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Abstract 

Let R be a ring and let M be a left R-module. In this paper introduce a small 

pointwise M-projective module as generalization of small M- projective module, 

also introduce the notation of small pointwise projective cover and study their basic 

properties. 
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 الخلاصة
قدمت في هذا البحث مفهوم المقاسات الاسقاطية R .مقاس ايسر معرف على   Mحلقة ولتكن    Rلتكن 

كذلك   . Mنسبة لمقاس  بصفته تعميما لمفهوم المقاسات الاسقاطية الصغيرة M الصغيرة نقطيا نسبة لمقاس
 . ودرست بعض الخواص الاساسية  .الصغيرة نقطياقدمت مفهوم غطاء المقاسات الاسقاطية 

 

المقاسات الاسقاطية  - M نسبة لمقاس المقاسات الاسقاطية  -المقاسات الاسقاطية  :الكلمات المفتاحية
 M الصغيرة نسبة لمقاس

 

Introduction 
Let R be a ring and M be a left R-module. A submodule N of an R-module M is called small 

submodule of M if N+L = M for any submodule L of M implies L = M [1]. An epimorphism g:A B is 

called small provided ker g is small submodule in B [2].An R-module M is called small projective 

module if for each small epimorphism g:A B where A and B are any R-modules and for each 

homomorphism f:M B there exists a homomorphism h:M A such that      = f [2].Let U and M be 

modules, then U is M-projective if for each epimorphism g:M N and each homomorphism 

f:U N,there exists a homomorphism h:U M such that g h  f [3].Let M and N be modules. N is 

called pointwise M-projective, if for every epimorphism g:M B and any homomorphism f:N B,then 

for every m M there exists a homomorphism h:N M, such that g h(m)  f(m).Let M and N be 

modules. N is called small M-projective, if for every small epimorphism g:M B and any 

homomorphism f:N B,there exists a homomorphism h:N M, such that g h  f. In this paper 
introduce the concept of small pointwise M-projective module as follows: Let M and N be modules. N 

is called small pointwise M-projective, if for every small epimorphism g:M B and any 

homomorphism f:N B, then for every m M there exists a homomorphism h:N M,such that g h(m)  

f(m).A submodule V of  M is called supplemented of a submodule U of M if V is a minimal element in 
the set of submodules L of M with U+L = M [1].An R-module M is called supplemented if for every 

submodule of M has supplemented in M [1]. An R-module M is called small pointwise projective 

module if for each small epimorphism g:A B where A and B are any R-modules and for each 
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homomorphism f:M B then for every m M there exists a homomorphism h:M A such that     (m) 

= f(m). A pair (P,f) is a small pointwise projective cover for a module M, if there exists a small 

epimorphism from P onto M, where P is a small pointwise projective module. Finally, introduce the 

concept of a small pointwise projective cover as generalization of small projective cover and give 
some properties of this notion. 

1. Some Characterization of Small pointwise M-Projective Modules 
In this section, introduce the concept of small pointwise M-projective modules and give some 

characterizations of small pointwise M-projective modules. Let start with the following: 

Let M and N be modules. N is called small pointwise M-projective, if for every small epimorphism 

g:M B and any homomorphism f:N B, then for every m M there exists a homomorphism h:N M, 

such that g h(m)  f(m) (i.e.) the following diagram is commutative: 

 
 

Every small M-projective module is small pointwise M-projective module since every M-projective 
module is a pointwise M-projective module. 

Every M-projective module is small pointwise M-projective module since every M-projective 

module is small M-projective module. 
Every pointwise M-projective module is small pointwise M-projective module since every M-

projective module is small M-projective module. 

A module M is self-projective if M is M-projective [3]. 
A module M is called self-small pointwise projective, if M is small pointwise M-projective.  

A module M is called self-pointwise projective, if M is pointwise M-projective.  

Every self-small projective module is self-small pointwise projective module. 

