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Abstract

Let R be a ring and let M be a left R-module. In this paper introduce a small
pointwise M-projective module as generalization of small M- projective module,
also introduce the notation of small pointwise projective cover and study their basic
properties.
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Introduction

Let R be a ring and M be a left R-module. A submodule N of an R-module M is called small
submodule of M if N+L = M for any submodule L of M implies L = M [1]. An epimorphism g:A—B is
called small provided ker g is small submodule in B [2].An R-module M is called small projective
module if for each small epimorphism g:A—B where A and B are any R-modules and for each
homomorphism f:M—B there exists a homomorphism h:M—A such that goh = f[2].Let U and M be
modules, then U is M-projective if for each epimorphism g:M—-N and each homomorphism
f:U—-N,there exists a homomorphism h:U—M such that geh = f [3].Let M and N be modules. N is
called pointwise M-projective, if for every epimorphism g:M—B and any homomorphism f:N—-B,then
for every meM there exists a homomorphism h:N—M, such that geh(m) = f(m).Let M and N be
modules. N is called small M-projective, if for every small epimorphism g:M—B and any
homomorphism f:N—B,there exists a homomorphism h:N—-M, such that goh = f. In this paper
introduce the concept of small pointwise M-projective module as follows: Let M and N be modules. N
is called small pointwise M-projective, if for every small epimorphism g:M—-B and any
homomorphism f:N—B, then for every meM there exists a homomorphism h:N—M,such that geh(m) =
f(m).A submodule V of M is called supplemented of a submodule U of M if V is a minimal element in
the set of submodules L of M with U+L = M [1].An R-module M is called supplemented if for every
submodule of M has supplemented in M [1]. An R-module M is called small pointwise projective
module if for each small epimorphism g:A—B where A and B are any R-modules and for each
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homomorphism f:M—B then for every meM there exists a homomorphism h:M—A such that g o h(m)
= f(m). A pair (P,f) is a small pointwise projective cover for a module M, if there exists a small
epimorphism from P onto M, where P is a small pointwise projective module. Finally, introduce the
concept of a small pointwise projective cover as generalization of small projective cover and give
some properties of this notion.
1. Some Characterization of Small pointwise M-Projective Modules

In this section, introduce the concept of small pointwise M-projective modules and give some
characterizations of small pointwise M-projective modules. Let start with the following:

Let M and N be modules. N is called small pointwise M-projective, if for every small epimorphism
g:M—-B and any homomorphism f:N—B, then for every meM there exists a homomorphism h:N—-M,
such that geh(m) = f(m) (i.e.) the following diagram is commutative:

M » B » 0; Kerg<<M

Every small M-projective module is small pointwise M-projective module since every M-projective
module is a pointwise M-projective module.

Every M-projective module is small pointwise M-projective module since every M-projective
module is small M-projective module.

Every pointwise M-projective module is small pointwise M-projective module since every M-
projective module is small M-projective module.
A module M is self-projective if M is M-projective [3].
A module M is called self-small pointwise projective, if M is small pointwise M-projective.
A module M is called self-pointwise projective, if M is pointwise M-projective.
Every self-small projective module is self-small pointwise projective module.
Every self-projective module is self-small pointwise projective module.
Every self-pointwise projective module is self-small pointwise projective module.
The following proposition gives a characterization for small pointwise M-projective module.
Proposition (1.1) Let U and M be modules, the following are equivalent
1. U is a small pointwise M-projective module;
2. For every small short exact sequence with middle term

0—s K—3M—95N >0, the sequence = O0——Hom(U, K)
Hom(. ) >Hom(U, M) Hom(1.9) >Hom(U, N) ——0 is short exact;

3. For every small submodule K of M, every homomorphism h:U— % % factor through the natural

epimorphism m:M— %
Proof: (1=2) It is enough to show that, Hom(l,g) is an epimorphism.Let f;eHom(U,N) and consider
the following diagram:
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Since g is a small epimorphism and U is a small pointwise M-projective module then for every
mMEM there exists a homomorphism h:U—M such that geh(m) = f,(m).Now,(Hom(l,g)(h))(m) = geh(m)
= f1(m) and hence Hom(l,g)(h) = goh = f;.

