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Abstract

One of the recent significant but challenging research studies in computational
biology and bioinformatics is to unveil protein complexes from protein-protein
interaction networks (PPINs). However, the development of a reliable algorithm to
detect more complexes with high quality is still ongoing in many studies. The main
contribution of this paper is to improve the effectiveness of the well-known
modularity density (@D) model when used as a single objective optimization
function in the framework of the canonical evolutionary algorithm (EA). To this
end, the design of the EA is modified with a gene ontology-based mutation operator,
where the aim is to make a positive collaboration between the modularity density
model and the proposed gene ontology-based mutation operator. The performance of
the proposed EA to have a high quantity and quality of the detected complexes is
assessed on two yeast PPINs and compared with two benchmarking gold complex
sets. The reported results reveal the ability of modularity density to be more
productive in detecting more complexes with high quality when teamed up with a
gene ontology-based mutation operator.

Keywords: EA, Gene ontology, protein complex, protein interaction networks,
modularity density.
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1. Introduction

A key feature of a networked system is the general tendency toward organizing nodes
hierarchically into multiple cohesive modules or communities. However, identifying such
communities is a challenging problem in network research, with applications in biological
networks, social network modeling, and communication pattern analysis [1-7]. Proteins that
control and mediate many biological activities by regulating and supporting one another
through their interactions form biological networks [1, 8]. These networks can be represented
as protein-protein interaction networks (PPINs), which are powerful modular organizations
for understanding protein functional qualities and their future potential as biomarkers of
cellular organization. A PPIN holds information on the protein-protein interactome of any
organism.

Figure 1 depicts an illustrative example of a yeast Saccharomyces cerevisiae PPIN (left) that
has 990 different proteins, obtained from the Yeast Protein Database [8], with 4687
interactions. Based on the golden reference set of 81 complexes maintained by the Munich
Information Center for Protein Sequences (MIPS) database for genome annotation, gene
expression analysis, and proteomics, this protein interaction network is decomposed into 78
different-sized complexes [8].
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Figure 1: A yeast Saccharomyces cerevisiae network (left) and two complex (Cg; and Cg3)
are zoomed out in the right.

In PPINs, protein interactions can indicate the formation of either stable or
transient protein complexes (or functional modules), as well as either physical or functional
interactions. A protein complex, then, is defined as a group of proteins that work together to
carry out a specific biological process or activity. Figure 2 depicts an illustrative example of
the two complexes that are zoomed out in Figure 1. The yeast proteins in Figure 2 are
depicted with their names and their intra- and inter-cellular connections.
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Figure 2: An illustrative example of two complexes (Cgzand Cgq) Of yeast proteins (from
yeast-D1 Saccharomyces cerevisiae PPIN) with their identity names, intra connections and
inter connections.

Protein complex detection in a protein-protein interaction network (PPIN) is a graph
clustering problem that involves identifying densely connected regions in the network as
genuine protein complexes. This problem is informally defined as an optimization problem
and has been proven to be non-deterministic polynomial-time hard (NP-hard) [3]. In other
words, it is computationally very difficult to find an optimal solution in a reasonable amount
of time.

In this paper, a single objective EA is proposed, and its robustness is evaluated in terms
of the quantity and quality of the detected complexes. The definition of the problem is
formulated as a single objective function of the modularity density. Further, the performance
of the modularity density model is examined using two yeast PPINs under the teamwork of a
GO-based mutation operator. The coming sections are outlined as follows: The well-known
heuristic and meta-heuristic (i.e., evolutionary-based) complex detection algorithms proposed
in the literature are presented next. This is followed by the formal representation of proteins
and protein interaction networks in both the topological and biological domains, which are
presented in the next three sections. The details of the proposed evolutionary-based complex
detection algorithm are given in Section 5. This is followed by the simulation results and a
description of the main findings of the research. Finally, a conclusion and recommendation
for future work are given in Section 7.

2. Related work

Different meta-heuristic algorithms, mainly evolutionary algorithms (EAS), were
proposed in the literature to detect protein complexes from PPINs. The EA-based complex
detection methods are proven to be more robust than their counterparts, the heuristic-based
complex detection methods. Examples of such heuristic-based methods are Molecular
Complex Detection (MCODE) [3], Purification of the bait proteins [4], Dense-neighborhood
Extraction using Connectivity and ConFidence Features (DECAFF) [5], Repeated Random
Walk (RRW) [6], Clustering-based on maximal cliques (CMC) [7], and Hierarchical Link
Clustering [7, 9].

One of the earliest works to identify the importance of evolutionary algorithms for solving
complex detection problems is recognized by Pizzuti and Rombo in [10] and [11].
Evolutionary-based complex detection algorithms use evolutionary principles, i.e., natural
selection and genetic variation, to search for promising candidates for protein complex
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structures. These algorithms typically involve generating a population of candidate solutions
(e.g., protein complexes), evaluating their fitness based on one or more criteria (e.g.,
connectivity, density, and functional coherence), and iteratively evolving the population
towards better solutions through selection, recombination, and mutation. They developed a
single-objective genetic algorithm (GA) with different single-objective complex detection
models to solve the problem. The remaining components of the GA (i.e., selection, crossover,
and mutation operators) were designed based on their well-known traditional forms. All their
models (i.e., objective functions) were defined based on different topological characteristics
of the proteins and their interactions in the networks. The formulation of the objective
functions includes the well-known modularity (Q) function, community score (CS) function,
conductance (CO) function, normalized cut (NC) function, internal density (ID) function,
expansion (EX) function, and cut ratio (CR) function. Unlike the modularity (Q) function, all
the remaining models explicitly define both the intra-complex structure and the inter-complex
structure with different maximization or minimization scores. On the other hand, traditional
modularity explicitly defines the intra-complex structure score only.

Unlike the single-objective models examined by Pizzuti and Rombo in [10] and [11],
Bandyopadhyay et al. and Ray et al. in, respectively, [12] and [13], on the other hand, were
the first to formulate the problem as a multi-objective optimization (MOO) problem. Both
intra-complex structure and inter-complex structure are reflected in their MOO model. They
designed a multi-objective genetic algorithm outlined by the well-known non-dominated
sorting algorithm (NSGA-II) for solving the complex detection problem.

In [14], in 2016, a multi-objective evolutionary co-clustering model for social community
discovery was proposed. The model identifies disjoint communities using evolutionary
algorithms and co-clustering. It describes four types of neighborhood nodes and relations and
proposes a heuristic mutation operator to increase the convergence velocity and reliability of
the adopted multi-objective optimization model. The heuristic operator lets nodes migrate
across communities based on neighborhood relationships.

In [15], two contradictory topological-based structures were formulated to reflect the
intra-complex structure and the inter-complex structure as a multi-objective optimization
model. The adopted multi-objective evolutionary algorithm was framed by the well-known
decomposition-based multi-objective evolutionary algorithm (MOEA/D). In [16] and [17], a
locally-assisted migration operator is proposed based on the topological properties of the
tested PPINs. The operator has the ability to improve the performance of both single-objective
and multi-objective evolutionary-based complex detection algorithms.

These evolutionary-based algorithms are often more robust and less sensitive to parameter
settings than heuristic algorithms, and they can potentially provide better accuracy and
scalability for complex detection in large biological networks. Significant exploitation of
domain knowledge of the optimization problems can support the use of EAs to the fullest.
Unfortunately, there is a lack of research investigating these evolutionary-based algorithms to
examine the impact of domain knowledge on their design. In bioinformatics, the utilization of
ontologies for genome annotation has brought significant advances to the field of molecular
biology. These bioontologies were rarely considered in the design of evolutionary-based
complex detection algorithms. Only recently, [18] examined the design of the mutation
operator in an EA (with a modularity model) based on the biological information inherited
from three different gene sub-ontology types. They designed the mutation operator based on
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protein pair similarity in four versions: molecular function (MF), cellular component (CC),
biological process (BP), and their combinations.

