \Lambda} U_{\alpha}$ is a small pointwise M-projective if and only if every U_{α} is a small pointwise M-projective.

<u>Proof:</u>(\Rightarrow) Let $\bigoplus_{\alpha \in \Lambda} U_{\alpha}$ be a small pointwise M-projective and let $\alpha \in \Lambda$. Consider the following diagram:



where $g:M \rightarrow B$ is a small epimorphism, $f:U_{\alpha} \rightarrow B$ is any homomorphism, P_{α} and J_{α} are the projections and the injection homomorphisms, respectively. Since $\bigoplus_{\alpha \in \Lambda} U_{\alpha}$ is small pointwise M-projective, then for every $\psi \in \bigoplus_{\alpha \in \Lambda} U_{\alpha}$, there exists a homomorphism $h: \bigoplus_{\alpha \in \Lambda} U_{\alpha} \rightarrow M$ such that $g \circ h(\psi) = f \circ P_{\alpha}(\psi)$. Let $h_{\alpha} = h \circ J_{\alpha}: U_{\alpha} \rightarrow M$. Now, for every $m \in M, g \circ h_{\alpha}(m) = g \circ h \circ J_{\alpha}(m) = f \circ \rho_{\alpha} \circ J_{\alpha}(m) = f \circ I(m) = f(m)$.

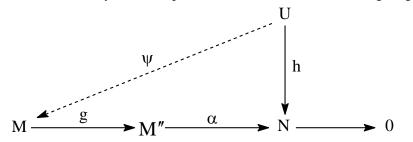
(\Leftarrow) Let g:M \rightarrow B be a small epimorphism and let f: $\bigoplus_{\alpha \in \Lambda} U_{\alpha} \rightarrow B$ be any homomorphism.For each $\alpha \in \Lambda$, consider the following diagram:



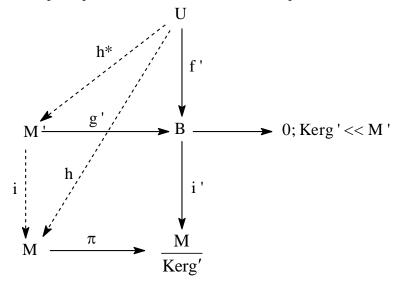
Where $J_{\alpha}: U_{\alpha} \to \bigoplus_{\alpha \in \Lambda} U_{\alpha}$ is the injection homomorphism. Since U_{α} is small pointwise M-projective, for each $\alpha \in \Lambda$, for every $m \in U_{\alpha}$, there exists a homomorphism $h_{\alpha}: U_{\alpha} \to M$, such that $g \circ h_{\alpha}(m) = f \circ J_{\alpha}(m)$; for each $\alpha \in \Lambda$. Define h: $\bigoplus_{\alpha \in \Lambda} U_{\alpha} \to M$ by $h(\psi) = \sum_{\alpha \in \Lambda} h_{\alpha}(\psi(\alpha))$. Clearly h is well defined and a homomorphism. Also, $(g \circ h)(\psi) = g(h(\psi)) = g(\sum_{\alpha \in \Lambda} h_{\alpha}(\psi(\alpha))) = \sum_{\alpha \in \Lambda} (g \circ h_{\alpha})(\psi(\alpha)) = \sum_{\alpha \in \Lambda} (f \circ j_{\alpha})(\psi(\alpha)) = f(\sum_{\alpha \in \Lambda} j_{\alpha}(\psi(\alpha))) = f(\psi)$. Hence $\bigoplus_{\alpha \in \Lambda} U_{\alpha}$ is a small pointwise M-projective module.

Proposition(2.2) Let M and U be modules. If $0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$ is a small short exact sequence and U is a small pointwise M-projective, then U is small pointwise M' and M''-projective.