(2=3) Let K be a small submodule of M and let h:U— % be an epimorphism. Consider the following
small short exact sequence

0 sK—sM— 52 >0

where i is the inclusion homomorphism and = is the natural epimorphism.By(2), the
homomorphism Hom(l,n):Hom(U,M)eHom(U,%) is an epimorphism. This implies, the existence of
a homomorphism feHom(U,M) such that h = Hom(l,7)(f) = of.

(3=1) Let g:M—B be a small epimorphism and let h:U—B be any homomorphism. Consider the
following diagram:

U

Y. "
i g
M »B— » 0

T h1

Y

M

K

Where K = Ker g, m:M— % is the natural epimorphism and h;:B— % be the usual isomorphism.By

(3), there exists a homomorphism y:U—M such that moy = h;oh.One can check easily that h;og(m) =

7(m).Now, hjegey(m) = ey(m) = hyeh(m).Thus gey(m) = h(m), since h; is an isomorphism.

Proposition (1.2) Let M; and M, be modules, with M = M;®M,, then the following conditions are

equivalent:

1. My is a small pointwise Mi-projective;

2. For any submodule N of M, such that M; is a supplemented of N in M, there exists a
submodule N; of N such that M = M;®N;.

Proof: (1=2) Let M; be a supplemented of a submodule N of M, then M = N+M; with

NNM;<<M;.Let n:Ml—>L be the natural epimorphism. Define f:M2—>L by f(x) =
N M1 N M1

y+NnMy,for all xe M, ,we have x = y+n, for some yeM; and neN.Cleary f is well-defined and
a homomorphism. Consider the following diagram:

P
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Since M, is a small pointwise Mj-projective, then for every meM, there exists
a homomorphism h:M,—Mj, such that woh(m) = f(m).Define N; ={y-h(y):yeM,}.We claim that N;<N.
Let xeNjy,then x = w-h(w),for some weM,. Now, h(w) = f(w). Since M = N+M; and weM,,then w =
n+v for some neN and veM;.But h(w)+N~M; = f(w) = v+N~M,.This implies that h(w)-veN and
thus w-h(w)eN, i.e., xeN.lIt is easy to show that M = M;+N;. Let weM;nNy,50 w = y-h(y) for some
yeM,. Thus w+h(y) =y = 0.Therefore w = 0.Hence M = M;®N;.

(2=>1) Let rc:Mﬁ%be the natural epimorphism, where B<<M; and f:Mﬁ% be any

homomorphism.Define N ={x-y:f(x) = nt(y),where xe M,,yeM.}.It is clear that M = M;+N. Claim that
NNM;<B.Let weN~M;, so weN and hence w = m,-my,for some m,eM,,m;eM,where f(m,) =
n(my). Thus w+m; = m, = 0,since M = M;®M,.Therefore n(m;) = 0 which implies that m;eB and
hence weB.But B<<My,thus NmM;<<M,.Thus M; is a supplemented of N in M. By (2),there exists a
submodule N; of N such that M = M;®N;. Define a:M, =M, by a(w) = v,where w = n+v for some
neN; and veM;. Clearly a is well-defined and a homomorphism.And make the following diagram
commutative:

M2
o ¢
Vg
M1 o, I\gl » 0; B<<M,

Let weM,,then w = n+v, where neN; and veM,,but neN,so n = x-y,where f(x) = n(y).Hence w =
x-y+v which implies that w-x = v-yeM;~M, = 0. Thus w = x and v = y.Therefore na(w) = n(v) =
n(y) = f(x) = f(w). Consequently M, is a small pointwise M;-projective module.