Every self-projective module is self-small pointwise projective module.  
Every self-pointwise projective module is self-small pointwise projective module.  

The following proposition gives a characterization for small pointwise M-projective module. 

Proposition (1.1) Let U and M be modules, the following are equivalent 
1. U is a small pointwise M-projective module; 

2. For every small short exact sequence with middle term 

   0  
f g

K M N 0   , the sequence 
 

0 Hom(U,K)  

Hom(1,f ) Hom(1,g)
Hom(U,M) Hom(U, N) 0    is short exact; 

3. For every small submodule K of M, every homomorphism h:U 
 

 
, 

 

 
 factor through the natural 

epimorphism :M 
 

 
 

Proof: (12) It is enough to show that, Hom(I,g) is an epimorphism.Let f1Hom(U,N) and consider 

the following diagram: 

 

g
M B 0;   Kerg << M

N

f
h

g
M N 0

U

f1

h
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Since g is a small epimorphism and U is a small pointwise M-projective module then for every 

m M there exists a homomorphism h:U M such that g h(m)  f1(m).Now,(Hom(I,g)(h))(m)  g h(m) 

  f1(m) and hence Hom(I,g)(h)  g h  f1.  

(23) Let K be a small submodule of M and let h:U  
 

 
 be an epimorphism. Consider the following 

small short exact sequence 

i M
0 K M 0

K


     

where i is the inclusion homomorphism  and  is the natural epimorphism.By(2), the 

homomorphism Hom(I,):Hom(U,M) Hom(U,
 

 
) is an epimorphism. This implies, the existence of                                             

a homomorphism  fHom(U,M) such that h  Hom(I,)(f)   f. 

(31) Let g:M B be a small epimorphism and let h:U B be any homomorphism. Consider the 
following diagram: 

                                                                                                          
 

Where K  Ker g , :M 
 

 
 is the natural epimorphism and h1:B 

 

 
 be the usual isomorphism.By 

(3), there exists  a homomorphism :U M such that    h1 h.One can check easily that h1 g(m)  

(m).Now, h1 g (m)   (m)  h1 h(m).Thus g (m)  h(m), since h1 is an isomorphism.     

Proposition (1.2) Let M1 and M2 be modules, with M  M1M2, then the following conditions are 
equivalent: 

1. M2 is a small pointwise M1-projective; 

2. For any submodule N of M, such that M1 is a supplemented of N in M, there exists a 

submodule N1 of N such that M  M1N1. 

Proof: (12) Let M1 be a supplemented of a submodule N of M, then M  N+M1 with 

NM1<<M1.Let :M1 
  

     
 be the natural epimorphism. Define f:M2 

  

     
 by f(x)  

y+NM1,for all x M2 ,we have x  y+n, for some yM1 and nN.Cleary f is well-defined and                                         
a homomorphism. Consider the following diagram: 

                                                                                                                    

g
M B 0

U

h


 M

K

 h1


M1

M2

f
h

 
1

1

M

N M
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Since M2 is a small pointwise M1-projective, then for every mM2 there exists                                          

a homomorphism h:M2 M1, such that  h(m)  f(m).Define N1 {y-h(y):yM2}.We claim that N1N. 

Let xN1,then x  w-h(w),for some wM2. Now, h(w)  f(w). Since M  N+M1 and wM2,then w  

n+v for some nN and vM1.But h(w)+NM1  f(w)  v+NM1.This implies that h(w)-vN and 

thus w-h(w)N, i.e., xN.It is easy to show that M  M1+N1. Let wM1N1,so w  y-h(y) for some 

yM2.Thus w+h(y)  y  0.Therefore w  0.Hence M  M1N1. 