<u>Proof:</u> To show that U is a small pointwise M''-projective, let α :M'' \rightarrow N be an small epimorphism and let h:U \rightarrow N be any homomorphism. Now, consider the following diagram:



By [1,proposition(19.3)] $\alpha \circ g$ is a small epimorphism and since U a small pointwise Mprojective, for every $u \in U$ there exists a homomorphism $\psi: U \rightarrow M$ such that $\alpha \circ g \circ \psi(u) = h(u)$, i.e., $g \circ \psi$ is the required homomorphism. To show that U is a small pointwise M'-projective, let g':M' \rightarrow B be a small epimorphism and let f':U \rightarrow B be homomorphism. Consider the following diagram:



where i is the inclusion homomorphism and π is the natural epimorphism. Define $i':B \rightarrow \frac{M}{\text{Ker g'}}$ by i'(b) = a + Ker g' for all $b \in B$, where b = g'(a), for some $a \in M'$. Since U is a small pointwise M-projective module, for every $u \in U$, there exists a homomorphism $h:U \rightarrow M$ such that $\pi \circ h(u) = i' \circ f'(u)$. Claim that $h(U) \leq M'$. Let $w \in h(U)$, then there exists $u_1 \in U$ such that $w = h(u_1)$. Now, $\pi \circ h(u_1) = i' \circ f'(u_1) = i' \circ g'(a)$ for

some $a \in M'$. Hence $\pi h(u_1) = a + \text{Ker } g'$ and therefore $a_1 - h(u_1) \in \text{Ker } g' \leq M'$. Thus $h(u_1) \in M'$ and consequently $h(U) \leq M'$. Define $h^*: U \to M'$ by $h(x) = h^*(x)$, for all $x \in U$. Now, $i' \circ g' \circ h^*(u) = \pi \circ i \circ h^*(u) = \pi \circ h^*(u) = \pi \circ h^*(u) = i' \circ f'(u)$. Since i' is a monomorphism, $g' \circ h^*(u) = f'(u)$. Hence U is a small pointwise M'-projective module.

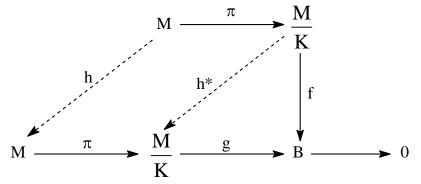
Corollary (2.3) Let $M = M_1 \oplus M_2$, where M_1 and M_2 are modules. If M is a small pointwise projective module, then M_1 is a self-small pointwise projective and M_2 is a self-small pointwise projective and M_2 is a small pointwise M_2 -projective and M_2 is a small pointwise M_1 -projective.

<u>Proof:</u> Since $M = M_1 \oplus M_2$ is a small pointwise projective module, so $M_1 \oplus M_2$ is a small pointwise M_1 -projective and $M_1 \oplus M_2$, is a small pointwise M_2 -projective. By proposition (2.1), get the results.

Let M be an R- module. A submodule N of M is called fully invariant, if $f(N) \le N$, for each $f \in End(M)$ [4,p.172].

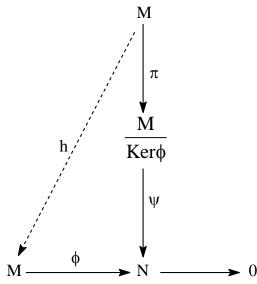
Proposition (2.4) Let M be a small pointwise projective module and let K be a fully invariant submodule of M. If K<<M, then $\frac{M}{k}$ is a self-small pointwise projective module.

Proof: Consider the following diagram:



where $g:\frac{M}{k} \to B$ is a small epimorphism, $f:\frac{M}{k} \to B$ is any homomorphism and $\pi: M \to \frac{M}{k}$ is the natural epimorphism. By small pointwise projectivity of M, and $g \circ \pi$ is small epimorphism, for every $m \in M$ there exists a homomorphism $h: M \to M$, such that $g \circ \pi \circ h(m) = f \circ \pi(m)$. Define $h^*: \frac{M}{k} \to \frac{M}{k}$ by $h^*(m+K) = h(m)+K$ for all $m \in M$. To show that h^* is well defined. Let $m_1+K = m_2+K$, which implies that $m_1-m_2 \in K$ and since K is a fully invariant submodule, thus $h(m_1.m_2) \in h(K) \leq K$. Hence $h(m_1)+K = h(m_2)+K$. Clearly h^* a homomorphism. Now, $g \circ h^*(m+K) = g \circ \pi \circ h(m) = f \circ \pi(m) = f(m+K)$.