2. Some Properties of Small Pointwise M-Projective Module

In this section, give some basic properties of small pointwise M-projective module. Start with the

following:
Proposition (2.1) Let M be a module and {U,}.x be an indexed set of modules. Then &, c AU, is a
small pointwise M-projective if and only if every U, is a small pointwise M-projective.
Proof:(=) Let @, AU, be a small pointwise M-projective and let aeA. Consider the following
diagram:
p
® LJa——————ji————>-LJa
aeA -

: Jo
hi f
: . hoc
Y ,#/ g
M » B > 0

where g:M-B is a small epimorphism, f:U,—»B is any homomorphism, P, and J, are the
projections and the injection homomorphisms,respectively. Since @, < AU, is small pointwise M-
projective,then for every we@®,, . AU, there exists a homomorphism h: @, < U,—M such that geh(y)
= foP,(y).Let hy= heJ,:U,—M.Now,for every m eM,geh,(m) = goheJ,(m) = fop,ed,(m) = fel(m) =
f(m).
(<) Let g:M—B be a small epimorphism and let f:®, . AU,—B be any homomorphism.For each
aeA, consider the following diagram:
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‘]a
> U
UO‘ aeA «
hai h'/” f
Y ;’/ g
M » B———»0

Where J,:U,— P, < AU.is the injection homomorphism. Since U, is small pointwise M-projective, for
each aeA, for every meU,, there exists a homomorphism h,:U, —M, such that geh,(m) = foJ,(m);
for each aeA. Define h: @, AU, = M by h(y) = X, c A hy(w(a)).Clearly h is well defined and a

homomorphism. Also,(geh)(y) = 9(h(y)) = 9(Za caho(¥(@)) =2ucalgeh)(W(@) = Xocalfe
i)W (@) =y c Aju(w()) = f(y). Hence @, AU, is a small pointwise M-projective module.

Proposition(2.2) Let M and U be modules. If O M ——sM—9 5sM" >0 is a
small short exact sequence and U is a small pointwise M-projective, then U is small pointwise M' and
M’ -projective.

Proof: To show that U is a small pointwise M"’-projective, let a:M"'—N be an small epimorphism and
let h:U—N be any homomorphism. Now, consider the following diagram:

M > M" = > N » 0

By [1,proposition(19.3)] aeg is a small epimorphism and since U a small pointwise M-
projective,for every ueU there exists a homomorphism y:U—-M such that aegowy(u) = h(u),i.e.,govy is
the required homomorphism. To show that U is a small pointwise M'-projective, let g’:M'—B be a
small epimorphism and let f:U—B be homomorphism.Consider the following diagram:

U
h* .- o
/”” ’ f'
‘,’ gl ','1 '
M-+ > B » 0;Kerg'<<M’
i hS _
i J I’
: ,I' '
\ A 4
T
M — > M
Kerg’

where i is the inclusion homomorphism and = is the natural epimorphism. Define i":B— %g, by

i'(b) = a+Ker g’ for all beB, where b = g'(a),for some acM’.Since U is a small pointwise M-projective
module,for every ueU, there exists a homomorphism h:U—M such that woh(u) = i'of’(u). Claim that
h(U)<M’.Let weh(U),then there exists u; U such that w = h(u;).Now, weh(u;) = i'of'(u;) = i'og’(a) for
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some aeM’. Hence wh(u;) = a+Ker g and therefore a;-h(u;)eKer g’<M’.Thus h(u;)eM’ and
consequently h(U)<M'. Define h*:U—-M’ by h(x) = h*(x),for all xeU.Now, i'eg’oh*(u) = meich*(u) =
noh*(u) = moh(u) = i'of'(u).Since i’ is a monomorphism, g'eh*(u) = f'(u). Hence U is a small pointwise
M’-projective module.
Corollary (2.3) Let M = M;©@M,, where M; and M, are modules. If M is a small pointwise projective
module, then M is a self-small pointwise projective and M, is a self-small pointwise projective and
also M, is a small pointwise M,-projective and M, is a small pointwise M;-projective.
Proof: Since M = M;®M, is a small pointwise projective module,so M;®M; is a small pointwise M-
projective and M;®My, is a small pointwise M-projective.By proposition (2.1), get the results.