(21) Let :M1 
  

 
 be the natural epimorphism, where B<<M1 and f:M2 

  

 
 be any 

homomorphism.Define N {x-y:f(x)  (y),where xM2,yM1}.It is clear that M  M1+N. Claim that 

NM1B.Let wNM1, so wN and hence w  m2-m1,for some m2M2,m1M1,where f(m2)  

(m1).Thus w+m1  m2  0,since M  M1M2.Therefore (m1)  0 which implies that m1B and 

hence wB.But B<<M1,thus NM1<<M1.Thus M1 is a supplemented of N in M. By (2),there exists a 

submodule N1 of N such that M  M1N1. Define :M2  M1 by (w)  v,where w  n+v for some 

nN1 and vM1. Clearly  is well-defined and a homomorphism.And make the following diagram 
commutative: 

 
Let wM2,then w  n+v, where nN1 and vM1,but nN,so n  x-y,where f(x)  (y).Hence w  

x-y+v which implies that w-x  v-yM1M2  0. Thus w  x and v  y.Therefore (w)  (v)   

(y)  f(x)  f(w). Consequently M2 is a small pointwise M1-projective module.     

2. Some Properties of Small Pointwise M-Projective Module 
In this section, give some basic properties of small pointwise M-projective module. Start with the 

following: 

Proposition (2.1) Let M be a module and {U} be an indexed set of modules. Then    U is a 

small pointwise M-projective if and only if every U is a small pointwise M-projective. 

Proof:() Let    U be a small pointwise M-projective and let . Consider the following 
diagram: 

 
where g:M B is a small epimorphism, f:U B is any homomorphism, P and J are the 

projections and the injection homomorphisms,respectively. Since    U is small pointwise M-

projective,then for every     U, there exists a homomorphism h:   U M such that g h() 

 f P().Let h h J:U M.Now,for every m  M,g h(m)  g h J(m)  f  J(m)   f I(m)  
f(m). 

() Let g:M B be a small epimorphism and let f:   U B be any homomorphism.For each 

, consider the following diagram: 

M1

M2

f


0;  B<<M1

 
1M

B

M B 0

f

g

h

 J

 h

 
 U


 U
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Where J:U    Uis the injection homomorphism. Since U is small pointwise M-projective, for 

each , for every m U, there exists a homomorphism  h:U  M, such that g h(m)  f J(m); 

for each . Define h:    U   M by h()  ∑     (()).Clearly h is well defined and a 

homomorphism. Also,(g h)()  g(h())  g(∑     (())) = ∑         (())   ∑      

  (())  f(∑     (()))  f(). Hence    U is a small pointwise M-projective module.      

Proposition(2.2) Let M and U be modules. If 
f g

0 M M M 0      is a 

small short exact sequence and U is a small pointwise M-projective, then U is small pointwise M and 

M-projective. 

Proof: To show that U is a small pointwise M-projective, let :M N be an small epimorphism and 

let h:U N be any homomorphism. Now, consider the following diagram: 

 
By [1,proposition(19.3)]  g is a small epimorphism and since U a small pointwise M-

projective,for every u U there exists a homomorphism :U M such that  g (u)  h(u),i.e.,g  is 

the required homomorphism. To show that U is a small pointwise M-projective, let g:M B be a 

small epimorphism and let f:U B be homomorphism.Consider the following diagram: 

 

where i is the inclusion homomorphism and  is the natural epimorphism. Define i:B 
 

     
 by 

i(b)  a+Ker g for all bB, where b  g(a),for some aM.Since U is a small pointwise M-projective 

module,for every u U, there exists a homomorphism h:U M such that  h(u)  i f(u). Claim that 

h(U)M.Let wh(U),then there exists u1U such that w  h(u1).Now,  h(u1)  i f(u1)  i g(a) for 

0M B

f

g

 J  U

U

h
h

g
M N 0

U

h

 M




M

i '



B

h
 i

h*

U

f '

M '
g '

0; Kerg ' << M '

 M

Kerg
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some aM. Hence h(u1)  a+Ker g and therefore a1-h(u1)Ker gM.Thus h(u1)M and 

consequently h(U)M. Define h*:U M by h(x)  h*(x),for all xU.Now, i g h*(u)   i h*(u)  

 h*(u)   h(u)  i f(u).Since i is a monomorphism, g h*(u)  f(u). Hence U is a small pointwise 

M-projective module. 

