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Abstract 

     One of the recent significant but challenging research studies in computational 

biology and bioinformatics is to unveil protein complexes from protein-protein 

interaction networks (PPINs). However, the development of a reliable algorithm to 

detect more complexes with high quality is still ongoing in many studies. The main 

contribution of this paper is to improve the effectiveness of the well-known 

modularity density (  ) model when used as a single objective optimization 

function in the framework of the canonical evolutionary algorithm (EA). To this 

end, the design of the EA is modified with a gene ontology-based mutation operator, 

where the aim is to make a positive collaboration between the modularity density 

model and the proposed gene ontology-based mutation operator. The performance of 

the proposed EA to have a high quantity and quality of the detected complexes is 

assessed on two yeast PPINs and compared with two benchmarking gold complex 

sets. The reported results reveal the ability of modularity density to be more 

productive in detecting more complexes with high quality when teamed up with a 

gene ontology-based mutation operator.      

 

Keywords: EA, Gene ontology, protein complex, protein interaction networks, 

modularity density. 

 

 خوارزمية تطورية لتحسين كمية ونوعية المجمعات المكتشفة من شبكات تفاعل البروتين

 

 ، براء علي عطية*صفا أحمد عبدالصاحب

 ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق وبالحاسعلوم قسم 
 

 خلاصة:ال
إحدى الدراسات البحثية الحديثة المهمة، ولكن الصعبة، في البيولوجيا الحاسوبية والمعلوماتية الحيوية        

(. ومع ذلك، فإن PPINsالكشف عن مجمعات البروتين في شبكات تفاعل البروتين والبروتين ) هي مشكلة
يزال مستمراً في العديد من  تطوير خوارزمية موثوقة لاكتشاف المزيد من المجمعات ذات الجودة العالية لا

 (  ) الكثافة النمطيةالمعروف بنموذج الفي تحسين فعالية  البحث ات. تتمثل المساهمة الرئيسية لهذاالدراس
(. تحقيقا لهذه EA) القانونيةالخوارزمية التطورية  قالبموضوعية في أمثية الأحادية ال كدالة استعمالهعند 
، حيث يكون الهدف هو إقامة مشغل طفرة يعتمد على علم الجينات استعمالب EA ال ، تم تعديل تصميمالغاية

 ال كثافة النمطية ومشغل الطفرة المقترح القائم على علم الجينات. يتم تقييم أداءالتعاون إيجابي بين نموذج 
EA الخمائرشبكات  المكتشفة على اثنين من البروتينية المقترح للحصول على كمية وجودة عالية للمجمعات 

النتائج عن قدرة الكثافة النمطية  تثبتالقياسية الذهبية.  المجمعات بمجموعتين من ومقارنة المجمعات المكتشفة
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عالية عند البروتينية وبنفس الوقت ذات جودة على أن تكون أكثر إنتاجية في اكتشاف المزيد من المجمعات 
 وجود.م الالتعاون مع مشغل الطفرات الجينية القائم على عل

 
1. Introduction  

A key feature of a networked system is the general tendency toward organizing nodes 

hierarchically into multiple cohesive modules or communities. However, identifying such 

communities is a challenging problem in network research, with applications in biological 

networks, social network modeling, and communication pattern analysis [1–7]. Proteins that 

control and mediate many biological activities by regulating and supporting one another 

through their interactions form biological networks [1, 8]. These networks can be represented 

as protein-protein interaction networks (PPINs), which are powerful modular organizations 

for understanding protein functional qualities and their future potential as biomarkers of 

cellular organization. A PPIN holds information on the protein-protein interactome of any 

organism. 

Figure 1 depicts an illustrative example of a yeast Saccharomyces cerevisiae PPIN (left) that 

has 990 different proteins, obtained from the Yeast Protein Database [8], with 4687 

interactions. Based on the golden reference set of 81 complexes maintained by the Munich 

Information Center for Protein Sequences (MIPS) database for genome annotation, gene 

expression analysis, and proteomics, this protein interaction network is decomposed into 78 

different-sized complexes [8].  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A yeast Saccharomyces cerevisiae network (left) and two complex (    and    ) 

are zoomed out in the right.  

 

       In PPINs, protein interactions can indicate the formation of either stable or 

transient protein complexes (or functional modules), as well as either physical or functional 

interactions. A protein complex, then, is defined as a group of proteins that work together to 

carry out a specific biological process or activity. Figure 2 depicts an illustrative example of 

the two complexes that are zoomed out in Figure 1. The yeast proteins in Figure 2 are 

depicted with their names and their intra- and inter-cellular connections. 

 

 

 

𝑪𝟖𝟏 

𝑪𝟓𝟑 

https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/Proteomics
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Figure 2: An illustrative example of two complexes (   and    ) of yeast proteins (from 

yeast-D1 Saccharomyces cerevisiae PPIN) with their identity names, intra connections and 

inter connections.    

 

      Protein complex detection in a protein-protein interaction network (PPIN) is a graph 

clustering problem that involves identifying densely connected regions in the network as 

genuine protein complexes. This problem is informally defined as an optimization problem 

and has been proven to be non-deterministic polynomial-time hard (NP-hard) [3]. In other 

words, it is computationally very difficult to find an optimal solution in a reasonable amount 

of time. 

 

       In this paper, a single objective EA is proposed, and its robustness is evaluated in terms 

of the quantity and quality of the detected complexes. The definition of the problem is 

formulated as a single objective function of the modularity density. Further, the performance 

of the modularity density model is examined using two yeast PPINs under the teamwork of a 

GO-based mutation operator. The coming sections are outlined as follows: The well-known 

heuristic and meta-heuristic (i.e., evolutionary-based) complex detection algorithms proposed 

in the literature are presented next. This is followed by the formal representation of proteins 

and protein interaction networks in both the topological and biological domains, which are 

presented in the next three sections. The details of the proposed evolutionary-based complex 

detection algorithm are given in Section 5. This is followed by the simulation results and a 

description of the main findings of the research. Finally, a conclusion and recommendation 

for future work are given in Section 7.  