Let M be an R- module. A submodule N of M is called fully invariant, if f(N)<N, for each
feEnd(M) [4,p.172].
Proposition (2.4) Let M be a small pointwise projective module and let K be a fully invariant
submodule of M. If K<<M, then % is a self-small pointwise projective module.

Proof: Consider the following diagram:

n M

M—— >

’/’ ,/’ K
h,- ’ h* /'/
5 IVI;
T
M — — 5 9 » B » 0

K

where g:% -B is a small epimorphism,f:% —B is any homomorphism and n:M—)% is the natural
epimorphism.By small pointwise projectivity of M, and gon is small epimorphism,for every meM
there exists a homomorphism h:M—-M,such that geroh(m) = forr(m).Define h*:% - % by h*(m+K) =
h(m)+K for all meM. To show that h* is well defined.Let m;+K = m,+K, which implies that m;-
m,eK and since K is a fully invariant submodule, thus h(m;.m,)eh(K)<K. Hence h(m;)+K = h(m,)+K.
Clearly h* a homomorphism. Now, geh*(m+K) = gortoh(m) = forr(m) = f(m+K).
Proposition (2.5) Let M be a self-small pointwise projective module and let ¢:M—N be a small

epimorphism, then there exists a homomorphism heEnd(M) such that Ker¢ is invariant under h.
Proof: Consider the following diagram:

M
S
I" M
h, Kerd
v
rooy
M » N » 0
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Where y: %ﬂb —N is the usual isomorphism defined by y(m+Ker(¢)) = ¢(m) for all meM and r is the

natural epimorphism. Since M is self-small pointwise projective module,for every m; eM. there exists
a homomorphism h:M—M such that ¢oh(m;) = weon(m).Now,to show that h(Kerd)< Kerg,let
weKerd,then dh(w) = y(w+Ker(d)) = ¢(w) = 0 and hence h(w)eKerd.This implies that Kerd is
invariant under h.

A submodule K of an R-module M is M-cyclic submodule of M, if it isomorphic to M/X, for some
submodule X of M [5]. The following proposition gives a condition under which a module M is N-
injective.

Proposition(2.6) Let M,N be modules.If N is a small pointwise M-projective and every M-cyclic
submodule of M is N-injective,then M is N-injective and every submodule of N is a small pointwise
M-projective.

Proof: Let N be a small pointwise M-projective and suppose that every M-cyclic submodule is N-
injective. Since M is trivially M-cyclic,then M is N-injective. Let yv:M—B be a small epimorphism and
let f:N;—B be any homomorphism,where N, is a submodule of N.Consider the following diagram:

i
0 > N1 » N
g .
T 14
y e V] f/
M > B > 0; Kery<<M

where i:N;—N is the inclusion homomorphism. Since B is M-cyclic module, thus by our hypothesis B

is N-injective module. Therefore, there exists a homomorphism ¢ :N— B such that £ i = f. But N is a
small pointwise M-projective module, so for every neN there exists a homomorphism h:N—M such
that yoh(n) =/ (n). Define g:N;—>M by g = hei. Now, weg(n) =yohoi(n) = £ oi(n) = f(n).
The converse holds if M is hollow.

Suppose that M is N-injective and every submodule of N is a small pointwise M-projective.Thus N

is a small pointwise M-projective module. Let B be M-cyclic submodule of M. Consider the following
diagram:

.

. -7

. -7 .

e ‘

. -
P -
h L’ P s
.
. f . - .
.
. - .
. P .
’ - ‘
. .- Sy
P -
. _-"
.
. e
. Phe
“ -
’ g

where i:N;—N is the inclusion homomorphism and f:N;—B is any homomorphism and g:M—-B is
the required epimorphism onto B, since B is M-cyclic module. In fact g is a small epimorphism, since
M is hollow. By our assumption, N; is a small pointwise M-projective module. Thus, for every n; €Ny,
there exists a homomorphism h:N;—M such that goh(n;) = f(n,).But M is N-injective so,there exists a
homomorphism £ :N—M such that £ oi = h. Define y:N—B by go £ . Now, yoi = go £ oi = goh = 1.