Corollary (2.3) Let M  M1M2, where M1 and M2 are modules. If M is a small pointwise projective 
module, then M1 is a self-small pointwise projective and M2 is a self-small pointwise projective and 

also M1 is a small pointwise M2-projective and M2 is a small pointwise M1-projective. 

Proof: Since M  M1M2 is a small pointwise projective module,so M1M2  is a small pointwise M1-

projective and M1M2, is a small pointwise M2-projective.By proposition (2.1), get the results. 

Let M be an R- module. A submodule N of M is called fully invariant, if f(N)N, for each 

fEnd(M) [4,p.172]. 
Proposition (2.4) Let M be a small pointwise projective module and let K be a fully invariant 

submodule of M. If K<<M, then 
 

 
 is a self-small pointwise projective module. 

Proof: Consider the following diagram: 

 

where g:
 

 
 B is a small epimorphism,f:

 

 
 B is any homomorphism and :M 

 

 
 is the natural 

epimorphism.By small pointwise projectivity of M, and g  is small epimorphism,for every m M 

there exists a homomorphism h:M M,such that g  h(m)  f (m).Define h*:
 

 
 

 

 
 by h*(m+K)  

h(m)+K for all mM. To show that h* is well defined.Let m1+K  m2+K, which implies that m1-

m2K and since K is a fully invariant submodule, thus h(m1-m2)h(K)K. Hence h(m1)+K  h(m2)+K. 

Clearly h* a homomorphism. Now, g h*(m+K)  g  h(m)  f (m)  f(m+K).     

Proposition (2.5) Let M be a self-small pointwise projective module and let :M N be a small 

epimorphism, then there exists a homomorphism hEnd(M) such that Ker is invariant under h. 
Proof: Consider the following diagram: 

 



g

f

0B

M



 M

K

 M

K

h h*

M



0

M



M


h

 M

Ker

N
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Where : 
 

   
 N is the usual isomorphism defined by (m+Ker())  (m) for all mM and  is the 

natural epimorphism. Since M is self-small pointwise projective module,for every   M. there exists 

a homomorphism h:M M such that  h(  )   (   ).Now,to show that h(Ker) Ker,let 

wKer,then h(w)  (w+Ker())  (w)  0 and hence h(w)Ker.This implies that Ker is 
invariant under h. 

A submodule K of an R-module M is M-cyclic submodule of M, if it isomorphic to M/X, for some 

submodule X of M [5]. The following proposition gives a condition under which a module M is N-
injective. 

Proposition(2.6) Let M,N be modules.If N is a small pointwise M-projective and every M-cyclic 

submodule of M is N-injective,then M is N-injective and every submodule of N is a small pointwise 
M-projective. 

Proof: Let N be a small pointwise M-projective and suppose that every M-cyclic submodule is N-

injective. Since M is trivially M-cyclic,then M is N-injective. Let :M B be a small epimorphism and 

let f:N1 B be any homomorphism,where N1 is a submodule of N.Consider the following diagram: 

 
where i:N1 N is the inclusion homomorphism. Since B is M-cyclic module, thus by our hypothesis B 

is N-injective module. Therefore, there exists a homomorphism :N  B such that  i  f. But N is a 

small pointwise M-projective module, so for every n N there exists a homomorphism h:N M such 

that  h( )  ( ). Define g:N1 M by g  h i. Now,  g( )  h i( )    i( )   f( ). 
The converse holds if M is hollow. 