3. Formal representation of PPIN in topological domain

Commonly, a protein-protein interaction network (PPIN), is usually formulated as an
undirected graph G (V,E). Theset of verticesV represents n proteins, ie. V =
{vi,v,,...,v,}, Whilethe set E of edges embodies the m protein interactions, i.e. E =
{eq,e5,...ey}. Since it is believed that proteins that interact are more likely to perform similar
biological functions within a PPIN, there are dense regions (protein complexes) in more than
one tightly linked region in the graph. Figure 3 illustrates a graph (small PPIN) example with
eight nodes being decomposed into two sub-graphs or complexes, Complex, and Complex,,
respectively.
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Figure 3: A small PPIN of 8 proteins is decomposed into two complexes. The nodes within a
dashed circle form one complex. The edges inside the dashed circle are intra-connections,
while those connecting the two complexes are inter-connections.

Mathematically, the graph G of a PPIN can be represented as a square symmetric
adjacency matrix, A = [a;;]"™*™. If proteins that resemble to vertices wv;and v; have a
biological interaction, it can be interpreted that entry a;; and its counterpart entry a;; of the
adjacency matrix A are both set on; otherwise, they are set off. Figure 4 presents the
adjacency matrix A for the PPIN depicted in Figure 3. Further, the adjacency matrix can be
represented as a set of n adjacency lists £ = {£4,%,,%3, ..., £,}. Using a separate list ¢; for
each protein p; € P to aggregate all 1 entries in row i. As a result:

14il = Xi=1(ay) 1)
and
L] = Xiz1 4 (2)
/ Vg VUV, V3 VU, Vs Vg Vg US\
vw 0 1 1 1 1 1 1 0
v, 1 0 0 1 1 0 0 0
A= v, 1 0 0 1 1 0 0 0
vwv 1 1 1 0 1 0 0 0
vs 1 1 1 1 0 0 1 0
8x8 ve 1 0 0 0 0 0 1 1
v, 1 .0 0 0 1 1 0 1
ve 0 0 O O O 1 1 0

Figure 3: Adjacency matrix for the PPIN in Figure 3, where "1" indicates that the
corresponding pair of proteins interacts; otherwise, "0" means no biological interaction. All
diagonal entries are set to <“0.”
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4. Formal representation of proteins in biological domain
4.1  Annotation with Gene ontology terms

Gene ontology (GO), as a dynamic ontology, is a popular species-agnostic ontology used
in biology to describe the semantics or context of gene and gene product attributes in single
and multicellular organisms. As the activity or function of a protein is defined at different
levels, the GO domain has been composed into three orthogonal categories or aspects:
molecular function (MF), biological process (BP), and cellular component (CC). Each protein
performs elementary molecular-level activities that are normally independent of the
environment and occur at the molecular level, such as catalytic, transport, or binding
activities. Larger cellular processes or biological programs are accomplished by the multiple
molecular activities of sets of interacted proteins.

Every GO term has a unique human-readable GO name, e.g., transcription corepressor
activity or amino acid binding—and a unique GO seven-digit identifier prefixed by GO:,
e.g., GO: 0003714. As an illustrative example, consider Table 1, where the annotations of
five different proteins with their direct GO terms are reported. The annotations are reported in
the three sub-ontologies. These were downloaded from the Saccharomyces Genome Database
(SGD) at http://genome-www.stanford.edu/Saccharomyces/.

4.2  Graph structure of a GO term

Each individual sub-ontology term () can be structured hierarchically by an independent
directed acyclic graphs (DAG). A directed graph is made up of a set of nodes and a set of
edges, where each GO term is a node and the relationships between the terms are edges
between the nodes. Child GO terms are more specialized than their parent GO terms, and a
GO term may have more than one parent GO term. A relation between two terms (£, £,) is
represented as a directed edge pointing from %, to #;. There are three main types of directed
relationships between GO terms. These are ‘is_a’, ’part_of’, and ’regulate’.
Straightforward class-subclass relation is called is_a, where %, is_a %, denotes that GO term
%, is a subclass of GO term #£,. A partial ownership relation is a part_of where £; part_of
t, means that whenever #; is present, it is always a part of £,, but #5 is not required to be
present. The relation "regulate’ describes a case in which one process directly affects the
manifestation of another process or quality, i.e., the former regulates the latter.

Table 1: A sample of yeast proteins with their identity numbers, identity names, and direct
GO annotation with MF, BP, and CC sub-ontology terms

Protein GO term
# name BP CcC MF
_ [G0:0000502,
[G0:0006511, G0:0008540 [GO: 0036435
2 VirlR2Y 28;88 jgfgf] G0:0005829, G0:00 31593]
: G0:0005634]
[G0:0000502,
G0:0008180,
G0:0008541,
41 'YDL147W' | [GO:0000338] G0:0034515, [GO:0005515]
GO:0005737,
G0:0008541.
G0:0031595]
[GO:0006511, [G0:0005634, [G0O:0004175,
178 'YILO75C | GO:0043248, G0:0008540, G0:0031625,
G0:0042176. G0:0034515, G0:0030234]
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G0:0050790] G0:0000502]
[G0:0019774,
GO:0005634,
GO:0005789.
[GO:0010498, el
G0:0010499, : :
434 '"YER094C' | GO:0043161, ggggggg;i [G0:0061133]
GO:0006508, D ooa,
G0:0051603] SO
G0:0005839.
G0:0019774]
[GO:0019774,
[GO:0010498, 0 s [GO:0004175,
G0:0010499, : : G0:0004298,
274 'YILOOIW' | GO:0043161, gggggg%g G0:0016787,
5858806508’ C0:0000502 G0:0008233,
0051603] PO GO:0004298]
G0:0005839]
[GO:0005634,
_ G0:0005739,
[gglggjgfgff ggfggéigg' [GO:0003674,
308 'YOLO38W' | GO:0006511, O oL G0:0004298,
GO:0051603, oozt G0:0004175]
G0:0005737] G0:0000502,
G0:0005839]

Generally, a GO term may have connections to more than one GO child term (more
specific) node, but unlike these GO terms, it can also have more than one parent (broader)
node and different relations to its different parents. For example, in Figure 5, the GO term
“cytoplasm” (GO:0005737) has two parents: it is_a cellular anatomical entity and it is
part_of the intracellular anatomical structure.

r GO:0005575 ]

cellular component

is a
is_a. |
[ GO.0005622 ]/7 \[ GO:0110165 )

cellular anatomical

intracellular anatomical

structure

entity

: 7

pa;'.riaf is a

( ‘ GO:0005737 ]

cytoplasm

Figure 5: Graph-based representation for GO terms and relations.
Each GO term can be represented as a DAG, in which each term represents a child node

of one or more parent nodes. A formal representation of a GO term A is given
by DAGs(A, TP, Es), where TP, is the set of GO terms in DAGg that includes term sub-
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ontology S and all of its ancestor terms in the GO graph, and E; is the set of edges (semantic
relations) connecting the GO terms in DAGs. Then, gene products are annotated with GO
terms either directly (i.e. 7%s ) or via inheritance or the true path rule, as annotation to a given
term, (£ € TPs), implies annotation to all of its ancestor £, terms in DAG (¢). Then, we may
define an ancestor set, Anc(t), for some # as:

Anc(t): DAG - {£;|3 path (£, 1)} (6)

As an illustrative example, consider the three DAGs in Figure 6, of three GO terms for the
protein "YPL139C ". The GO terms are: MF (G0:0003714), BP (G0:0051321), and CC
(GO:005634). For example, in the figure, the DAG for GO: 0051321 (meiotic cell cycle) has
six terms connected with six ‘is_a’ relations and one ‘part_of’ relation. Also, the term
G0:0022414 (reproductive process) is considered as is_a subclass of GO0:0008150
(biological process) and also a part_of GO: 0000003 (reproduction).

GO: 0140110 GO: 0005575

transcription

regulator activity
! cellular component

7

GO: 011016:

GO: 0003712

o
GO: 0003674

molecular function

transcription
coregulator
activity

£y
o/
L]
!