A sufficient condition for self-small pointwise projective module to be S.F, has been provided in
the following.
Proposition (2.7) Let M be a self-small pointwise projective module and let A<M, then A<<M and %

is isomorphic to direct summand of M if and only if A =0.

2978



Hussain Iragi Journal of Science, 2015, Vol 56, No.4A, pp: 2972-2983

Proof: (=) Let m:M— % be the natural epimorphism, where A<<M and % is isomorphic to
a direct summand N of M. Let f: % —N be an isomorphism. Consider the following diagram:

M f
L > N
A
ha hy .-
-~ f
M L =:.Eﬂ > N
A

Where J and p are the injection homomorphism and the projection homomorphism respectively,
and Iz% —>% is the identity.Since M is a self-small pointwise projective module, for every meM there
exists a homomorphism h;:M—M such that forroh;(m) = p(m).Define hz:% —-M by h; = hjoJof.Now,
fortof, o = fomohjoJof = poJof = lof. Thus fomeh, = f ,which implies that moh, = I.Since f is
isomorphism.Therefore the sequence m:M— % — 0 splits and hence A = 0.

(<) Trivial. A module M is called a small cover for a module N, if there exists a small epimorphism
¢:M—-N [6].

Proposition (2.8) A small cover of a small pointwise projective module is a small pointwise
projective.

Proposition (2.9) Let M be a self-small pointwise projective module and let A be a direct summand of
M. If M is a small cover of N and N is a small cover of A, then ME A= N.

Proof: Since M is a small cover of N and N is a small cover of A, where A is a direct summand of M,
there exists a small epimorphisms ¢:M—N and y:N — A. Consider the following diagram:

p
M > A
. < T
h
T e
}¢/——’¢_ - ’/¢
.- 4
P
M ¢ » N v » A

Where p, J are the projection and the injection homomorphisms respectively and I:A—A is the
identity.Since M is a self-small pointwise projective module and we¢ is a small epimorphism, for
every meM there exists a homomorphism h;:M—M such that yedoh;(m) = p(m).Define h:A—M by
h, = hyeJ.Also, define h3:A—=N byh; = ¢ohy.Now,yohs = yodoh, = yodoh;ed = peJ = I.Thus, the small

short exact sequence N Y 5A >0 splits and hence N= A. Also yodoh, = yodohsel = pol

0 .
= I.Hence the small short exact sequence M Voo >A >0 splits and therefore M=
A.Consequently M= A=N.
3. Small Pointwise Projective Cover

In this section, introduce the concept of a small pointwise projective cover and give some properties
of this notion.

A pair (P,f) is a small pointwise projective cover for a module M,if there exists a small
epimorphism from P onto M, where P is a small pointwise projective module.

A ring R is called Von-Neumann regular if for each aeR, there exists beR such that a = a.b.a
[1,3.1]
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Example (3.1):
1. Zgis Von-Neumann regular ring.
2. Thering (P(X), A, n) is Von-Neumann regular ring, where P(X) is the power set of X and
A is the symmetric difference and M is the intersection.
3. Thering Z is not Von-Neumann regular
Aring R is called a Boolean ring, if for each acR, a®=a [1, p.25(9)]
Remark (3.2)
1. Each Boolean ring is commutative.
2. Each Boolean ring is Von-Neumann regular.
3. Every subring and every factor ring of a Boolean ring is a Boolean ring.
4. For any index set A, the product [, R is a Boolean ring, where R is a Boolean ring.
Aring is called semisimple,if each module over R is a projective [7,17.4].
Example (3.3)
1. The ring Zg is semisimple.
2. Thering Z is not semisimple, since Q as Z-module is not projective module.
Aring R is called cosemisimple if Rad(M) = 0,for each R-module M [2].
The following proposition gives a characterization of cosemisimple ring.
Proposition (3.4) [1, 23.5(2)] A commutative ring is cosemisimple if and only if it is Von-Neumann
regular.
Remark (3.5) Every semisimple ring is cosemisimple, but the converse is not true.
Example (3.6) Let R be the direct product of countably infinite many copies of Z, Clearly Z, is
a Boolean ring, thus by remark (3.2), R is a Boolean ring and R is a Von-Neumann regular. By
proposition (3.4) implies that R is a cosemisimple ring. Let | be the direct sum of countably infinite

many copies of Z, inside of R, Claim that R is not semisimple ring. Clearly, ? is an R-module.Now,