Proposition (2.5) Let M be a self-small pointwise projective module and let $\phi: M \to N$ be a small epimorphism, then there exists a homomorphism $h \in End(M)$ such that Ker ϕ is invariant under h. **Proof:** Consider the following diagram:

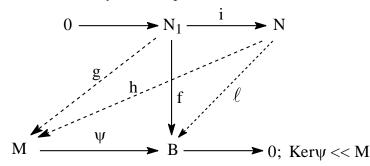


Where $\psi: \frac{M}{Ker\phi} \rightarrow N$ is the usual isomorphism defined by $\psi(m+Ker(\phi)) = \phi(m)$ for all $m \in M$ and π is the natural epimorphism. Since M is self-small pointwise projective module, for every $m_1 \in M$. there exists a homomorphism h:M $\rightarrow M$ such that $\phi \circ h(m_1) = \psi \circ \pi(m_1)$.Now,to show that $h(Ker\phi) \leq Ker\phi$, let $w \in Ker\phi$, then $\phi h(w) = \psi(w+Ker(\phi)) = \phi(w) = 0$ and hence $h(w) \in Ker\phi$. This implies that Ker\phi is invariant under h.

A submodule K of an R-module M is M-cyclic submodule of M, if it isomorphic to M/X, for some submodule X of M [5]. The following proposition gives a condition under which a module M is N-injective.

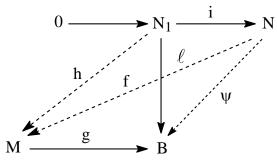
Proposition(2.6) Let M,N be modules.If N is a small pointwise M-projective and every M-cyclic submodule of M is N-injective, then M is N-injective and every submodule of N is a small pointwise M-projective.

<u>Proof:</u> Let N be a small pointwise M-projective and suppose that every M-cyclic submodule is N-injective. Since M is trivially M-cyclic, then M is N-injective. Let $\psi:M \rightarrow B$ be a small epimorphism and let $f:N_1 \rightarrow B$ be any homomorphism, where N_1 is a submodule of N.Consider the following diagram:



where $i:N_1 \rightarrow N$ is the inclusion homomorphism. Since B is M-cyclic module, thus by our hypothesis B is N-injective module. Therefore, there exists a homomorphism $\ell: N \rightarrow B$ such that $\ell \circ i = f$. But N is a small pointwise M-projective module, so for every $n \in N$ there exists a homomorphism $h:N \rightarrow M$ such that $\psi \circ h(n) = \ell$ (n). Define $g:N_1 \rightarrow M$ by $g = h \circ i$. Now, $\psi \circ g(n) = \psi \circ h \circ i(n) = \ell \circ i(n) = f(n)$. The converse holds if M is hollow.

Suppose that M is N-injective and every submodule of N is a small pointwise M-projective. Thus N is a small pointwise M-projective module. Let B be M-cyclic submodule of M. Consider the following diagram:

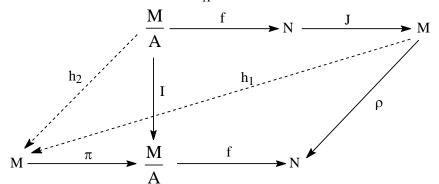


where $i:N_1 \rightarrow N$ is the inclusion homomorphism and $f:N_1 \rightarrow B$ is any homomorphism and $g:M \rightarrow B$ is the required epimorphism onto B, since B is M-cyclic module. In fact g is a small epimorphism, since M is hollow. By our assumption, N_1 is a small pointwise M-projective module. Thus, for every $n_1 \in N_1$, there exists a homomorphism $h:N_1 \rightarrow M$ such that $g \circ h(n_1) = f(n_1)$. But M is N-injective so, there exists a homomorphism $\ell: N \rightarrow M$ such that $\ell \circ i = h$. Define $\psi: N \rightarrow B$ by $g \circ \ell$. Now, $\psi \circ i = g \circ \ell \circ i = g \circ h = f$.