CO: 0003714 "
GO:0043226

organelle
.
£

GO: 0043227

membrane-bounded

cellular anatomical entity

®
: 5
=
')
GO: 0003622

intracellular

MF_Aspect

transcription

corepressor

anatomical

G0:0009987

cellular process

» (N

GO:0043229

intracellular

GO:0008150

GO:0000003

biological process w?
e p reproduction
A
- '," ~/

GO0:0022414 GO:0007049

organelle

organelle

GO: 0043231

intracellular
membrane-bounded

organelle

reproductive process cell cycle

GO: 0005634

&
G0:0051321

meiotic cell cycle

CC Aspect nucleus
BP_Aspect

Figure 6: Three DAGs for three different GO terms for the protein " YPL139C." one MF
term (GO: 0003714) (top left), one BP term (GO: 0051321), and one CC term (GO:005634)
(right). Solid arrows represent ‘is_a’ relations while dashed arrows represent ‘part of ’
relations.
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4.3  GO-based semantic similarity
Term semantic similarity in any ontology provides a numerical measure of how closely
related and differently defined terms are to one another. Gene Ontology-based Semantic
Similarity (88) gives the opportunity to compare GO terms or entities annotated with GO
terms based on their semantic properties, normally acquired from corpora. From §S§, a
semantic similarity matrix § = [S$S]"*"is obtained for v GO terms that annotate =
different proteins, where 8S;; = §S;; € R* is the semantic similarity between terms t; and ¢;.
Wang et al. [19] proposed a semantic similarity based on semantic value and semantic
contribution. The semantic value S(#): DAG (%) - R* for a GO term # is computed as the
sum of the semantic contribution (SC) of all GO terms in DAG (%), SC:t X t, X DAG(%) —
R*, along the best (i.e. maximum) weighted paths to £. Here, SC(#, DAG(¢)) = 1. The best
weighted path for each ancestor is the path that has the maximum product of the weights on
its edges. Wang et al. [19] set w = 0.8 and « = 0.6 for 'is_a' and 'part_of," respectively. This
is formulated in Eqg. 7. The formulation reveals that terms % that are closer to £ in DAG (%)
contribute more to its semantics, whereas terms %, that are farther from # in DAG (%)
contribute less as they are more general terms.
SC(t5, DAG(t)) = max{w X SC(t5)|3 e(ts t5 )} (7)

where the directional relation between £, and %, is denoted by the expression e(%, %;).
Then, the semantic value of the term £ in its DAG is defined by the Eq. 3, and the semantic
similarity between two GO terms, %; and #,, is defined as the ratio of the semantic
contributions of all common terms (also known as intersecting terms) in the DAGs of , £, and
t, to the semantic values of £, and %, respectively, in Eq. 4.

SU6) = Teyuppr SCE,DAGED) ®
Sc(t, SC(t,
5t ) = ZiepAR LA AT ©

4.4  Gene functional similarity

Functional similarity (FS) measures the degree to which two proteins share functional
properties. This can be inferred using GO annotations as evidence. For n different proteins,
then, a functional-based similarity matrix F§ = [FS;;]"*" can be derived. For a pair of
proteins, FS requires two sets of protein-level annotation, i.e. GO terms of the proteins within
a specific category (i.e., MF, BP, or CC) or with all sub-ontology types. Protein-term (75)
representation can be established at two different levels: 1) the direct annotation scheme, and
2) the indirect annotation scheme. In the direct annotation scheme, proteins are annotated
using their direct GO terms across all three sub-ontology types. In other words, 7 = {MF,
BP, CC}. For indirect annotation, each protein is annotated according to its direct GO terms
(Jp) and their ancestors in their corresponding DAG structures, i.e., 7p U Tyjtes,, Where

T = t U{#,} indicates that the term £ and all of its ancestors.

Two major categories for the calculation of FS§ can be found in the literature. These are
group-wise and pairwise methods [20]. One of the well-known group-wise methods is Jaccard
as defined in Eqg. 10.

Tp1NT;
T‘S]accard(?ll?z) = ] (10)

[Tp1UTp2 |

Pair-wise methods (e.g., average, sum, maximum, or minimum), on the other hand,
statistically consider a combination of the semantic similarities between the terms 75, and 75,
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to determine FS between two gene products (i.e. proteins) P; and P,. For example, maximum
functional similarity is defined in Eq. 11.
FSmax(P1, P2) = max[S§S (%1, %,)] |41 € Tpy, £, € Ty (11)

5. The proposed evolutionary algorithm
5.1 The general framework

The general framework of the proposed evolutionary-based complex detection algorithm
can be formally termed as ECD:I# — I¥. The framework is defined as an iterative
composition function that transforms, through a set of three primary operators, an initial
population of solutions into an evolved set of solutions. A population can be formally
expressed as I* = {I;, I, ..., 1,} containing u encoded (i.e., genotype) solutions. The locus-
based adjacency representation [21] is adopted in the proposed ECD.

The initial population is generated randomly from all alternative solutions in the search
space, ( of the problem. The evolutionary algorithm evolves the population for more accurate
solutions by mating pool selection, s: I* — I#, recombination of sets of parents ®,: 1 X I —
I and mutation of individual offspring ®,,,: I — I. The evolutionary process continues until a
termination criterion t is satisfied t: I* — {true, false}.

5.2 Solution encoding and decoding

The first decision in the design of any evolutionary algorithm is how to represent the
solution in genotype space. The solution is encoded as a list of n neighborhood-based
representations. For PPIN with n proteins, a genotype solution or individual I;<;<, €1 is
mapped with a list of n parameters:

I = i1, 1 o Iin) (12)

including n loci for n proteins. Each locus is defined by 1 < j < n and its allele (or value),
I;; = j'. Where j refers to protein j in the network, while j' is one of the interacted proteins

with protein j, i.e., a;; = 1. The starting set of solutions is encoded randomly from the total

search space Q of the complex detection problem.

The decoding function T:I — C, then, decodes a genotypic solution [ into its
corresponding set of complexes (i.e., phenotype). Here, it is a set of complexes C =
{c1,cy, ..., cx} OF K complexes. For the decoding function, each protein should belong to only
one complex, with no overlap between any two complexes.

Figure 7 depicts an illustrative example of a small yeast PPIN with 17 proteins and a total
of 97 interactions. Three different individual solutions, with their genotype and phenotype
representations, are depicted. According to the allele values in the genotype solutions,
different phenotypes are revealed. The first genotype is decoded into two disjoint complexes,
while the second and third genotypes are decoded, respectively, into three and four
complexes.

5.3 Objective function

One of the main keys to the success of the evolutionary algorithm is the right selection of
the objective function. In this paper, we adopted the well-known modularity density (QD)
[22]. For each solution, QD is defined as the sum of the average density of the sub-graphs that
constitute the whole solution. In each sub-graph, the density is measured as the difference
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between the intra and inter degrees proportioned to the size of the sub-graph, and it is
formulated by:

L(Ck'Ck)—L(Ck'Ck';tk)
Ikl

QD = ZI;§=1 (12)
In Eq. 12 and for a solution with K complexes, C = {cy, ¢y, ..., Cx}, the numerator
expresses the difference between two terms. The first term is the inner degree of a community
¢, Which is twice the number of edges inc;, divided by the number of nodes in the same
complex ¢, The second term is the outer degree of c¢,, which is the number of edges between
nodes in ¢, and other nodes in c¢,r.,. The denominator expresses the number of nodes in cy.
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Figure 7: Small Yeast PPIN with 17 proteins and a total of 97 interactions. Three different
individual solutions, with their genotype and phenotype representations, are depicted.
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5.4 Evolutionary operators
5.4.1 Crossover operator
For the proposed EA-based complex detection algorithm, the uniform crossover operator
IS used to create a new solution by combining the genotypes of two parent solutions. For two
selected parents I; and I,, the crossover operator uniformly mixes their n decision making
parameters. The offspring individual uniformly inherits the topological information from the
two individual parents, I; and I,. Note that crossover operator crosses the two parents if a
random number retains a value less than or equal to the probability of crossover p,. Here,
p«is set to 0.8.
vie{1,2,..,NIAVj €{1,2,...,n}
. I jif rand < 0.5 13
Ly {Iz,j otherwise (13)
where rand - [0,1] is a uniform random value, sampled a new one for every new
offspring individual I;.