R . . . .
assume —is a projective module.Consider the following short exact sequence:

0 sI— SR “>$ >0

where i is the inclusion homomorphism and r is the natural epimorphism.By [6,17(1,2)(3)], this

sequence splits,i.e.,R = I®K,where K<R. Thus %’EI. But % is cyclic and hence I is cyclic. A

contradiction.
Remark If a module has projective cover, then it has a small pointwise projective cover. But the
converse is not true in general. See example (3.6).

Now, prove, if a module have a small pointwise projective cover, then it is unique up to
isomorphism.
Proposition(3.7) Suppose that a module M has a small pointwise projective cover (P,f). If Q is
a small pointwise projective module, with g:Q—M is a small epimorphism, then Q =P.
Proof: Let f:P—M be a small epimorphism, where P is a small pointwise projective module and let
g:Q—M be a small epimorphism, where Q is a small pointwise projective module. Consider the
following diagram:

P » M » 0; Ker(f) <<P

By small pointwise projectivity of Q,for every geQ, there exists a homomorphism h:Q—P,such that
foh(q) = g(q).Claim that h is an epimorphism.To show that h is onto,it is enough to prove that P =
Ker(f)+h(Q).Now,let xeP,then f(x) = q(y) for some yeQ so,f(x) = f(h(y)) and this implies that x-
h(y)eKerf,i.e.,P = Ker(f)+h(Q),but Ker(f)<<P,thus h(Q) = P and h is onto.To prove h is
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a monomorphism,let weKer(h),then h(w) = 0 and thus fh(w) = g(w) = 0.Which implies that weKer(q).
Consequently Ker(h)<Ker(q)<<Q.Therefore Ker(h)<<Q and hence h:Q—P is a small epimorphism. But

P is a small pointwise projective module, so the sequence Q—h—>P——)O splits. Thus h is a
monomorphism.

Proposition (3.8) Let M be a module and let (P,f) be a small pointwise projective cover for M. If M is
a small pointwise P-projective, then M is a small pointwise projective.

Proof: Let g:A—B be a small epimorphism and y:M—B be any homomorphism. Consider the
following diagram:

M
hy
a”” I
A"/ f \J
P > M > 0; Ker(f) <<P
i h
h; "
+ }'/ g \/
A > B » 0; Ker(g) << A

where i:M—M is the identity.Since P is a small pointwise projective module, for every peP, there
exists a homomorphism h,:P—A,such that geh,(p) = wef(p).Also,since M is a small pointwise P-
projective for every meM there exists a homomorphism h;:M—P,such that foh;(m) = I(m).Define h =
hzehs.Now, geh(m) = gehzohy(m) = yefohy(m) = yel(m) = y(m).

Let M be a module and let S = End(M).Let N be a proper submodule of M.N is called an S-prime
submodule of M, if whenever f(m)eN, for some feS and meM, then f(M)<N or meN[8].
Proposition (3.9) Let N be an S-prime submodule of a small pointwise projective module M. Assume
that, there exists 0=feS such that f ? = f,f(N)<N and f(N)<< M. Then % has a small pointwise

projective cover.