A sufficient condition for self-small pointwise projective module to be S.F, has been provided in the following.

Proposition (2.7) Let M be a self-small pointwise projective module and let A \leq M, then A<<M and $\frac{M}{A}$ is isomorphic to direct summand of M if and only if A = 0.

<u>Proof:</u> (\Rightarrow) Let $\pi: M \rightarrow \frac{M}{A}$ be the natural epimorphism, where A<<M and $\frac{M}{A}$ is isomorphic to a direct summand N of M. Let f: $\frac{M}{A} \rightarrow N$ be an isomorphism. Consider the following diagram:



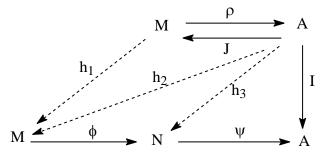
Where J and ρ are the injection homomorphism and the projection homomorphism respectively, and I: $\frac{M}{A} \rightarrow \frac{M}{A}$ is the identity.Since M is a self-small pointwise projective module, for every m \in M there exists a homomorphism h₁:M \rightarrow M such that fo π oh₁(m) = ρ (m).Define h₂: $\frac{M}{A} \rightarrow M$ by h₂ = h₁oJof.Now, fo π of_{2 gc} = fo π oh₁oJof = ρ oJof = Iof. Thus fo π oh₂ = f ,which implies that π oh₂ = I.Since f is isomorphism.Therefore the sequence π :M $\rightarrow \frac{M}{A} \rightarrow 0$ splits and hence A = 0.

(⇐) Trivial. A module M is called a small cover for a module N, if there exists a small epimorphism $\phi: M \rightarrow N$ [6].

Proposition (2.8) A small cover of a small pointwise projective module is a small pointwise projective.

Proposition (2.9) Let M be a self-small pointwise projective module and let A be a direct summand of M. If M is a small cover of N and N is a small cover of A, then $M \cong A \cong N$.

<u>Proof:</u> Since M is a small cover of N and N is a small cover of A, where A is a direct summand of M, there exists a small epimorphisms $\phi: M \to N$ and $\psi: N \to A$. Consider the following diagram:



Where ρ , J are the projection and the injection homomorphisms respectively and I:A \rightarrow A is the identity. Since M is a self-small pointwise projective module and $\psi \circ \phi$ is a small epimorphism, for every m \in M there exists a homomorphism h₁:M \rightarrow M such that $\psi \circ \phi \circ h_1(m) = \rho(m)$. Define h₂:A \rightarrow M by h₂ = h₁ \circ J. Also, define h₃:A \rightarrow N byh₃ = $\phi \circ h_2$. Now, $\psi \circ h_3 = \psi \circ \phi \circ h_1 \circ J = \rho \circ J = I$. Thus, the small short exact sequence $N \xrightarrow{\Psi} A \xrightarrow{\longrightarrow} 0$ splits and hence $N \cong A$. Also $\psi \circ \phi \circ h_2 = \psi \circ \phi \circ h_1 \circ J = \rho \circ J = I$. Hence the small short exact sequence $M \xrightarrow{\psi \circ \phi} A \xrightarrow{\longrightarrow} 0$ splits and hence $N \cong A$. On splits and therefore $M \cong A$. Consequently $M \cong A \cong N$.

3. Small Pointwise Projective Cover

In this section, introduce the concept of a small pointwise projective cover and give some properties of this notion.

A pair (P,f) is a small pointwise projective cover for a module M, if there exists a small epimorphism from P onto M, where P is a small pointwise projective module.

A ring R is called Von-Neumann regular if for each $a \in R$, there exists $b \in R$ such that a = a.b.a [1,3.1]

Example (3.1):

- 1. Z_6 is Von-Neumann regular ring.
- 2. The ring $(P(X), \Delta, \cap)$ is Von-Neumann regular ring, where P(X) is the power set of X and Δ is the symmetric difference and \cap is the intersection.
- 3. The ring Z is not Von-Neumann regular
- A ring R is called a Boolean ring, if for each $a \in R$, $a^2 = a [1, p.25(9)]$

Remark (3.2)

- **1.** Each Boolean ring is commutative.
- 2. Each Boolean ring is Von-Neumann regular.
- 3. Every subring and every factor ring of a Boolean ring is a Boolean ring.
- **4.** For any index set Λ , the product $\prod_{\Lambda} R$ is a Boolean ring, where R is a Boolean ring. A ring is called semisimple, if each module over R is a projective [7,17.4].