5.4.2 Gene ontology-based mutation operator
The traditional mutation operator (®,,) proposed by Pizzuti and Rombo [11] in Eq. 14 has

been applied with a simple topological-based domain, which operates on the genotype

representation. This will eventually change the phenotype structure of the solution.

vie {12,..,NDA (Vje{12,..,n})

L= {j’ lajj, = 1if rand < B,

L] —

14
I otherwise (14)

iJ

where the allele I; ; of the mutated protein j in an individual solution I; can be swapped
with any other direct neighbor j' of j and the rand is a uniform random value, a new one is
chosen for every protein ;.

In this paper, we extend the topological-based mutation proposed in [15] to operate on the
functional domain rather than the topological domain. We adopted Jaccard and maximum
functional similarity to direct the operator in choosing the candidate complex for the mutated
protein to maintain maximum function homogeneity. The mutation operator can be expressed
as follows:
vie ({1,2,..,N)AVj € ({1,2,...,n})

!

j' i € e hargmaxe,ec(Sup, e FS(P, Py)) if rand < py,
1

Ii,j == (15)

i otherwise

where FS§(#;, P;r) is the Jaccard or the maximum functional similarity (Eq. 11) between
the  direct terms, 7, of protein pairs #; and P;,. In the maximum functional similarity, each
GO term of the first protein P; is coupled with all GO terms of the second protein ;s and the
maximum similarity is evaluated over all GO pairs of #; and P;s. Further, Wang’s semantic
similarity method is used to evaluate the similarity of GO terms and their DAGs for both
protein #; and P;r.

Let us consider an example for the yeast protein "YHR200W" in Table 1 and two of its
neighboring proteins. The first protein is "YILO75C," which has an intra-connection with
"YHR200W." The second protein, however, is "YOLO038W," which has an interconnection
with "YHR200W." Figures 8 and 9 depict the direct GO terms of these proteins. All GO
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categories are reported in the figures. In these figures, the common GO terms for both
proteins "YILO75C" and "YOLO38W" with protein "YHR200W" are clarified with a
checkmark. Topological (i.e., adjacency) and functional similarity (in terms of both Jaccard
and maximum functional similarities) are also reported.

"YHR200W'
BP CC MF
ubiquitin-
depend_ent K48-linked
G0:0006511 protein polyubiquiti
catabolic GO:0000502 | Proteasome GO: n
process prcc‘))t:‘;;fr’;e 0036435 | modification
) proteasome -dependent
60:0043248 | "ssembly GO:0008540 | _regulatory protein
particle, base binding
proteasome- subcomplex o
mediated polyubiquiti
ubiquitin- G0:0005829 Cytosol n
G0:0043161 dependent GO0:003159 | modification
protein GO0:0005634 nucleus 3 -dependent
catabolic protein
process binding
"YILO75C'
BP CC MF
ubiquitin-
' dependent G0:0005634 | nucleus _ :
G0:0006511 Cgtr;)tt)%llr;c proteasome G0.0gO417 endopf_p'gltdas
regulator € actvity
process G0:0008540 pargcle, bayse ubiquitin
GO:0043248 | Proteasome subcomplex G0:003162 protein
assembly proteasome 5 I_|ga_se
GO:0042176 proteasglme G0:0034515 | storage binding
GO0:0050790 | of catalytic G0:0000502 pmteaslome 4 activity
activity comprex

Figure 8: Direct GO terms (in terms of three categories) for proteins "YHR200W' and
‘“YILO75C'.

Aij = Agz 178 = A ;YHR200W/ rYIL075Cr = 1
FSaccara('YHR200W', 'YILO75C") = Znmrzoow Wimozser] _ 5. _ 33

[Tryar200w/ YT ryiLo7scrl 14

TSM(IX( ’YHRZOOWI, ,YIL075C,) = TSMCUC(BP) + T‘SMax(CC) + T‘SMax(MF) =141+
0.3987 = 2.3987
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"YHR200W'
BP CcC MF
ubiquitin- a8 Trked
dependent -linked
G0:0006511 | protein G0:0000502 | Proteasome polyubiquiti
. complex GO: n
catabolic . o
Drocess protelastome 0036435 | modification
. regulatory -dependent
GO:004324g | Proteasome GO:0008340 | partice, base protein
assembly subcomplex binding
proteasome- G0:0005829 |  Cytosol polyubiquiti
mediated n
ubiquitin- GO:0005634 Nucleus G0:003159 | modification
G0:0043161 | dependent ' 3 -dependent
protein protein
catabolic binding
process
'YOL038W!
BP CcC MF
G0:000563
nucleus
4
GO:000573 | mitochondrio
9 n
proteasome
. core
proteasomal G0.0§)1977 complex,
ubiquitin- alpha-subunit
) independent complex
GO:0010499 | 1 otein proteaiome G0:000367 | molecular
catabolic GO:003451 storage 4 function
5
process granule ;
— threonine-
ubiquitin- nuclear outer .
dependent membrane- G0.0g 0428 endot yg) etidas
GO:0006511 | protein G0:004217 | endoplasmic oo
catabolic 5 reticulum L
process membrane GO0:000417 | endopeptidas
5 e activit
GO:0005737 | cytoplasm network Y
G0:000573
7 cytoplasm
GO:000050 | proteasome
2 complex
GO0:000583 | proteasome
9 core complex

Figure 9: Direct GO terms (in terms of three categories) for proteins "YHR200W ‘and
"YOLO38W'.
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Q;j = dgz 308 = A /YHR200W’ rYOLO38Wr — 1
TS]aCca‘r‘d( ,YHRZOOW,, ,YOL038W,) — |TIYHR200WInTIIYOL038WI| _ i — 0.15

|7 /yur200w/ YT ryoLozsws| 20

FSmax("YHR200W','YOLO38W') = FSyaxsp) + FSmax(cc) + FSmaxmury =1+ 1+
0.3232 =

2.3232

6. Results and discussions
6.1 Dataset for PPIN and benchmark protein complexes

The performance evaluation of the tested evolutionary-based complex detection methods
is reported using Saccharomyces cerevisiae PPINs. The first PPIN (Yeast-D1) dataset was
arranged by Gavin et al. [23] and filtered by Zaki et al. [24]. It contains 990 yeast proteins
coupled in pairs, with 4687 different interactions. In this network, all but 28 proteins have
more than one interaction, for an average of 9.4687 interactions per protein. The maximum
number of interactions is owned by protein "YCRO057C' (protein #170) to reach 52 different
interactions. The second PPIN (Yeast-D2) has 1443 different yeast proteins with a total of
6993 interactions. All but 92 proteins have more than one interaction, with an average of
9.6923 interactions. In this network, protein "YHR052W' (protein #339) holds the maximum
number of interactions, which is 59 different interactions.

Further, each protein is annotated with both direct and indirect GO terms. The direct GO
terms (in BP, CC, and MF categories) together with their DAG ancestor terms are
downloaded from the Saccharomyces Genome Database (SGD) at url: http://genome-
www.stanford.edu/Saccharomyces/ in November 2022. For Yeast-D2, on the other hand, all
1443 proteins are annotated with a total of 1552 BP terms, 558 CC terms, and 663 MF terms.
Two different sets of true yeast complexes, Cmplx_D1 and Cmplx _D2, are used to assess
the detection reliability of the algorithms over, respectively, Yeast-D1 and Yeast-D2. Both
benchmark sets are supported by the Munich Information Center for Protein Sequence (MIPS)
genome and protein sequence databases. The first complex set, i.e. Cmplx_D1 dataset covers
81 different true or reference complexes scopes from 6 to 38 different proteins. The second
set of complexes, i.e. Cmplx _D2 dataset, on the other hand, encompasses more reference
complexes and reaches up to 162 complexes with sizes ranging from 4 to 266 yeast proteins.
However, in this set, there are 12 true complexes with completely unknown proteins to Yeast-
D2, while 680 yeast proteins known to Yeast-D2 are spread over 150 true complexes.