 

2. Related work 

       Different meta-heuristic algorithms, mainly evolutionary algorithms (EAs), were 

proposed in the literature to detect protein complexes from PPINs. The EA-based complex 

detection methods are proven to be more robust than their counterparts, the heuristic-based 

complex detection methods. Examples of such heuristic-based methods are Molecular 

Complex Detection (MCODE) [3], Purification of the bait proteins [4], Dense-neighborhood 

Extraction using Connectivity and ConFidence Features (DECAFF) [5], Repeated Random 

Walk (RRW) [6], Clustering-based on maximal cliques (CMC) [7], and Hierarchical Link 

Clustering [7, 9]. 

 

      One of the earliest works to identify the importance of evolutionary algorithms for solving 

complex detection problems is recognized by Pizzuti and Rombo in [10] and [11]. 

Evolutionary-based complex detection algorithms use evolutionary principles, i.e., natural 

selection and genetic variation, to search for promising candidates for protein complex 
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structures. These algorithms typically involve generating a population of candidate solutions 

(e.g., protein complexes), evaluating their fitness based on one or more criteria (e.g., 

connectivity, density, and functional coherence), and iteratively evolving the population 

towards better solutions through selection, recombination, and mutation. They developed a 

single-objective genetic algorithm (GA) with different single-objective complex detection 

models to solve the problem. The remaining components of the GA (i.e., selection, crossover, 

and mutation operators) were designed based on their well-known traditional forms. All their 

models (i.e., objective functions) were defined based on different topological characteristics 

of the proteins and their interactions in the networks. The formulation of the objective 

functions includes the well-known modularity (Q) function, community score (CS) function, 

conductance (CO) function, normalized cut (NC) function, internal density (ID) function, 

expansion (EX) function, and cut ratio (CR) function. Unlike the modularity (Q) function, all 

the remaining models explicitly define both the intra-complex structure and the inter-complex 

structure with different maximization or minimization scores. On the other hand, traditional 

modularity explicitly defines the intra-complex structure score only.  

 

      Unlike the single-objective models examined by Pizzuti and Rombo in [10] and [11], 

Bandyopadhyay et al. and Ray et al. in, respectively, [12] and [13], on the other hand, were 

the first to formulate the problem as a multi-objective optimization (MOO) problem. Both 

intra-complex structure and inter-complex structure are reflected in their MOO model. They 

designed a multi-objective genetic algorithm outlined by the well-known non-dominated 

sorting algorithm (NSGA-II) for solving the complex detection problem.  

 

      In [14], in 2016, a multi-objective evolutionary co-clustering model for social community 

discovery was proposed. The model identifies disjoint communities using evolutionary 

algorithms and co-clustering. It describes four types of neighborhood nodes and relations and 

proposes a heuristic mutation operator to increase the convergence velocity and reliability of 

the adopted multi-objective optimization model. The heuristic operator lets nodes migrate 

across communities based on neighborhood relationships. 

 

      In [15], two contradictory topological-based structures were formulated to reflect the 

intra-complex structure and the inter-complex structure as a multi-objective optimization 

model. The adopted multi-objective evolutionary algorithm was framed by the well-known 

decomposition-based multi-objective evolutionary algorithm (MOEA/D). In [16] and [17], a 

locally-assisted migration operator is proposed based on the topological properties of the 

tested PPINs. The operator has the ability to improve the performance of both single-objective 

and multi-objective evolutionary-based complex detection algorithms. 

 

      These evolutionary-based algorithms are often more robust and less sensitive to parameter 

settings than heuristic algorithms, and they can potentially provide better accuracy and 

scalability for complex detection in large biological networks. Significant exploitation of 

domain knowledge of the optimization problems can support the use of EAs to the fullest. 

Unfortunately, there is a lack of research investigating these evolutionary-based algorithms to 

examine the impact of domain knowledge on their design. In bioinformatics, the utilization of 

ontologies for genome annotation has brought significant advances to the field of molecular 

biology. These bioontologies were rarely considered in the design of evolutionary-based 

complex detection algorithms. Only recently, [18] examined the design of the mutation 

operator in an EA (with a modularity model) based on the biological information inherited 

from three different gene sub-ontology types. They designed the mutation operator based on 
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protein pair similarity in four versions: molecular function (MF), cellular component (CC), 

biological process (BP), and their combinations. 

 

3. Formal representation of PPIN in topological domain 

       Commonly, a protein-protein interaction network (PPIN), is usually formulated as an 

undirected graph           The set of vertices    represents    proteins, i.e.   
              , while the set   of edges embodies the   protein interactions, i.e.   
               Since it is believed that proteins that interact are more likely to perform similar 

biological functions within a PPIN, there are dense regions (protein complexes) in more than 

one tightly linked region in the graph. Figure 3 illustrates a graph (small PPIN) example with 

eight nodes being decomposed into two sub-graphs or complexes,          and         , 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3: A small PPIN of 8 proteins is decomposed into two complexes. The nodes within a 

dashed circle form one complex. The edges inside the dashed circle are intra-connections, 

while those connecting the two complexes are inter-connections. 