Proof: Let N be an S-prime submodule of a small pointwise projective module M and 0 =feS such
that * = f, f(N)<N and f(N)<<M. Since f(1-f)(m) = 0eN for all meM and N is S-prime,so f(M)<N or
(1-f)(m)<N. Assume (1-f)(m)eN,for some meM,then f(M)<N and hence f(M) = f(N). But M =
f(M)®(1-f)(M), thus M = f(N)®(1-f)(M) and therefore (1-f)(M) = M, since f(N)<<M. Hence f =0 a
contradiction. Consequently,(1-f)(m)eN for each meM. Define h:f(M)— % by h(f(m)) = m+N,for all

meM.we have to show that h is well-defined.Let f(m;) = f(m,), which implies that f(m;-m,) = 0, but
mg-m; = (1-f)(m-my) eN. Therefore m;+N = m,+N. Clearly h is a homomorphism
and onto. It is easy to show that Ker(h) = f(N)<<M,thus f(f(N))<<f(M).Thus f(N)<<f(M). Since f(M) is
a small pointwise projective module and h is a small epimorphism.Therefore (f(M),h) is a small
pointwise projective cover for %

Now. need the following proposition to obtain a characterization of a module M to be small
pointwise N-projective if M has a small pointwise projective cover.
Proposition(3.10) Let M be a small pointwise N-projective module and let (P,f) be a small pointwise
cover of M.Then for every homomorphism y:P—N, there exists a homomorphism ¢:M—N such that
dof = .
Proof: Let f:P—M be a small epimorphism and let y:P—N be any homomorphism. Let T = y(Ker(f)).
By [6,5.18], y(Ker(f))<<N. Define B:M—>¥ by B(m) = n(y(x)) for all meM,where m = f(x) and

m:N- g is the natural epimorphism.To show that B is well-defined.Suppose that m = f(x) = f(y) for
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some x,yeP, then x-yeKer(f),which implies that y(x-y)eT. Hence n(y(X)) = n(y(y)).It is easy to
show that (3 is a homomorphism.Consider the following diagram:

f
P > M
vio A P
v &7
N " SN > 0
T

Since M is a small pointwise N-projective module,for every meM, there exists a homomorphism
¢:M—-N such that mop(m) = B(m).Now,let xeP, (Bof)(X) = B(f(x)).But B(f(x)) = (med)(f(x)) and hence
(moy)(X) = (modof)(x),for all xeP.Therefore (y-¢of)(P)<T.Let X = {weP:(¢pof)(w) = y(w)}. Claim that
X =P. Clearly X<P. Let xeP then (y-(¢of))(X)eT, but T = y(Ker(f)) and hence(y-(¢pof))(x) = w(K),
for some keKer(f). Thusy(x-k) = (¢of)(x-k),therefore x-keX which implies that P = Ker(f)+X, but
Ker(f)<<P.Hence X =P.

Proposition (3.11) Let M,N and K be modules, where K is a small pointwise projective and f:K—M be
an epimorphism. Then M is a small pointwise N-projective if for every homomorphism ¢:K—N,there
exists a homomorphism ¢*:M—N, such that ¢p*of = ¢.

Proof: Let g:N—B be a small epimorphism and h:M—B be any homomorphism. Consider the
following diagram:

f M

A
Y

<=

2 L EEEEEEEE

.
.
.
.
.
* -
.
.
.
.
.

.

lfl g

»B —— > 0;Kr(g) <<N

By small pointwise projectivity of K for every keK, there exists a homomorphism ¢:K—N, such
that ged(k) = hof(k). By our hypothesis, there exists a homomorphism ¢*:M — N, such that ¢*of = ¢,
and so ged*of = gep = hof.For meM, we have (gedp*)(m) = g(d*(m)) = g(¢o*(f(x))),here m = f(x),for
some xeK.Hence (ge¢*)(m) = (ged*of)(X) = (god™)(f(x)) = (god)(X) = h(f(x)) = h(m). Therefore M is a
small pointwise N-projective module.

From (3.10) and (3.11) get the following:
Theorem (3.12) Let M and N be modules and assume M has a small pointwise projective cover (P,f),
then M is a small pointwise N-projective module if and only if for every homomorphism y:P—N, there

exists a homomorphism \f! :M-N, such that \TJ of =y.
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