6.2  Parameter setting

The parameters of the proposed EA with GO-based mutation and the counterpart
algorithms are set to the following, more or less, standard settings: The population size, u, is
set to 100. The maximum number of generations required to stop the evolution of the
algorithms is set at 100. The probability of uniform crossover, P, is set to 0.8. The probability
of the canonical and the topological-based mutation operators, B,, is set to 0.2; and the
probability of the GO-based mutation operator, B, is likewise set to 0.2. The results of the
algorithms are presented for the average of 30 simulation runs for the best solutions obtained
(in terms of QD). To easily follow the competitive performance of the effective algorithm, the
effective values are designated in boldface.

Validation measures are used to measure the accuracy of the predicted complexes. If a
predicted complex C; matches one of the golden complexes from the benchmark set in §* (i.e.
complex §;), we can say that the proteins of both complexes are overlapped or intersected
with a neighborhood affinity score (Eq. 24). If the score is found to be equal to or greater than
an overlapping threshold or overlapping score o, then complex C; matches §; [25].
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|CinS |
NA(C,S;) = |ci||s;| (24)

where | .| denotes the overlap between the predicted complex and the golden complex in

terms of the number of proteins they share.

match (C;,S;) = {1 if NA(Ci.S;) = oos
0 otherwisex

(25)

6.3  Quantity of the detected complexes

The ratio of the number of reference complexes that overlap with any of the detected
complexes (given an overlapping score) is defined asrecall. It is used to evaluate the
quantity of matched true complexes. Also, the ratio of the number of detected complexes that
overlap any of the true complexes is defined as precision. Finally, F score, is defined as the
harmonic mean of both recall and precision. Thus, F score is used to evaluate the overall

quantity of matched complexes.
|Si|SiES*/\E|CjEC—anatCh(Si,Cj)

recall = - (26)
.. |C;|C;eCAIS ;€S*>match(C;,S})
precision = — . - (27)
K
__ 2Xrecallxprecision (28)
- recall+precision

The results reported in Tables 1-4 and in Tables 5 and 8 for, respectively, Yeast-D1 and
Yeast-D2.

Table 1: Performance comparison for Yeast-D1 in terms of Recall, Precision, and F score
for an average of 30 different runs. The results are reported for the proposed EA with GO-
based mutation (EAgom1) and Jaccard functional similarity against the canonical EA (EA).

Recall Precision F

Oos

EA EAgomi EA EAgomi EA EAgomi
0.10 0.9287 0.9513 0.7813 0.7993 0.8484 0.8686
0.15 0.8765 0.9184 0.7446 0.7726 0.8050 0.8391
0.20 0.8361 0.8838 0.7374 0.7680 0.7814 0.8217
0.25 0.8056 0.8551 0.7299 0.7671 0.7656 0.8086
0.30 0.7761 0.8188 0.7080 0.7622 0.7402 0.7893
0.35 0.7406 0.7944 0.6818 0.7534 0.7098 0.7732
0.40 0.7098 0.7739 0.6652 0.7492 0.6866 0.7613
0.45 0.6821 0.7547 0.6400 0.7367 0.6602 0.7455
0.50 0.6624 0.7333 0.6247 0.7174 0.6429 0.7252
0.55 0.6201 0.7111 0.5824 0.6957 0.6005 0.7032
0.60 0.5979 0.6932 0.5616 0.6780 0.5790 0.6854
0.65 0.5774 0.6752 0.5425 0.6605 0.5592 0.6677
0.70 0.5483 0.6556 0.5152 0.6413 0.5311 0.6482
0.75 0.5111 0.6111 0.4801 0.5978 0.4950 0.6043
0.80 0.4782 0.5812 0.4494 0.5686 0.4632 0.5747
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Table 2: Performance comparison for Yeast-D1 in terms of Recall, Precision, and F score
for an average of 30 different runs. The results are reported for the proposed EA with GO-
based mutation (EAgom2) and Maximum functional similarity against the canonical EA (EA).

Recall Precision F

O0os

EA EAcomz EA EAcomz EA EAcomz
0.10 0.9287 0.9483 0.7813 0.7967 0.8484 0.8655
0.15 0.8765 0.9047 0.7446 0.7707 0.8050 0.8474
0.20 0.8361 0.8547 0.7374 0.7703 0.7814 0.8316
0.25 0.8056 0.8325 0.7299 0.7703 0.7656 0.8198
0.30 0.7761 0.8060 0.7080 0.7685 0.7402 0.8088
0.35 0.7406 0.7850 0.6818 0.7630 0.7098 0.8036
0.40 0.7098 0.7671 0.6652 0.7595 0.6866 0.7890
0.45 0.6821 0.7474 0.6400 0.7446 0.6602 0.7568
0.50 0.6624 0.7333 0.6247 0.7313 0.6429 0.7282
0.55 0.6201 0.7073 0.5824 0.7053 0.6005 0.6808
0.60 0.5979 0.6957 0.5616 0.6939 0.5790 0.6663
0.65 0.5774 0.6816 0.5425 0.6797 0.5592 0.6387
0.70 0.5483 0.6667 0.5152 0.6648 0.5311 0.6230
0.75 0.5111 0.6132 0.4801 0.6115 0.4950 0.5450
0.80 0.4782 0.5769 0.4494 0.5752 0.4632 0.5214

Table 3: Performance comparison for Yeast-D1 in terms of Recall, Precision, and F score
for an average of 30 different runs. The results are reported for the proposed EA with GO-
based mutation (EA¢o.,m1) and Jaccard functional similarity against the topological-based EA

(EATop)-

Recall Precision F
70 EArqy EAgom EArq, EAgom EArop EAgomi
0.10 0.9496 0.9513 0.7764 0.7993 0.8542 0.8686
0.15 0.9064 0.9184 0.7433 0.7726 0.8167 0.8391
0.20 0.8650 0.8838 0.7425 0.7680 0.7989 0.8217
0.25 0.8355 0.8551 0.7413 0.7671 0.7854 0.8086
0.30 0.8021 0.8188 0.7388 0.7622 0.7690 0.7893
0.35 0.7812 0.7944 0.7313 0.7534 0.7553 0.7732
0.40 0.7620 0.7739 0.7293 0.7492 0.7451 0.7613
0.45 0.7496 0.7547 0.7242 0.7367 0.7366 0.7455
0.50 0.7231 0.7333 0.6999 0.7174 0.7112 0.7252
0.55 0.7077 0.7111 0.65850 0.6957 0.6960 0.7032
0.60 0.6987 0.6932 0.6762 0.6780 0.6872 0.6854
0.65 0.6795 0.6752 0.6576 0.6605 0.6682 0.6677
0.70 0.6675 0.6556 0.6459 0.6413 0.6564 0.6482
0.75 0.6222 0.6111 0.6022 0.5978 0.6119 0.6043
0.80 0.5893 0.5812 0.5704 0.5686 0.5796 0.5747
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Table 4: Performance comparison for Yeast-D1 in terms of Recall, Precision, and F score
for an average of 30 different runs. The results are reported for the proposed EA with GO-
based mutation (EAgomz) and Maximum functional similarity against the topological-based
EA (EAr,y).