 

      Mathematically, the graph   of a PPIN can be represented as a square symmetric 

adjacency matrix,        
    . If proteins that resemble to vertices     and    have a 

biological interaction, it can be interpreted that entry     and its counterpart entry     of the 

adjacency matrix   are both set on; otherwise, they are set off. Figure 4 presents the 

adjacency matrix   for the PPIN depicted in Figure 3. Further, the adjacency matrix can be 

represented as a set of   adjacency lists                  . Using a separate list    for 

each protein       to aggregate all   entries in row  . As a result: 

 |  |  ∑      
 
               (1) 

and 

 | |  ∑   
 
                                    (2) 

 

 

 

 

                          
 

          

             

 

 

Figure 3: Adjacency matrix for the PPIN in Figure 3, where "1" indicates that the 

corresponding pair of proteins interacts; otherwise, "0" means no biological interaction. All 

diagonal entries are set to “0.” 
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4. Formal representation of proteins in biological domain  

4.1 Annotation with Gene ontology terms 

        Gene ontology (GO), as a dynamic ontology, is a popular species-agnostic ontology used 

in biology to describe the semantics or context of gene and gene product attributes in single 

and multicellular organisms. As the activity or function of a protein is defined at different 

levels, the GO domain has been composed into three orthogonal categories or aspects: 

molecular function (  ), biological process (  ), and cellular component (  ). Each protein 

performs elementary molecular-level activities that are normally independent of the 

environment and occur at the molecular level, such as catalytic, transport, or binding 

activities. Larger cellular processes or biological programs are accomplished by the multiple 

molecular activities of sets of interacted proteins.  

 

     Every GO term has a unique human-readable GO name, e.g., transcription corepressor 

activity or amino acid binding—and a unique GO seven-digit identifier prefixed by GO:, 

e.g.,            . As an illustrative example, consider Table 1, where the annotations of 

five different proteins with their direct GO terms are reported. The annotations are reported in 

the three sub-ontologies. These were downloaded from the Saccharomyces Genome Database 

(SGD) at http://genome-www.stanford.edu/Saccharomyces/.  

 

4.2 Graph structure of a GO term  

     Each individual sub-ontology term     can be structured hierarchically by an independent 

directed acyclic graphs (   ). A directed graph is made up of a set of nodes and a set of 

edges, where each GO term is a node and the relationships between the terms are edges 

between the nodes. Child GO terms are more specialized than their parent GO terms, and a 

GO term may have more than one parent GO term. A relation between two terms (  ,   ) is 

represented as a directed edge pointing from    to   . There are three main types of directed 

relationships between GO terms. These are ‘    ’, ’       ’, and ’        ’. 

Straightforward class-subclass relation is called     , where            denotes that GO term 

   is a subclass of GO term   . A partial ownership relation is a         where             

 4  means that whenever    is present, it is always a part of  4, but    is not required to be 

present. The relation ’        ’ describes a case in which one process directly affects the 

manifestation of another process or quality, i.e., the former regulates the latter.  

  
Table 1:  A sample of yeast proteins with their identity numbers, identity names, and direct 

GO annotation with MF, BP, and CC sub-ontology terms 

Protein GO term 

# name BP CC MF 

82 'YHR200W' 

[GO:0006511, 

GO:00 43248, 

GO:00 43161] 

[GO:0000502, 

GO:0008540, 

GO:0005829, 

GO:0005634] 

[GO: 0036435, 

GO:00 31593] 

41 'YDL147W' [GO:0000338] 

[GO:0000502, 

GO:0008180, 

GO:0008541, 

GO:0034515, 

GO:0005737, 

GO:0008541, 

GO:0031595] 

[GO:0005515] 

178 'YIL075C' 

[GO:0006511, 

GO:0043248, 

GO:0042176, 

[GO:0005634, 

GO:0008540, 

GO:0034515, 

[GO:0004175, 

GO:0031625, 

GO:0030234] 

http://amigo.geneontology.org/amigo/term/GO:0016597
http://genome-www.stanford.edu/Saccharomyces/
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GO:0050790] GO:0000502] 

434 'YER094C' 

[GO:0010498, 

GO:0010499, 

GO:0043161, 

GO:0006508, 

GO:0051603] 

[GO:0019774, 

GO:0005634, 

GO:0005789, 

GO:0019774, 

GO:0034515, 

GO:0005634, 

GO:0005737, 

GO:0000502, 

GO:0005839, 

GO:0019774] 

[GO:0061133] 

274 'YJL001W' 

[GO:0010498, 

GO:0010499, 

GO:0043161, 

GO:0006508, 

GO:0051603] 

[GO:0019774, 

GO:0005634, 

GO:0005789, 

GO:0034515, 

GO:0005737, 

GO:0000502, 

GO:0005634, 

GO:0005839] 

[GO:0004175, 

GO:0004298, 

GO:0016787, 

GO:0008233, 

GO:0004298] 

308 'YOL038W' 

[GO:0010499, 

GO:0043161, 

GO:0006511, 

GO:0051603, 

GO:0005737] 

[GO:0005634, 

GO:0005739, 

GO:0019773, 

GO:0034515, 

GO:0042175, 

GO:0005737, 

GO:0000502, 

GO:0005839] 

[GO:0003674, 

GO:0004298, 

GO:0004175] 

 

      Generally, a GO term may have connections to more than one GO child term (more 

specific) node, but unlike these GO terms, it can also have more than one parent (broader) 

node and different relations to its different parents. For example, in Figure 5, the GO term 

“cytoplasm” (GO:0005737) has two parents: it      cellular anatomical entity and it is 

        the intracellular anatomical structure. 
 
 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 5: Graph-based representation for GO terms and relations. 

 

      Each GO term can be represented as a DAG, in which each term represents a child node 

of one or more parent nodes. A formal representation of a GO term   is given 

by                , where     is the set of GO terms in      that includes term  sub-
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ontology   and all of its ancestor terms in the GO graph, and    is the set of edges (semantic 

relations) connecting the GO terms in     . Then, gene products are annotated with GO 

terms either directly (i.e.     ) or via inheritance or the true path rule, as annotation to a given 

term, (     ), implies annotation to all of its ancestor    terms in       . Then, we may 

define an ancestor set,       , for some   as: 

               |                      (6) 

 

     As an illustrative example, consider the three      in Figure 6, of three GO terms for the 

protein           . The GO terms are:    (           ),    (          ), and    

(         ). For example, in the figure, the     for            (meiotic cell cycle) has 

six terms connected with six ‘    ’ relations and one ‘       ’ relation. Also, the term 

           (reproductive process) is considered as      subclass of            

(biological process) and also a                    (reproduction). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Three DAGs for three different GO terms for the protein " YPL139C." one MF 

term (GO: 0003714) (top left), one BP term (GO: 0051321), and one CC term (GO:005634) 

(right). Solid arrows represent ‘is_a’ relations while dashed arrows represent ‘part_of ’ 

relations. 
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4.3 GO-based semantic similarity  

      Term semantic similarity in any ontology provides a numerical measure of how closely 

related and differently defined terms are to one another. Gene Ontology-based Semantic 

Similarity (  ) gives the opportunity to compare GO terms or entities annotated with GO 

terms based on their semantic properties, normally acquired from corpora. From   , a 

semantic similarity matrix          is obtained for   GO terms that annotate   

different proteins, where               is the semantic similarity between terms    and   .  