Suppose that M is N-injective and every submodule of N is a small pointwise M-projective.Thus N 

is a small pointwise M-projective module. Let B be M-cyclic submodule of M. Consider the following 
diagram: 

 
where i:N1 N is the inclusion homomorphism and f:N1 B is any homomorphism and g:M B is 

the required epimorphism onto B, since B is M-cyclic module. In fact g is a small epimorphism, since 

M is hollow. By our assumption, N1 is a small pointwise M-projective module. Thus, for every    N1, 

there exists a homomorphism h:N1 M such that g h(  )  f(  ).But M is N-injective so,there exists a 

homomorphism :N M such that  i  h. Define :N B by g . Now,  i  g  i  g h  f.     
A sufficient condition for self-small pointwise projective module to be S.F, has been provided in 

the following. 

Proposition (2.7) Let M be a self-small pointwise projective module and let AM, then A<<M and 
 

 
 

is isomorphic to direct summand of M if and only if A  0. 

0;  Ker << MM B

f
h

0 N1 N
i



 

g

M B

fh

0 N1 N
i



 

g
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Proof: () Let :M  
 

 
 be the natural epimorphism, where A<<M and 

 

 
 is isomorphic to                                  

a direct summand N of M. Let f: 
 

 
 N be an isomorphism. Consider the following diagram: 

 
Where J and  are the injection homomorphism and the projection homomorphism respectively, 

and I:
 

 
 

 

 
 is the identity.Since M is a self-small pointwise projective module, for every m M there 

exists a homomorphism  h1:M M such that f  h1( )  ( ).Define h2:
 

 
 M by  h2  h1 J f.Now, 

f  f2 gc  f  h1 J f   J f  I f. Thus f  h2  f ,which implies that  h2  I.Since f is 

isomorphism.Therefore the sequence :M  
 

 
   0 splits and hence A  0. 

() Trivial. A module M is called a small cover for a module N, if there exists a small epimorphism 

:M N [6]. 
Proposition (2.8) A small cover of a small pointwise projective module is a small pointwise 

projective. 
Proposition (2.9) Let M be a self-small pointwise projective module and let A be a direct summand of 

M. If M is a small cover of N and N is a small cover of A, then MAN. 

Proof: Since M is a small cover of N and N is a small cover of A, where A is a direct summand of M, 

there exists a small epimorphisms :M N and :N   A. Consider the following diagram: 

 
Where , J are the projection and the injection homomorphisms respectively and I:A A is the 

identity.Since M is a self-small pointwise projective module and   is a small epimorphism, for 

every m M there exists a homomorphism h1:M M such that   h1( )   ( ).Define h2:A M by 

h2  h1 J.Also, define h3:A N byh3   h2.Now, h3    h2    h1 J   J  I.Thus, the small 

short exact sequence N A 0


   splits and hence NA. Also   h2    h1 J   J 

 I.Hence the small short exact sequence 
o

M A 0
 

   splits and therefore M
A.Consequently MAN.   

3. Small Pointwise Projective Cover 
In this section, introduce the concept of a small pointwise projective cover and give some properties 

of this notion. 

A pair (P,f) is a small pointwise projective cover for a module M,if there exists a small 

epimorphism from P onto M, where P is a small pointwise projective module. 

A ring R is called Von-Neumann regular if for each aR, there exists bR such that a  a.b.a 

[1,3.1] 

 

 M

A
N M

N
 M
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Example (3.1): 

1.    is Von-Neumann regular ring. 

2. The ring (P(X), , ) is Von-Neumann regular ring, where P(X) is the power set of X and 

 is the symmetric difference and  is the intersection. 

3. The ring Z is not Von-Neumann regular 

       A ring R is called a Boolean ring, if for each aR, a
2
  a [1, p.25(9)] 

Remark (3.2) 

1. Each Boolean ring is commutative. 

2. Each Boolean ring is Von-Neumann regular. 

3. Every subring and every factor ring of a Boolean ring is a Boolean ring. 

4. For any index set , the product ∏     is a Boolean ring, where R is a Boolean ring. 
A ring is called semisimple,if each module over R is a projective [7,17.4]. 