Recall Precision F
7os EAq,), EAgom2 EAqpqp EAgom2 EAq,, EAgom2
0.10 0.9496 0.9483 0.7764 0.7967 0.8542 0.8655
0.15 0.9064 0.9047 0.7433 0.7707 0.8167 0.8474
0.20 0.8650 0.8547 0.7425 0.7703 0.7989 0.8316
0.25 0.8355 0.8325 0.7413 0.7703 0.7854 0.8198
0.30 0.8021 0.8060 0.7388 0.7685 0.7690 0.8088
0.35 0.7812 0.7850 0.7313 0.7630 0.7553 0.8036
0.40 0.7620 0.7671 0.7293 0.7595 0.7451 0.7890
0.45 0.7496 0.7474 0.7242 0.7446 0.7366 0.7568
0.50 0.7231 0.7333 0.6999 0.7313 0.7112 0.7282
0.55 0.7077 0.7073 0.65850 0.7053 0.6960 0.6808
0.60 0.6987 0.6957 0.6762 0.6939 0.6872 0.6663
0.65 0.6795 0.6816 0.6576 0.6797 0.6682 0.6387
0.70 0.6675 0.6667 0.6459 0.6648 0.6564 0.6230
0.75 0.6222 0.6132 0.6022 0.6115 0.6119 0.5450
0.80 0.5893 0.5769 0.5704 0.5752 0.5796 0.5214

Table 5: Performance comparison for Yeast-D2 in terms of Recall, Precision, and F score
for an average of 30 different runs. The results are reported for the proposed EA with a GO-
based mutation (EA¢om1) and Jaccard functional similarity against the canonical EA (EA).

Recall Precision F
70s EA EAgomi EA EAgoms EA EAgoms
0.10 0.9709 0.9840 0.6175 0.7993 0.7547 0.6591
0.15 0.9113 0.9347 0.5822 0.7726 0.7103 0.6493
0.20 0.8449 0.8602 0.5521 0.7680 0.6676 0.6254
0.25 0.7736 0.8016 0.5003 0.7671 0.6074 0.5959
0.30 0.7009 0.7413 0.4760 0.7622 0.5667 0.5754
0.35 0.6353 0.6631 0.4443 0.7534 0.5227 0.5433
0.40 0.5909 0.6280 0.4279 0.7492 0.4961 0.5107
0.45 0.5236 0.5567 0.3969 0.7367 0.4513 0.4649
0.50 0.4991 05311 0.3886 0.7174 0.4368 0.4290
0.55 0.4240 0.4587 0.3406 0.6957 0.3775 0.3946
0.60 0.3853 0.4222 0.3196 0.6780 0.3492 0.3657
0.65 0.3413 0.3933 0.2990 0.6605 0.3185 0.3381
0.70 0.2904 0.3136 0.2632 0.6413 0.2760 0.2690
0.75 0.2584 0.2976 0.2369 0.5978 0.2470 0.2434
0.80 0.2211 0.2704 0.2124 0.5686 0.2165 0.2154
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Table 6: Performance comparison for Yeast-D2 in terms of Recall, Precision, and F score
for an average of 30 different runs. The results are reported for the proposed EA with GO-
based mutation (EAgom2) and Maximum functional similarity against the canonical EA (EA).

Recall Precision F
70s EA EAgoms EA EAgos EA EAgoms
0.10 0.9709 0.9804 0.6175 0.6085 0.7547 0.7509
0.15 0.9113 0.9198 0.5822 0.5931 0.7103 0.7210
0.20 0.8449 0.8404 0.5521 0.5708 0.6676 0.6797
0.25 0.7736 0.7851 0.5003 0.5273 0.6074 0.6307
0.30 0.7009 0.7269 0.4760 0.5181 0.5667 0.6049
0.35 0.6353 0.6533 0.4443 0.4902 0.5227 0.5599
0.40 0.5909 0.6091 0.4279 0.4716 0.4961 0.5315
0.45 0.5236 0.5433 0.3969 0.4425 0.4513 0.4876
0.50 0.4991 0.5158 0.3886 0.4296 0.4368 0.4686
0.55 0.4240 0.4501 0.3406 0.4039 0.3775 0.4296
0.60 0.3853 0.4282 0.3196 0.3905 0.3492 0.4084
0.65 0.3413 0.3987 0.2990 0.3695 0.3185 0.3834
0.70 0.2904 0.3180 0.2632 0.3305 0.2760 0.3240
0.75 0.2584 0.3011 0.2369 0.3134 0.2470 0.3071
0.80 0.2211 0.2733 0.2124 0.2882 0.2165 0.2805

Table 7: Performance comparison for Yeast-D2 in terms of Recall, Precision, and F score
for an average of 30 different runs. The results are reported for the proposed EA with GO-
based mutation (EAgom1) and Jaccard functional similarity against the topological-based EA

(EATop)-

Recall Precision F
%os EArop EAgom EArop EAgo1 EArop EAgom1
0.10 0.9853 0.9840 0.6183 0.7993 0.7597 0.6591
0.15 0.9318 0.9347 0.5906 0.7726 0.7229 0.6493
0.20 0.8624 0.8602 0.5674 0.7680 0.6843 0.6254
0.25 0.7987 0.8016 0.5098 0.7671 0.6222 0.5959
0.30 0.7327 0.7413 0.4997 0.7622 0.5940 0.5754
0.35 0.6684 0.6631 0.4764 0.7534 0.5562 0.5433
0.40 0.6216 0.6280 0.4593 0.7492 0.5281 0.5107
0.45 0.5520 0.5567 0.4289 0.7367 0.4825 0.4649
0.50 0.5271 0.5311 0.4212 0.7174 0.4681 0.4290
0.55 0.4569 0.4587 0.3827 0.6957 0.4163 0.3946
0.60 0.4222 0.4222 0.3646 0.6780 0.3911 0.3657
0.65 0.3807 0.3933 0.3446 0.6605 0.3616 0.3381
0.70 0.3062 0.3136 0.2958 0.6413 0.3008 0.2690
0.75 0.2909 0.2976 0.2840 0.5978 0.2873 0.2434
0.80 0.2618 0.2704 0.2618 0.5686 0.2617 0.2154
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Table 8: Performance comparison for Yeast-D2 in terms of Recall, Precision, and F score
for an average of 30 different runs. The results are reported for the proposed EA with GO-
based mutation (EAgomz) and Maximum functional similarity against the topological-based
EA (EAr,y).

Recall Precision F
o0 EAroy  EAgoms  EAroy  FAgoms  EAgop EAgoms
0.10 0.9853 0.9804 0.6183 0.6085 0.7597 0.7509
0.15 0.9318 0.9198 0.5906 0.5931 0.7229 0.7210
0.20 0.8624 0.8404 0.5674 0.5708 0.6843 0.6797
0.25 0.7987 0.7851 0.5098 0.5273 0.6222 0.6307
0.30 0.7327 0.7269 0.4997 0.5181 0.5940 0.6049
0.35 0.6684 0.6533 0.4764 0.4902 0.5562 0.5599
0.40 0.6216 0.6091 0.4593 0.4716 0.5281 0.5315
0.45 0.5520 0.5433 0.4289 0.4425 0.4825 0.4876
0.50 0.5271 0.5158 0.4212 0.4296 0.4681 0.4686
0.55 0.4569 0.4591 0.3827 0.4039 0.4163 0.4296
0.60 0.4222 0.4282 0.3646 0.3905 0.3911 0.4084
0.65 0.3807 0.3987 0.3446 0.3695 0.3616 0.3834
0.70 0.3062 0.3180 0.2958 0.3305 0.3008 0.3240
0.75 0.2909 0.3011 0.2840 0.3134 0.2873 0.3071
0.80 0.2618 0.2733 0.2618 0.2882 0.2617 0.2805

Tables 1-8 reveal that the added information being encapsulated by the GO terms in the
design of the proposed algorithms obviously affects their performance to outperform the
counterpart canonical and topological-based EAs in all evaluation metrics and in almost all
overlapping scores. In other words, this can reflect that the modularity density with the added
GO information has the ability to detect a greater number of accurate protein complexes in
both yeast-D1 and D2. This indeed implies that the structure of the detected complexes has a
high percentage of correct proteins being aggregated into the correct complex set. Further, the
results reveal the ability of the proposed algorithms to reach a compromise or tradeoff
between the contradictory objectives of recall and precision. This can be clearly seen from the
higher values of F score achieved by the proposed algorithms.