Wang et al. [19] proposed a semantic similarity based on semantic value and semantic 

contribution. The semantic value                for a GO term   is computed as the 

sum of the semantic contribution (  ) of all GO terms in       ,                

  , along the best (i.e. maximum) weighted paths to  .  Here,    (        )   . The best 

weighted path for each ancestor is the path that has the maximum product of the weights on 

its edges. Wang et al. [19] set   = 0.8 and   = 0.6 for 'is_a' and 'part_of,' respectively. This 

is formulated in Eq. 7. The formulation reveals that terms    that are closer to   in        

contribute more to its semantics, whereas terms    that are farther from   in        

contribute less as they are more general terms.  

  (         )              
  |         

                                        (7) 

 

      where the directional relation between    and   
  is denoted by the expression        

  . 

Then, the semantic value of the term   in its     is defined by the Eq. 3, and the semantic 

similarity between two GO terms,    and   , is defined as the ratio of the semantic 

contributions of all common terms (also known as intersecting terms) in the      of ,    and 

   to the semantic values of    and   , respectively,  in Eq. 4. 

 

      ∑                        
        (8) 

          
∑   (         )   (         )                    

           
       (9) 

 

4.4 Gene functional similarity 

        Functional similarity (  ) measures the degree to which two proteins share functional 

properties. This can be inferred using GO annotations as evidence. For   different proteins, 

then, a functional-based similarity matrix          
     can be derived. For a pair of 

proteins,    requires two sets of protein-level annotation, i.e. GO terms of the proteins within 

a specific category (i.e.,   ,   , or   ) or with all sub-ontology types. Protein-term (  ) 

representation can be established at two different levels: 1) the direct annotation scheme, and 

2) the indirect annotation scheme. In the direct annotation scheme, proteins are annotated 

using their direct GO terms across all three sub-ontology types. In other words,       , 

  ,    . For indirect annotation, each protein is annotated according to its direct GO terms 

(  ) and their ancestors in their corresponding DAG structures, i.e.,    ⋃  |    
, where 

    ⋃     indicates that the term   and all of its ancestors. 

 

      Two major categories for the calculation of    can be found in the literature. These are 

group-wise and pairwise methods [20]. One of the well-known group-wise methods is Jaccard 

as defined in Eq. 10.  

                 
|       |

|       |
                      (10) 

 

     Pair-wise methods (e.g., average, sum, maximum, or minimum), on the other hand, 

statistically consider a combination of the semantic similarities between the terms     and     
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to determine    between two gene products (i.e. proteins)    and   . For example, maximum 

functional similarity is defined in Eq. 11. 

                           |                           (11) 

 

5. The proposed evolutionary algorithm 

5.1 The general framework 

      The general framework of the proposed evolutionary-based complex detection algorithm 

can be formally termed as ECD:     . The framework is defined as an iterative 

composition function that transforms, through a set of three primary operators, an initial 

population of solutions into an evolved set of solutions. A population can be formally 

expressed as                 containing    encoded (i.e., genotype) solutions. The locus-

based adjacency representation [21] is adopted in the proposed ECD.  

 

     The initial population is generated randomly from all alternative solutions in the search 

space,   of the problem. The evolutionary algorithm evolves the population for more accurate 

solutions by mating pool selection,         , recombination of sets of parents          
  and mutation of individual offspring       . The evolutionary process continues until a 

termination criterion   is satisfied                    . 
 

5.2 Solution encoding and decoding 

      The first decision in the design of any evolutionary algorithm is how to represent the 

solution in genotype space. The solution is encoded as a list of   neighborhood-based 

representations. For PPIN with   proteins, a genotype solution or individual          is 

mapped with a list of   parameters: 

                                          (12) 

 

including   loci for   proteins. Each locus is defined by       and its allele (or value), 

       . Where   refers to protein   in the network, while    is one of the interacted proteins 

with protein  , i.e.,        . The starting set of solutions is encoded randomly from the total 

search space   of the complex detection problem.  

 

       The decoding function      , then, decodes a genotypic solution   into its 

corresponding set of complexes (i.e., phenotype). Here, it is a set of complexes   
             of   complexes. For the decoding function, each protein should belong to only 

one complex, with no overlap between any two complexes.  

 

      Figure 7 depicts an illustrative example of a small yeast PPIN with 17 proteins and a total 

of 97 interactions. Three different individual solutions, with their genotype and phenotype 

representations, are depicted. According to the allele values in the genotype solutions, 

different phenotypes are revealed. The first genotype is decoded into two disjoint complexes, 

while the second and third genotypes are decoded, respectively, into three and four 

complexes.  