Example (3.3) 

1. The ring    is semisimple. 

2. The ring Z is not semisimple, since Q as Z-module is not projective module. 

      A ring R is called cosemisimple if Rad(M)  0,for each R-module M [2]. 
The following proposition gives a characterization of cosemisimple ring. 

Proposition (3.4) [1, 23.5(2)] A commutative ring is cosemisimple if and only if it is Von-Neumann 

regular. 
Remark (3.5) Every semisimple ring is cosemisimple, but the converse is not true. 

Example (3.6) Let R be the direct product of countably infinite many copies of    Clearly     is                             

a Boolean ring, thus by remark (3.2), R is a Boolean ring and R is a Von-Neumann regular. By 
proposition (3.4) implies that R is a cosemisimple ring. Let I be the direct sum of countably infinite 

many copies of    inside of R , Claim that R is not semisimple ring. Clearly, 
 

 
 is an R-module.Now, 

assume  
 

 
 is a projective module.Consider the following short exact sequence: 

i R
0 I R 0

I


     

where i is the inclusion homomorphism and  is the natural epimorphism.By [6,17(1,2)(3)], this 

sequence splits,i.e.,R  IK,where KR. Thus 
 

 
 I. But 

 

 
 is cyclic and hence I is cyclic. A 

contradiction. 

Remark If a module has projective cover, then it has a small pointwise projective cover. But the 
converse is not true in general. See example (3.6). 

Now, prove, if a module have a small pointwise projective cover, then it is unique up to 

isomorphism. 
Proposition(3.7) Suppose that a module M has a small pointwise projective cover (P,f). If Q is                              

a small pointwise projective module, with q:Q M is a small epimorphism, then Q P. 

Proof: Let f:P M be a small epimorphism, where P is a small pointwise projective module and let 

q:Q M be a small epimorphism, where Q is a small pointwise projective module. Consider the 
following diagram: 

 
By small pointwise projectivity of Q,for every q Q, there exists a homomorphism h:Q P,such that 

f h( )  q( ).Claim that h is an epimorphism.To show that h is onto,it is enough to prove that P  

Ker(f)+h(Q).Now,let xP,then f(x)  q(y) for some yQ so,f(x)  f(h(y)) and this implies that x-

h(y)Kerf,i.e.,P  Ker(f)+h(Q),but Ker(f)<<P,thus h(Q)  P and h is onto.To prove h is                             

f
P M 0;   Ker(f) << P

Q

q
h
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a monomorphism,let wKer(h),then h(w)  0 and thus fh(w)  q(w)  0.Which implies that wKer(q). 

Consequently Ker(h)Ker(q)<<Q.Therefore Ker(h)<<Q and hence h:Q P is a small epimorphism. But 

P is a small pointwise projective module, so the sequence 
h

Q P 0   splits.Thus h is a 

monomorphism.     
Proposition (3.8) Let M be a module and let (P,f) be a small pointwise projective cover for M. If M is 

a small pointwise P-projective, then M is a small pointwise projective. 

Proof: Let g:A B be a small epimorphism and :M B be any homomorphism. Consider the 
following diagram: 

 
where i:M M is the identity.Since P is a small pointwise projective module, for every p P, there 

exists a homomorphism h2:P A,such that g h2( )   f( ).Also,since M is a small pointwise P-

projective for every m M there exists a homomorphism h1:M P,such that f h1( )  I( ).Define h  

h2 h1.Now, g h( )  g h2 h1( )   f h1( )   I( )  ( ). 

Let M be a module and let S  End(M).Let N be a proper submodule of M.N is called an S-prime 

submodule of M, if whenever f(m)N, for some fS and mM, then f(M)N or mN[8]. 
Proposition (3.9) Let N be an S-prime submodule of a small pointwise projective module M. Assume 

that, there exists 0fS such that f
 2

  f,f(N)N and f(N)<< M. Then 
 

 
 has a small pointwise 

projective cover. 