6.4 Quality of the detected complexes
Recally Precisiony and Fy are used in evaluating the quality of the detected complexes
[15]. Further, positive predictive value (PPV), sensitivity (sensitivity), and geometric
accuracy (accuracy) [15] are also used to measure the quality of the detected complexes.
TS myl .
recally = ﬁwhere |m;| = Maxcns,| (VS e S*A match(Si, C}) > 0ps} (29)
j=1"t

K
. . Y5 Imyl
precisiony = =ZZ—

A
(30)

where |m;| = maxc.ns,| {(vGie C'A match(Cj,Si) > 0ps}

2 X recally X precision
Fy = N———1 (31)
recally,+ precisiony
K K
I8 max St
PPV =

Kc vKs ..
X5 X tij

(32)
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o 2?:51 maxj.{zc1 tij
sensitivity = —x——

33
TS Isil (33)

where t;; is the number of proteins common to the golden standard complex i and the

predicted complex j. The accuracy is used to evaluate the overall performance based on the
quality of the matched complexes.

accuracy = /sensitivity * PPV (34)

The results in Tables 9-16 prove the ability of the proposed GO-based EAs to outperform
(in all terms of quantity metrics, Recally , Precisiony and Fy) the canonical and topological
EAs. Table 17 shows that the addition of gene ontology information can yield better results.
However, further development may be needed.

Table 9: Performance comparison for Yeast-D1 in terms of Recally, Precisiony, and Fy for
an average of 30 different runs. The results are reported for the proposed EA with a GO-based
mutation (EAgg.m1) and Jaccard functional similarity against the canonical EA (EA).

Recally Precisiony Fy
7os EA EAgom EA EAgom EA EAgom
010  0.8540 0.9447 0.7343 0.8000 0.7894 0.8663
015  0.8229 0.9152 0.7297 0.7969 0.7731 0.8519
020  0.7942 0.8881 0.7269 0.7959 0.7587 0.8394
025  0.7692 0.8624 0.7217 0.7952 0.7445 0.8274
030  0.7391 0.8266 0.7039 0.7935 0.7209 0.8096
035  0.7097 0.8127 0.6844 0.7887 0.6967 0.8005
040  0.6697 0.7903 0.6624 0.7846 0.6659 0.7874
045  0.6332 0.7642 0.6295 0.7629 0.6313 0.7636
050  0.5998 0.7161 0.6013 0.7161 0.6005 0.7161
055  0.5497 0.6953 0.5497 0.6953 0.5497 0.6953
060  0.5189 0.6728 0.5189 0.6728 0.5189 0.6728
065  0.4893 0.6308 0.4893 0.6308 0.4893 0.6308
070  0.4547 0.6096 0.4547 0.6096 0.4547 0.6096
075  0.4222 0.5405 0.4222 0.5405 0.4222 0.5405
080  0.3992 0.5229 0.3992 0.5229 0.3992 0.5229
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Table 10: Performance comparison for Yeast-D1 in terms of Recally, Precisiony, and Fy
for an average of 30 different runs. The results are reported for the proposed EA with GO-
based mutation (EAgom2) and Maximum functional similarity against the canonical EA (EA).

Recally Precisiony Fy
70s EA EAgoms EA EAgoms EA EAgoms
010  0.8540 0.9464 0.7343 0.7974 0.7894 0.8655
015  0.8229 0.9081 0.7297 0.7945 0.7731 0.8474
020  0.7942 0.8727 0.7269 0.7944 0.7587 0.8316
025  0.7692 0.8470 0.7217 0.7944 0.7445 0.8198
030  0.7391 0.8250 0.7039 0.7934 0.7209 0.8088
035  0.7097 0.8154 0.6844 0.7922 0.6967 0.8036
040  0.6697 0.7913 0.6624 0.7867 0.6659 0.7890
045  0.6332 0.7573 0.6295 0.7564 0.6313 0.7568
050  0.5998 0.7282 0.6013 0.7282 0.6005 0.7282
055  0.5497 0.6808 0.5497 0.6808 0.5497 0.6808
060  0.5189 0.6663 0.5189 0.6663 0.5189 0.6663
065  0.4893 0.6387 0.4893 0.6387 0.4893 0.6387
070  0.4547 0.6230 0.4547 0.6230 0.4547 0.6230
075  0.4222 0.5450 0.4222 0.5450 0.4222 0.5450
080  0.3992 0.5214 0.3992 0.5214 0.3992 0.5214

Table 11: Performance comparison for Yeast-D1 in terms of Recally, Precisiony, and Fy
for an average of 30 different runs. The results are reported for the proposed EA with GO-
based mutation (EAgom1) and Jaccard functional similarity against the topological-based EA

(EATop)-

Recally Precisiony Fy
70 EArqy EAcom EArq, EAgomi EArq, EAcom
0.10 0.9441 0.9447 0.7893 0.8000 0.8597 0.8663
0.15 0.9042 0.9152 0.7854 0.7969 0.8406 0.8519
0.20 0.8786 0.8881 0.7853 0.7959 0.8293 0.8394
0.25 0.8523 0.8624 0.7844 0.7952 0.8169 0.8274
0.30 0.8174 0.8266 0.7825 0.7935 0.7995 0.8096
0.35 0.8054 0.8127 0.7787 0.7887 0.7918 0.8005
0.40 0.7804 0.7903 0.7749 0.7846 0.7777 0.7874
0.45 0.7629 0.7642 0.7620 0.7629 0.7624 0.7636
0.50 0.6927 0.7161 0.6927 0.7161 0.6927 0.7161
0.55 0.6741 0.6953 0.6741 0.6953 0.6741 0.6953
0.60 0.6595 0.6728 0.6595 0.6728 0.6595 0.6728
0.65 0.6229 0.6308 0.6229 0.6308 0.6229 0.6308
0.70 0.6062 0.6096 0.6062 0.6096 0.6062 0.6096
0.75 0.5403 0.5405 0.5403 0.5405 0.5403 0.5405
0.80 0.5201 0.5229 0.5201 0.5229 0.5201 0.5229
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Table 12: Performance comparison for Yeast-D1 in terms of Recally, Precisiony, and Fy
for an average of 30 different runs. The results are reported for the proposed EA with GO-
based mutation (EAgomz) and Maximum functional similarity against the topological-based

EA (EArop).
Recally Precisiony Fy
P EAry EAgom: EArop EAgom: EArop EAgom:
0.10 0.9441 0.9464 0.7893 0.7974 0.8597 0.8655
0.15 0.9042 0.9081 0.7854 0.7945 0.8406 0.8474
0.20 0.8786 0.8727 0.7853 0.7944 0.8293 0.8316
0.25 0.8523 0.8470 0.7844 0.7944 0.8169 0.8198
0.30 0.8174 0.8250 0.7825 0.7934 0.7995 0.8088
0.35 0.8054 0.8154 0.7787 0.7922 0.7918 0.8036
0.40 0.7804 0.7913 0.7749 0.7867 0.7777 0.7890
0.45 0.7629 0.7573 0.7620 0.7564 0.7624 0.7568
0.50 0.6927 0.7282 0.6927 0.7282 0.6927 0.7282
0.55 0.6741 0.6808 0.6741 0.6808 0.6741 0.6808
0.60 0.6595 0.6663 0.6595 0.6663 0.6595 0.6663
0.65 0.6229 0.6387 0.6229 0.6387 0.6229 0.6387
0.70 0.6062 0.6230 0.6062 0.6230 0.6062 0.6230
0.75 0.5403 0.5450 0.5403 0.5450 0.5403 0.5450
0.80 0.5201 0.5214 0.5201 0.5214 0.5201 0.5214

Table 13: Performance comparison for Yeast-D2 in terms of Recally, Precisiony, and Fy
for an average of 30 different runs. The results are reported for the proposed EA with a GO-
based mutation (EA¢om1) and Jaccard functional similarity against the canonical EA (EA).