 

5.3 Objective function 
      One of the main keys to the success of the evolutionary algorithm is the right selection of 

the objective function. In this paper, we adopted the well-known modularity density (  ) 

[22]. For each solution,    is defined as the sum of the average density of the sub-graphs that 

constitute the whole solution. In each sub-graph, the density is measured as the difference 
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between the intra and inter degrees proportioned to the size of the sub-graph, and it is 

formulated by: 

 

   ∑
               

    
 

|  |
 
                                                  (12) 

 

      In Eq. 12 and for a solution with   complexes,               , the numerator 

expresses the difference between two terms. The first term is the inner degree of a community 

  , which is twice the number of edges in   divided by the number of nodes in the same 

complex   , The second term is the outer degree of   , which is the number of edges between 

nodes in    and other nodes in      . The denominator expresses the number of nodes in   . 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Small Yeast PPIN with 17 proteins and a total of 97 interactions. Three different 

individual solutions, with their genotype and phenotype representations, are depicted.  
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5.4 Evolutionary operators  

5.4.1 Crossover operator 

      For the proposed EA-based complex detection algorithm, the uniform crossover operator 

is used to create a new solution by combining the genotypes of two parent solutions. For two 

selected parents    and   ,  the crossover operator uniformly mixes their   decision making 

parameters. The offspring individual uniformly inherits the topological information from the 

two individual parents,    and   . Note that crossover operator crosses the two parents if a 

random number retains a value less than or equal to the probability of crossover   . Here,  

  is set to    .  

                           

     {
                

                     
                     (13) 

 

     where             is a uniform random value, sampled a new one for every new 

offspring individual   . 
 

5.4.2 Gene ontology-based mutation operator 

     The traditional mutation operator (  ) proposed by Pizzuti and Rombo [11] in Eq. 14 has 

been applied with a simple topological-based domain, which operates on the genotype 

representation. This will eventually change the phenotype structure of the solution. 

                               

     {
  |                 

                                      
                                                 (14) 

 

      where the allele      of the mutated protein   in an individual solution    can be swapped 

with any other direct neighbor     of    and the      is a uniform random value,  a new one is 

chosen for every protein   . 

 

     In this paper, we extend the topological-based mutation proposed in [15] to operate on the 

functional domain rather than the topological domain. We adopted Jaccard and maximum 

functional similarity to direct the operator in choosing the candidate complex for the mutated 

protein to maintain maximum function homogeneity. The mutation operator can be expressed 

as follows: 

                                

     {
  |                 ∑                 

             

                                                                                                          
                            (15) 

 

      where            is the Jaccard or the maximum functional similarity (Eq. 11) between 

the    direct terms,   , of protein pairs    and    . In the maximum functional similarity, each 

GO term of the first protein    is coupled with all GO terms of the second protein     and the 

maximum similarity is evaluated over all GO pairs of    and    . Further, Wang’s semantic 

similarity method is used to evaluate the similarity of GO terms and their DAGs for both 

protein    and    . 

 

     Let us consider an example for the yeast protein "YHR200W" in Table 1 and two of its 

neighboring proteins. The first protein is "YIL075C," which has an intra-connection with 

"YHR200W." The second protein, however, is "YOL038W," which has an interconnection 

with "YHR200W." Figures 8 and 9 depict the direct GO terms of these proteins. All GO 
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categories are reported in the figures. In these figures, the common GO terms for both 

proteins "YIL075C" and "YOL038W" with protein "YHR200W" are clarified with a 

checkmark. Topological (i.e., adjacency) and functional similarity (in terms of both Jaccard 

and maximum functional similarities) are also reported. 
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Figure 8: Direct GO terms (in terms of three categories) for proteins 'YHR200W' and 

‘YIL075C'. 
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Figure 9: Direct GO terms (in terms of three categories) for proteins 'YHR200W 'and 

'YOL038W'. 
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6. Results and discussions 

6.1 Dataset for PPIN and benchmark protein complexes 

      The performance evaluation of the tested evolutionary-based complex detection methods 

is reported using Saccharomyces cerevisiae PPINs. The first PPIN (Yeast-D1) dataset was 

arranged by Gavin et al. [23] and filtered by Zaki et al. [24]. It contains 990 yeast proteins 

coupled in pairs, with 4687 different interactions. In this network, all but 28 proteins have 

more than one interaction, for an average of 9.4687 interactions per protein. The maximum 

number of interactions is owned by protein 'YCR057C' (protein #170) to reach 52 different 

interactions. The second PPIN (Yeast-D2) has 1443 different yeast proteins with a total of 

6993 interactions. All but 92 proteins have more than one interaction, with an average of 

9.6923 interactions. In this network, protein 'YHR052W' (protein #339) holds the maximum 

number of interactions, which is 59 different interactions.  

 

     Further, each protein is annotated with both direct and indirect GO terms. The direct GO 

terms (in BP, CC, and MF categories) together with their DAG ancestor terms are 

downloaded from the Saccharomyces Genome Database (SGD) at url: http://genome-

www.stanford.edu/Saccharomyces/ in November 2022. For Yeast-D2, on the other hand, all 

1443 proteins are annotated with a total of 1552 BP terms, 558 CC terms, and 663 MF terms. 

Two different sets of true yeast complexes,           and          , are used to assess 

the detection reliability of the algorithms over, respectively, Yeast-D1 and Yeast-D2. Both 

benchmark sets are supported by the Munich Information Center for Protein Sequence (MIPS) 

genome and protein sequence databases. The first complex set, i.e.          dataset covers 

81 different true or reference complexes scopes from 6 to 38 different proteins. The second 

set of complexes, i.e.           dataset, on the other hand, encompasses more reference 

complexes and reaches up to 162 complexes with sizes ranging from 4 to 266 yeast proteins. 
However, in this set, there are 12 true complexes with completely unknown proteins to Yeast-

D2, while 680 yeast proteins known to Yeast-D2 are spread over 150 true complexes.  

 

6.2 Parameter setting 

      The parameters of the proposed EA with GO-based mutation and the counterpart 

algorithms are set to the following, more or less, standard settings: The population size,  , is 

set to 100. The maximum number of generations required to stop the evolution of the 

algorithms is set at 100. The probability of uniform crossover,   , is set to 0.8. The probability 

of the canonical and the topological-based mutation operators,   , is set to 0.2; and the 

probability of the GO-based mutation operator,    , is likewise set to 0.2. The results of the 

algorithms are presented for the average of 30 simulation runs for the best solutions obtained 

(in terms of   ). To easily follow the competitive performance of the effective algorithm, the 

effective values are designated in boldface.  