Example (3.3)

- 1. The ring Z_6 is semisimple.
- 2. The ring Z is not semisimple, since Q as Z-module is not projective module.
- A ring R is called cosemisimple if Rad(M) = 0, for each R-module M [2].

The following proposition gives a characterization of cosemisimple ring.

Proposition (3.4) [1, 23.5(2)] A commutative ring is cosemisimple if and only if it is Von-Neumann regular.

Remark (3.5) Every semisimple ring is cosemisimple, but the converse is not true.

Example (3.6) Let R be the direct product of countably infinite many copies of Z_2 Clearly Z_2 is a Boolean ring, thus by remark (3.2), R is a Boolean ring and R is a Von-Neumann regular. By proposition (3.4) implies that R is a cosemisimple ring. Let I be the direct sum of countably infinite many copies of Z_2 inside of R, Claim that R is not semisimple ring. Clearly, $\frac{R}{I}$ is an R-module.Now, assume $\frac{R}{I}$ is a projective module.Consider the following short exact sequence:

$$0 \longrightarrow I \xrightarrow{i} R \xrightarrow{\pi} \frac{R}{I} \longrightarrow 0$$

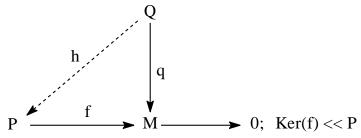
where i is the inclusion homomorphism and π is the natural epimorphism.By [6,17(1,2)(3)], this sequence splits, i.e., $R = I \oplus K$, where K $\leq R$. Thus $\frac{R}{K} \cong I$. But $\frac{R}{K}$ is cyclic and hence I is cyclic. A contradiction.

Remark If a module has projective cover, then it has a small pointwise projective cover. But the converse is not true in general. See example (3.6).

Now, prove, if a module have a small pointwise projective cover, then it is unique up to isomorphism.

Proposition(3.7) Suppose that a module M has a small pointwise projective cover (P,f). If Q is a small pointwise projective module, with q:Q \rightarrow M is a small epimorphism, then Q \cong P.

<u>Proof:</u> Let f:P \rightarrow M be a small epimorphism, where P is a small pointwise projective module and let q:Q \rightarrow M be a small epimorphism, where Q is a small pointwise projective module. Consider the following diagram:



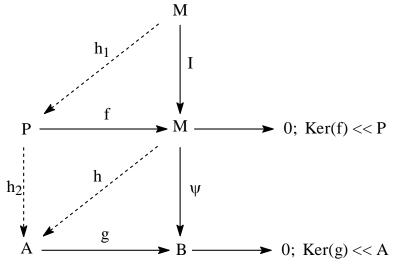
By small pointwise projectivity of Q, for every $q \in Q$, there exists a homomorphism h:Q \rightarrow P, such that $f \circ h(q) = q(q)$. Claim that h is an epimorphism. To show that h is onto, it is enough to prove that P = Ker(f)+h(Q). Now, let $x \in P$, then f(x) = q(y) for some $y \in Q$ so, f(x) = f(h(y)) and this implies that $x - h(y) \in Ker(f)+h(Q)$, but Ker(f) < P, thus h(Q) = P and h is onto. To prove h is

a monomorphism, let $w \in \text{Ker}(h)$, then h(w) = 0 and thus fh(w) = q(w) = 0. Which implies that $w \in \text{Ker}(q)$. Consequently $\text{Ker}(h) \leq \text{Ker}(q) << Q$. Therefore Ker(h) << Q and hence $h: Q \rightarrow P$ is a small epimorphism. But

P is a small pointwise projective module, so the sequence $Q \xrightarrow{h} P \longrightarrow 0$ splits. Thus h is a monomorphism.

Proposition (3.8) Let M be a module and let (P,f) be a small pointwise projective cover for M. If M is a small pointwise P-projective, then M is a small pointwise projective.