ks Recally Precisiony Fy
l,mn EA EAgom EA EAgom EA EAgom
0.10 0.5538 0.5931 0.7217 0.7594 0.6265 0.6659
0.15 0.5395 0.5822 0.7113 0.7551 0.6134 0.6574
0.20 0.5051 0.5503 0.6955 0.7458 0.5849 0.6332
0.25 0.4728 0.5218 0.6684 0.7287 0.5536 0.6080
0.30 0.4386 0.4964 0.6415 0.7218 0.5207 0.5885
0.35 0.4103 0.4601 0.6184 0.6925 0.4930 0.5529
0.40 0.3703 0.4344 0.5864 0.6710 0.4537 0.5273
0.45 0.3314 0.3774 0.5542 0.6444 0.4146 0.4759
0.50 0.3005 0.3456 0.5323 0.6190 0.3839 0.4435
0.55 0.2505 0.3021 0.4873 0.5887 0.3305 0.3992
0.60 0.2247 0.2779 0.4571 0.5630 0.3009 0.3721
0.65 0.1980 0.2528 0.4215 0.5283 0.2689 0.3418
0.70 0.1618 0.1915 0.3752 0.4876 0.2256 0.2749
0.75 0.1445 0.1730 0.3401 0.4369 0.2025 0.2478
0.80 0.1188 0.1529 0.2880 0.3832 0.1679 0.2185
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Table 14: Performance comparison for Yeast-D2 in terms of Recally, Precisiony, and Fy
for an average of 30 different runs. The results are reported for the proposed EA with GO-
based mutation (EAgom2) and Maximum functional similarity against the canonical EA (EA).

Recally Precisiony Fy
oo EA EAgoms EA EAgoms EA EAgoms
0.10 0.5538 0.5909 0.7217 0.7453 0.6265 0.6591
0.15 0.5395 0.5769 0.7113 0.7424 0.6134 0.6493
0.20 0.5051 0.5454 0.6955 0.7333 0.5849 0.6254
0.25 0.4728 0.5120 0.6684 0.7127 0.5536 0.5959
0.30 0.4386 0.4885 0.6415 0.6999 0.5207 0.5754
0.35 0.4103 0.4541 0.6184 0.6764 0.4930 0.5433
0.40 0.3703 0.4189 0.5864 0.6542 0.4537 0.5107
0.45 0.3314 0.3687 0.5542 0.6291 0.4146 0.4649
0.50 0.3005 0.3341 0.5323 0.5998 0.3839 0.4290
0.55 0.2505 0.2984 0.4873 0.5823 0.3305 0.3946
0.60 0.2247 0.2709 0.4571 0.5631 0.3009 0.3657
0.65 0.1980 0.2501 0.4215 0.5218 0.2689 0.3381
0.70 0.1618 0.1877 0.3752 0.4741 0.2256 0.2690
0.75 0.1445 0.1702 0.3401 0.4276 0.2025 0.2434
0.80 0.1188 0.1506 0.2880 0.3787 0.1679 0.2154

Table 15: Performance comparison for Yeast-D2 in terms of Recally, Precisiony, and Fy
for an average of 30 different runs. The results are reported for the proposed EA with GO-
based mutation (EAgom1) and Jaccard functional similarity against the topological-based EA

(EATop)-

Recally Precisiony Fy
70s EATop EAGOml EATop EAGOml EATop EAGOml
0.10 0.5878 0.5931 0.7506 0.7453 0.6592 0.6659
0.15 0.5764 0.5822 0.7448 0.7424 0.6498 0.6574
0.20 0.5427 0.5503 0.7364 0.7333 0.6247 0.6332
0.25 0.5125 0.5218 0.7151 0.7127 0.5970 0.6080
0.30 0.4855 0.4964 0.7051 0.6999 0.5750 0.5885
0.35 0.4598 0.4601 0.6817 0.6764 0.5491 0.5529
0.40 0.4183 0.4344 0.6535 0.6542 0.5100 0.5273
0.45 0.3710 0.3774 0.6255 0.6291 0.4657 0.4759
0.50 0.3390 0.3456 0.6068 0.5998 0.4349 0.4435
0.55 0.2968 0.3021 0.5786 0.5823 0.3922 0.3992
0.60 0.2679 0.2779 0.5568 0.5631 0.3616 0.3721
0.65 0.2430 0.2528 0.5272 0.5218 0.3325 0.3418
0.70 0.1842 0.1915 0.4608 0.4741 0.2631 0.2749
0.75 0.1730 0.1730 0.4347 0.4276 0.2474 0.2478
0.80 0.1490 0.1529 0.3756 0.3787 0.2133 0.2185
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Table 16: Performance comparison for Yeast-D2 in terms of Recally, Precisiony, and Fy
for an average of 30 different runs. The results are reported for the proposed EA with GO-
based mutation (EAgom1) and Maximum functional similarity against the topological-based
EA (EAr,y).

Recally Precisiony Fy
©°  EAry  Elgomz  FAry  Edgoma  EArg EAgom
0.10 0.5878 0.5909 0.7506 0.7453 0.6592 0.6591
0.15 0.5764 0.5769 0.7448 0.7424 0.6498 0.6493
0.20 0.5427 0.5454 0.7364 0.7333 0.6247 0.6254
0.25 0.5125 0.5120 0.7151 0.7127 0.5970 0.5959
0.30 0.4855 0.4885 0.7051 0.6999 0.5750 0.5754
0.35 0.4598 0.4541 0.6817 0.6764 0.5491 0.5433
0.40 0.4183 0.4189 0.6535 0.6542 0.5100 0.5107
0.45 0.3710 0.3687 0.6255 0.6291 0.4657 0.4649
0.50 0.3390 0.3341 0.6068 0.5998 0.4349 0.4290
0.55 0.2968 0.2984 0.5786 0.5823 0.3922 0.3946
0.60 0.2679 0.2709 0.5568 0.5631 0.3616 0.3657
0.65 0.2430 0.2501 0.5272 0.5218 0.3325 0.3381
0.70 0.1842 0.1877 0.4608 0.4741 0.2631 0.2690
0.75 0.1730 0.1702 0.4347 0.4276 0.2474 0.2434
0.80 0.1490 0.1506 0.3756 0.3787 0.2133 0.2154

Table 17: Performance comparison for Yeast-D1 and Yeast-D2 in terms of Sensitivity,
PPV, and accuracy for an average of 30 different runs. The results are reported for the
proposed EAs with GO-based mutation (EA¢om1) and Jaccard functional similarity and EAS
with GO-based mutation (EAgom2) and Maximum functional similarity against the canonical
EA (EA) and the topological-based EA (EAr,y).

Sensitivity PPV accuracy
Yeast-D1
EA 0.8937 0.7363 0.8109
EArop 0.9646 0.7904 0.8732
EAgom1 0.9625 0.8004 0.8777
EAgom2 0.9662 0.7977 0.8779
Yeast-D2
EA 0.5648 0.2912 0.4229
EArop 0.5933 0.4269 0.4269
EAcomt 0.5978 0.3025 0.4253
EAcom2 0.5972 0.3000 0.4233

7. Conclusions

The main contribution of this paper is to improve the detection reliability of the well-
known modularity density model when used as the optimization model in the framework of an
evolutionary-based complex detection algorithm. To this end, the design of the EA is
extended by adding a gene ontology-based mutation operator. With Jaccard and maximum
functional similarity, the GO information of gene products is injected into the mechanism of
the mutation operator. On two yeast PPINs and two benchmark sets of gold complexes, the
proposed EA is proven to produce more accurate complexes with more accurate quality than
the counterpart canonical and topological-based EAs. According to the results, a gene
ontology-based mutation operator complements modularity density well, allowing for the
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discovery of additional complexes. Further investigation and future work are recommended to
improve the quality of the detected complexes in terms of Sensitivity, PPV, and accuracy.
This would open the door for redefining the modularity density model to cope with the
biological domain rather than the topological domain. Also, more research investigations are
required for detecting disease-related (e.g., bone, cancer, endocrine, and cardiovascular)
complexes.
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