 

      Validation measures are used to measure the accuracy of the predicted complexes. If a 

predicted complex    matches one of the golden complexes from the benchmark set in    (i.e. 

complex   ), we can say that the proteins of both complexes are overlapped or intersected 

with a neighborhood affinity score (Eq. 24). If the score is found to be equal to or greater than 

an overlapping threshold or overlapping score     , then complex    matches    [25].  

http://genome-www.stanford.edu/Saccharomyces/
http://genome-www.stanford.edu/Saccharomyces/
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  (     )  
|     |

|  ||  |
                                  (24) 

where |  | denotes the overlap between the predicted complex and the golden complex in 

terms of the number of proteins they share. 

      (     )   {
         (     )     

                           
                                                                          (25) 

 

6.3 Quantity of the detected complexes 

     The ratio of the number of reference complexes that overlap with any of the detected 

complexes (given an overlapping score) is defined as       . It is used to evaluate the 

quantity of matched true complexes. Also, the ratio of the number of detected complexes that 

overlap any of the true complexes is defined as          . Finally,   score, is defined as the 

harmonic mean of both        and           . Thus,   score is used to evaluate the overall 

quantity of matched complexes. 

       
|  |                        

                                                              (26) 

          
|  |                        

 
                                                  (27) 

  
                  

                
                              (28) 

 

       The results reported in Tables 1-4 and in Tables 5 and 8 for, respectively, Yeast-D1 and 

Yeast-D2.  

 

Table 1: Performance comparison for Yeast-D1 in terms of       ,            and   score 

for an average of 30 different runs. The results are reported for the proposed EA with GO-

based mutation (      ) and Jaccard functional similarity against the canonical EA (  ).  

    
                   

                              

0.10 0.9287 0.9513 0.7813 0.7993 0.8484 0.8686 

0.15 0.8765 0.9184 0.7446 0.7726 0.8050 0.8391 

0.20 0.8361 0.8838 0.7374 0.7680 0.7814 0.8217 

0.25 0.8056 0.8551 0.7299 0.7671 0.7656 0.8086 

0.30 0.7761 0.8188 0.7080 0.7622 0.7402 0.7893 

0.35 0.7406 0.7944 0.6818 0.7534 0.7098 0.7732 

0.40 0.7098 0.7739 0.6652 0.7492 0.6866 0.7613 

0.45 0.6821 0.7547 0.6400 0.7367 0.6602 0.7455 

0.50 0.6624 0.7333 0.6247 0.7174 0.6429 0.7252 

0.55 0.6201 0.7111 0.5824 0.6957 0.6005 0.7032 

0.60 0.5979 0.6932 0.5616 0.6780 0.5790 0.6854 

0.65 0.5774 0.6752 0.5425 0.6605 0.5592 0.6677 

0.70 0.5483 0.6556 0.5152 0.6413 0.5311 0.6482 

0.75 0.5111 0.6111 0.4801 0.5978 0.4950 0.6043 

0.80 0.4782 0.5812 0.4494 0.5686 0.4632 0.5747 
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Table 2: Performance comparison for Yeast-D1 in terms of       ,            and   score 

for an average of 30 different runs. The results are reported for the proposed EA with GO-

based mutation (      ) and Maximum functional similarity against the canonical EA (  ). 

    
                   

                              

0.10 0.9287 0.9483 0.7813 0.7967 0.8484 0.8655 

0.15 0.8765 0.9047 0.7446 0.7707 0.8050 0.8474 

0.20 0.8361 0.8547 0.7374 0.7703 0.7814 0.8316 

0.25 0.8056 0.8325 0.7299 0.7703 0.7656 0.8198 

0.30 0.7761 0.8060 0.7080 0.7685 0.7402 0.8088 

0.35 0.7406 0.7850 0.6818 0.7630 0.7098 0.8036 

0.40 0.7098 0.7671 0.6652 0.7595 0.6866 0.7890 

0.45 0.6821 0.7474 0.6400 0.7446 0.6602 0.7568 

0.50 0.6624 0.7333 0.6247 0.7313 0.6429 0.7282 

0.55 0.6201 0.7073 0.5824 0.7053 0.6005 0.6808 

0.60 0.5979 0.6957 0.5616 0.6939 0.5790 0.6663 

0.65 0.5774 0.6816 0.5425 0.6797 0.5592 0.6387 

0.70 0.5483 0.6667 0.5152 0.6648 0.5311 0.6230 

0.75 0.5111 0.6132 0.4801 0.6115 0.4950 0.5450 

0.80 0.4782 0.5769 0.4494 0.5752 0.4632 0.5214 

 

Table 3: Performance comparison for Yeast-D1 in terms of       ,            and   score 

for an average of 30 different runs. The results are reported for the proposed EA with GO-

based mutation (      ) and Jaccard functional similarity against the topological-based EA 

(     ).  

    
                   

                                       

0.10 0.9496 0.9513 0.7764 0.7993 0.8542 0.8686 

0.15 0.9064 0.9184 0.7433 0.7726 0.8167 0.8391 

0.20 0.8650 0.8838 0.7425 0.7680 0.7989 0.8217 

0.25 0.8355 0.8551 0.7413 0.7671 0.7854 0.8086 

0.30 0.8021 0.8188 0.7388 0.7622 0.7690 0.7893 

0.35 0.7812 0.7944 0.7313 0.7534 0.7553 0.7732 

0.40 0.7620 0.7739 0.7293 0.7492 0.7451 0.7613 

0.45 0.7496 0.7547 0.7242 0.7367 0.7366 0.7455 

0.50 0.7231 0.7333 0.6999 0.7174 0.7112 0.7252 

0.55 0.7077 0.7111 0.65850 0.6957 0.6960 0.7032 

0.60 0.6987 0.6932 0.6762 0.6780 0.6872 0.6854 

0.65 0.6795 0.6752 0.6576 0.6605 0.6682 0.6677 

0.70 0.6675 0.6556 0.6459 0.6413 0.6564 0.6482 

0.75 0.6222 0.6111 0.6022 0.5978 0.6119 0.6043 

0.80 0.5893 0.5812 0.5704 0.5686 0.5796 0.5747 
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Table 4: Performance comparison for Yeast-D1 in terms of       ,            and   score 

for an average of 30 different runs. The results are reported for the proposed EA with GO-

based mutation (      ) and Maximum functional similarity against the topological-based 

EA (     ). 