<u>Proof:</u> Let g:A \rightarrow B be a small epimorphism and ψ :M \rightarrow B be any homomorphism. Consider the following diagram:



where i:M \rightarrow M is the identity.Since P is a small pointwise projective module, for every p \in P, there exists a homomorphism h₂:P \rightarrow A,such that $g \circ h_2(p) = \psi \circ f(p)$.Also,since M is a small pointwise P-projective for every m \in M there exists a homomorphism h₁:M \rightarrow P,such that $f \circ h_1(m) = I(m)$.Define h = h₂ $\circ h_1$.Now, $g \circ h(m) = g \circ h_2 \circ h_1(m) = \psi \circ f \circ h_1(m) = \psi \circ I(m) = \psi(m)$.

Let M be a module and let S = End(M).Let N be a proper submodule of M.N is called an S-prime submodule of M, if whenever $f(m) \in N$, for some $f \in S$ and $m \in M$, then $f(M) \leq N$ or $m \in N[8]$.

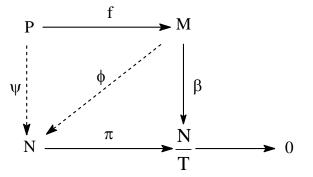
Proposition (3.9) Let N be an S-prime submodule of a small pointwise projective module M. Assume that, there exists $0 \neq f \in S$ such that $f^2 = f, f(N) \leq N$ and f(N) << M. Then $\frac{M}{N}$ has a small pointwise projective cover.

Proof: Let N be an S-prime submodule of a small pointwise projective module M and $0 \neq f \in S$ such that $f^2 = f$, $f(N) \leq N$ and f(N) << M. Since $f(1-f)(m) = 0 \in N$ for all $m \in M$ and N is S-prime, so $f(M) \leq N$ or $(1-f)(m) \leq N$. Assume $(1-f)(m) \notin N$, for some $m \in M$, then $f(M) \leq N$ and hence f(M) = f(N). But $M = f(M) \oplus (1-f)(M)$, thus $M = f(N) \oplus (1-f)(M)$ and therefore (1-f)(M) = M, since f(N) << M. Hence f = 0 a contradiction. Consequently, $(1-f)(m) \in N$ for each $m \in M$. Define $h:f(M) \rightarrow \frac{M}{N}$ by h(f(m)) = m+N, for all $m \in M$. we have to show that h is well-defined. Let $f(m_1) = f(m_2)$, which implies that $f(m_1-m_2) = 0$, but $m_1-m_2 = (1-f)(m_1-m_2) \in N$. Therefore $m_1+N = m_2+N$. Clearly h is a homomorphism and onto. It is easy to show that Ker(h) = f(N) << M, thus f(f(N)) << f(M). Thus f(N) << f(M) is a small pointwise projective module and h is a small epimorphism. Therefore (f(M),h) is a small pointwise projective cover for $\frac{M}{N}$.

Now. need the following proposition to obtain a characterization of a module M to be small pointwise N-projective if M has a small pointwise projective cover.

Proposition(3.10) Let M be a small pointwise N-projective module and let (P,f) be a small pointwise cover of M.Then for every homomorphism ψ :P \rightarrow N, there exists a homomorphism ϕ :M \rightarrow N such that $\phi \circ f = \psi$.

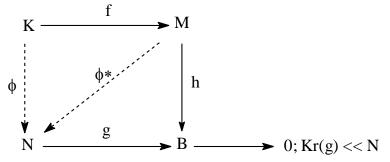
<u>Proof:</u> Let f:P \rightarrow M be a small epimorphism and let ψ :P \rightarrow N be any homomorphism. Let T = ψ (Ker(f)). By [6,5.18], ψ (Ker(f))<<N. Define β :M $\rightarrow \frac{N}{T}$ by β (m) = $\pi(\psi(x))$ for all m \in M,where m = f(x) and π :N $\rightarrow \frac{N}{T}$ is the natural epimorphism. To show that β is well-defined. Suppose that m = f(x) = f(y) for some $x,y \in P$, then $x-y \in Ker(f)$, which implies that $\psi(x-y) \in T$. Hence $\pi(\psi(x)) = \pi(\psi(y))$. It is easy to show that β is a homomorphism. Consider the following diagram:



Since M is a small pointwise N-projective module, for every $m \in M$, there exists a homomorphism $\phi: M \to N$ such that $\pi \circ \phi(m) = \beta(m)$. Now, let $x \in P$, $(\beta \circ f)(x) = \beta(f(x))$. But $\beta(f(x)) = (\pi \circ \phi)(f(x))$ and hence $(\pi \circ \psi)(x) = (\pi \circ \phi \circ f)(x)$, for all $x \in P$. Therefore $(\psi - \phi \circ f)(P) \leq T$. Let $X = \{w \in P: (\phi \circ f)(w) = \psi(w)\}$. Claim that X = P. Clearly $X \leq P$. Let $x \in P$ then $(\psi - (\phi \circ f))(x) \in T$, but $T = \psi(\text{Ker}(f))$ and hence $(\psi - (\phi \circ f))(x) = \psi(k)$, for some $k \in \text{Ker}(f)$. Thus $\psi(x-k) = (\phi \circ f)(x-k)$, therefore $x-k \in X$ which implies that P = Ker(f)+X, but Ker(f) < P. Hence X = P.

Proposition (3.11) Let M,N and K be modules, where K is a small pointwise projective and f:K \rightarrow M be an epimorphism. Then M is a small pointwise N-projective if for every homomorphism ϕ :K \rightarrow N, there exists a homomorphism $\phi^*:M\rightarrow$ N, such that $\phi^*\circ f = \phi$.

<u>Proof:</u> Let $g:N \rightarrow B$ be a small epimorphism and $h:M \rightarrow B$ be any homomorphism. Consider the following diagram:



By small pointwise projectivity of K for every $k \in K$, there exists a homomorphism $\phi: K \to N$, such that $g \circ \phi(k) = h \circ f(k)$. By our hypothesis, there exists a homomorphism $\phi^*: M \to N$, such that $\phi^* \circ f = \phi$, and so $g \circ \phi^* \circ f = g \circ \phi = h \circ f$. For $m \in M$, we have $(g \circ \phi^*)(m) = g(\phi^*(m)) = g(\phi^*(f(x)))$, here m = f(x), for some $x \in K$. Hence $(g \circ \phi^*)(m) = (g \circ \phi^* \circ f)(x) = (g \circ \phi^*)(f(x)) = (g \circ \phi)(x) = h(f(x)) = h(m)$. Therefore M is a small pointwise N-projective module.

From (3.10) and (3.11) get the following:

Theorem (3.12) Let M and N be modules and assume M has a small pointwise projective cover (P,f), then M is a small pointwise N-projective module if and only if for every homomorphism ψ :P \rightarrow N, there exists a homomorphism $\hat{\psi}$:M \rightarrow N, such that $\hat{\psi} \circ f = \psi$.

References

- 1. Wisbauer, R. 1991. Foundations of Modules and Rings Theory, Gordan and Breach Reading.
- 2. Tiwary, A.K. and Chaubey, K.N. 1985. Small Projective Module. *Indian J. Pure Appl. Math*, February, 16(2):133-138.
- 3. Azumaya, G., Mbuntum, F., and Varadarajan, K. 1973. On M-Projective and M-Injective Modules, *Pacific J. Math* 95:9-16.
- 4. Faith, C. 1981. Algebra I, Rings, Modules and Categories, Springer Verlage, New York.
- **5.** Wongwai, S.**2002**. On the Endomorphism Ring Of a Semi-Injective Modules. Acta Math. Univ.Comenianae, 1: 27-33.
- 6. Lomp, C. 1999. On Semi Local Modules and Rings, Comm. Algebra. 27:1921-1935.

- 7. W. Anderson and K.R. Fuller. 1992. *Rings and Categories of Modules*, Springer Verlage, New York.
- 8. G. Güngöroğlu. 2000. Strongly Prime Ideals in CS-Rings, Turk. J. Math, 24: 233-238.