Proof: Let N be an S-prime submodule of a small pointwise projective module M and 0 fS such 

that f
2
  f, f(N)N and f(N)<<M. Since f(1-f)(m)  0N for all mM and N is S-prime,so f(M)N or 

(1-f)(m)N. Assume (1-f)(m)N,for some mM,then f(M)N and hence f(M)  f(N). But M  

f(M)(1-f)(M), thus M  f(N)(1-f)(M) and therefore (1-f)(M)  M, since f(N)<<M. Hence f  0 a 

contradiction. Consequently,(1-f)(m)N for each mM. Define h:f(M) 
 

 
 by h(f(m))  m+N,for all 

mM.we have to show that h is well-defined.Let f(m1)  f(m2), which implies that f(m1-m2)  0, but 

m1-m2  (1-f)(m1-m2)N. Therefore m1+N  m2+N. Clearly h is                                a homomorphism 

and onto. It is easy to show that Ker(h)  f(N)<<M,thus f(f(N))<<f(M).Thus f(N)<<f(M). Since f(M) is 
a small pointwise projective module and h is a small epimorphism.Therefore (f(M),h) is a small 

pointwise projective cover for 
 

 
. 

Now. need the following proposition to obtain a characterization of a module M to be small 
pointwise N-projective if M has a small pointwise projective cover. 

Proposition(3.10) Let M be a small pointwise N-projective module and let (P,f) be a small pointwise 

cover of M.Then for every homomorphism :P N, there exists a homomorphism :M N such that 

 f  . 

Proof: Let f:P M be a small epimorphism and let :P N be any homomorphism. Let T  (Ker(f)). 

By [6,5.18], (Ker(f))<<N. Define :M 
 

 
 by (m)  ((x)) for all  mM,where m  f(x) and 

:N  
 

 
  is the natural epimorphism.To show that  is well-defined.Suppose that m  f(x)  f(y) for 

A B 0;  Ker(g) << A



g

M

h
h2

f

h1

M

I

P 0;  Ker(f) << P
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some x,yP, then x-yKer(f),which implies that (x-y)T. Hence ((x))  ((y)).It is easy to 

show that  is a homomorphism.Consider the following diagram: 

 
Since M is a small pointwise N-projective module,for every mM, there exists a homomorphism 

:M N such that  ( )  ( ).Now,let xP, ( f)(x)  (f(x)).But (f(x))  ( )(f(x)) and hence 

( )(x)  (  f)(x),for all xP.Therefore (- f)(P)T.Let X  {wP:( f)(w)  (w)}. Claim that 

X  P. Clearly XP. Let  xP then (-( f))(x)T, but T  (Ker(f)) and hence(-( f))(x)  (k), 

for some kKer(f).Thus(x-k)  ( f)(x-k),therefore x-kX which implies that P  Ker(f)+X, but 

Ker(f)<<P.Hence X  P.     

Proposition (3.11) Let M,N and K be modules, where K is a small pointwise projective and f:K M be 

an epimorphism. Then M is a small pointwise N-projective if for every homomorphism :K N,there 

exists a homomorphism *:M N, such that * f  . 

Proof: Let g:N B be a small epimorphism and h:M B be any homomorphism. Consider the 

following diagram: 

 
By small pointwise projectivity of K for every k K, there exists a homomorphism :K N, such 

that g ( )  h f( ). By our hypothesis, there exists a homomorphism *:M   N, such that * f  , 

and so g * f  g   h f.For mM, we have (g *)(m)  g(*(m))  g(*(f(x))),here m  f(x),for 

some xK.Hence (g *)(m)  (g * f)(x)  (g *)(f(x))  (g )(x)  h(f(x))  h(m). Therefore M is a 
small pointwise N-projective module. 

From (3.10) and (3.11) get the following: 
Theorem (3.12) Let M and N be modules and assume M has a small pointwise projective cover (P,f), 

then M is a small pointwise N-projective module if and only if for every homomorphism :P N, there 

exists a homomorphism ̂ :M N, such that ̂  f  . 
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