    
                   

                                       

0.10 0.9496 0.9483 0.7764 0.7967 0.8542 0.8655 

0.15 0.9064 0.9047 0.7433 0.7707 0.8167 0.8474 

0.20 0.8650 0.8547 0.7425 0.7703 0.7989 0.8316 

0.25 0.8355 0.8325 0.7413 0.7703 0.7854 0.8198 

0.30 0.8021 0.8060 0.7388 0.7685 0.7690 0.8088 

0.35 0.7812 0.7850 0.7313 0.7630 0.7553 0.8036 

0.40 0.7620 0.7671 0.7293 0.7595 0.7451 0.7890 

0.45 0.7496 0.7474 0.7242 0.7446 0.7366 0.7568 

0.50 0.7231 0.7333 0.6999 0.7313 0.7112 0.7282 

0.55 0.7077 0.7073 0.65850 0.7053 0.6960 0.6808 

0.60 0.6987 0.6957 0.6762 0.6939 0.6872 0.6663 

0.65 0.6795 0.6816 0.6576 0.6797 0.6682 0.6387 

0.70 0.6675 0.6667 0.6459 0.6648 0.6564 0.6230 

0.75 0.6222 0.6132 0.6022 0.6115 0.6119 0.5450 

0.80 0.5893 0.5769 0.5704 0.5752 0.5796 0.5214 

 

Table 5: Performance comparison for Yeast-D2 in terms of       ,            and   score 

for an average of 30 different runs. The results are reported for the proposed EA with a GO-

based mutation (      ) and Jaccard functional similarity against the canonical EA (  ). 

    
                   

                              

0.10 0.9709 0.9840 0.6175 0.7993 0.7547 0.6591 

0.15 0.9113 0.9347 0.5822 0.7726 0.7103 0.6493 

0.20 0.8449 0.8602 0.5521 0.7680 0.6676 0.6254 

0.25 0.7736 0.8016 0.5003 0.7671 0.6074 0.5959 

0.30 0.7009 0.7413 0.4760 0.7622 0.5667 0.5754 

0.35 0.6353 0.6631 0.4443 0.7534 0.5227 0.5433 

0.40 0.5909 0.6280 0.4279 0.7492 0.4961 0.5107 

0.45 0.5236 0.5567 0.3969 0.7367 0.4513 0.4649 

0.50 0.4991 0.5311 0.3886 0.7174 0.4368 0.4290 

0.55 0.4240 0.4587 0.3406 0.6957 0.3775 0.3946 

0.60 0.3853 0.4222 0.3196 0.6780 0.3492 0.3657 

0.65 0.3413 0.3933 0.2990 0.6605 0.3185 0.3381 

0.70 0.2904 0.3136 0.2632 0.6413 0.2760 0.2690 

0.75 0.2584 0.2976 0.2369 0.5978 0.2470 0.2434 

0.80 0.2211 0.2704 0.2124 0.5686 0.2165 0.2154 
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Table 6: Performance comparison for Yeast-D2 in terms of       ,            and   score 

for an average of 30 different runs. The results are reported for the proposed EA with GO-

based mutation (      ) and Maximum functional similarity against the canonical EA (  ). 

    
                   

                             

0.10 0.9709 0.9804 0.6175 0.6085 0.7547 0.7509 

0.15 0.9113 0.9198 0.5822 0.5931 0.7103 0.7210 

0.20 0.8449 0.8404 0.5521 0.5708 0.6676 0.6797 

0.25 0.7736 0.7851 0.5003 0.5273 0.6074 0.6307 

0.30 0.7009 0.7269 0.4760 0.5181 0.5667 0.6049 

0.35 0.6353 0.6533 0.4443 0.4902 0.5227 0.5599 

0.40 0.5909 0.6091 0.4279 0.4716 0.4961 0.5315 

0.45 0.5236 0.5433 0.3969 0.4425 0.4513 0.4876 

0.50 0.4991 0.5158 0.3886 0.4296 0.4368 0.4686 

0.55 0.4240 0.4591 0.3406 0.4039 0.3775 0.4296 

0.60 0.3853 0.4282 0.3196 0.3905 0.3492 0.4084 

0.65 0.3413 0.3987 0.2990 0.3695 0.3185 0.3834 

0.70 0.2904 0.3180 0.2632 0.3305 0.2760 0.3240 

0.75 0.2584 0.3011 0.2369 0.3134 0.2470 0.3071 

0.80 0.2211 0.2733 0.2124 0.2882 0.2165 0.2805 

 

Table 7: Performance comparison for Yeast-D2 in terms of       ,            and   score 

for an average of 30 different runs. The results are reported for the proposed EA with GO-

based mutation (      ) and Jaccard functional similarity against the topological-based EA 

(     ). 

    
                   

                                      

0.10 0.9853 0.9840 0.6183 0.7993 0.7597 0.6591 

0.15 0.9318 0.9347 0.5906 0.7726 0.7229 0.6493 

0.20 0.8624 0.8602 0.5674 0.7680 0.6843 0.6254 

0.25 0.7987 0.8016 0.5098 0.7671 0.6222 0.5959 

0.30 0.7327 0.7413 0.4997 0.7622 0.5940 0.5754 

0.35 0.6684 0.6631 0.4764 0.7534 0.5562 0.5433 

0.40 0.6216 0.6280 0.4593 0.7492 0.5281 0.5107 

0.45 0.5520 0.5567 0.4289 0.7367 0.4825 0.4649 

0.50 0.5271 0.5311 0.4212 0.7174 0.4681 0.4290 

0.55 0.4569 0.4587 0.3827 0.6957 0.4163 0.3946 

0.60 0.4222 0.4222 0.3646 0.6780 0.3911 0.3657 

0.65 0.3807 0.3933 0.3446 0.6605 0.3616 0.3381 

0.70 0.3062 0.3136 0.2958 0.6413 0.3008 0.2690 

0.75 0.2909 0.2976 0.2840 0.5978 0.2873 0.2434 

0.80 0.2618 0.2704 0.2618 0.5686 0.2617 0.2154 
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Table 8: Performance comparison for Yeast-D2 in terms of       ,            and   score 

for an average of 30 different runs. The results are reported for the proposed EA with GO-

based mutation (      ) and Maximum functional similarity against the topological-based 

EA (     ). 

    
                   

                                       

0.10 0.9853 0.9804 0.6183 0.6085 0.7597 0.7509 

0.15 0.9318 0.9198 0.5906 0.5931 0.7229 0.7210 

0.20 0.8624 0.8404 0.5674 0.5708 0.6843 0.6797 

0.25 0.7987 0.7851 0.5098 0.5273 0.6222 0.6307 

0.30 0.7327 0.7269 0.4997 0.5181 0.5940 0.6049 

0.35 0.6684 0.6533 0.4764 0.4902 0.5562 0.5599 

0.40 0.6216 0.6091 0.4593 0.4716 0.5281 0.5315 

0.45 0.5520 0.5433 0.4289 0.4425 0.4825 0.4876 

0.50 0.5271 0.5158 0.4212 0.4296 0.4681 0.4686 

0.55 0.4569 0.4591 0.3827 0.4039 0.4163 0.4296 

0.60 0.4222 0.4282 0.3646 0.3905 0.3911 0.4084 

0.65 0.3807 0.3987 0.3446 0.3695 0.3616 0.3834 

0.70 0.3062 0.3180 0.2958 0.3305 0.3008 0.3240 

0.75 0.2909 0.3011 0.2840 0.3134 0.2873 0.3071 

0.80 0.2618 0.2733 0.2618 0.2882 0.2617 0.2805 

 

      Tables 1–8 reveal that the added information being encapsulated by the GO terms in the 

design of the proposed algorithms obviously affects their performance to outperform the 

counterpart canonical and topological-based EAs in all evaluation metrics and in almost all 

overlapping scores. In other words, this can reflect that the modularity density with the added 

GO information has the ability to detect a greater number of accurate protein complexes in 

both yeast-D1 and D2. This indeed implies that the structure of the detected complexes has a 

high percentage of correct proteins being aggregated into the correct complex set. Further, the 

results reveal the ability of the proposed algorithms to reach a compromise or tradeoff 

between the contradictory objectives of recall and precision. This can be clearly seen from the 

higher values of   score achieved by the proposed algorithms. 

 

6.4 Quality of the detected complexes  

                         and    are used in evaluating the quality of the detected complexes 

[15]. Further, positive predictive value (   ), sensitivity (           ), and geometric 

accuracy (        ) [15] are also used to measure the quality of the detected complexes. 
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∑    

   

     
  
   

∑ |  |
  
   

                                                                                    (33) 

 

     where     is the number of proteins common to the golden standard complex   and the 

predicted complex  . The          is used to evaluate the overall performance based on the 

quality of the matched complexes. 

         √                                                                                         (34) 

 

      The results in Tables 9–16 prove the ability of the proposed GO-based EAs to outperform 

(in all terms of quantity metrics,          ,            and   ) the canonical and topological 

EAs. Table 17 shows that the addition of gene ontology information can yield better results. 

However, further development may be needed. 

 

Table 9: Performance comparison for Yeast-D1 in terms of        ,           , and    for 

an average of 30 different runs. The results are reported for the proposed EA with a GO-based 

mutation (      ) and Jaccard functional similarity against the canonical EA (  ). 

  

    
                      

                              

0.10 0.8540 0.9447 0.7343 0.8000 0.7894 0.8663 

0.15 0.8229 0.9152 0.7297 0.7969 0.7731 0.8519 

0.20 0.7942 0.8881 0.7269 0.7959 0.7587 0.8394 

0.25 0.7692 0.8624 0.7217 0.7952 0.7445 0.8274 

0.30 0.7391 0.8266 0.7039 0.7935 0.7209 0.8096 

0.35 0.7097 0.8127 0.6844 0.7887 0.6967 0.8005 

0.40 0.6697 0.7903 0.6624 0.7846 0.6659 0.7874 

0.45 0.6332 0.7642 0.6295 0.7629 0.6313 0.7636 

0.50 0.5998 0.7161 0.6013 0.7161 0.6005 0.7161 

0.55 0.5497 0.6953 0.5497 0.6953 0.5497 0.6953 

0.60 0.5189 0.6728 0.5189 0.6728 0.5189 0.6728 

0.65 0.4893 0.6308 0.4893 0.6308 0.4893 0.6308 

0.70 0.4547 0.6096 0.4547 0.6096 0.4547 0.6096 

0.75 0.4222 0.5405 0.4222 0.5405 0.4222 0.5405 

0.80 0.3992 0.5229 0.3992 0.5229 0.3992 0.5229 
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Table 10: Performance comparison for Yeast-D1 in terms of        ,           , and    

for an average of 30 different runs. The results are reported for the proposed EA with GO-

based mutation (      ) and Maximum functional similarity against the canonical EA (  ). 

    
                      

                              

0.10 0.8540 0.9464 0.7343 0.7974 0.7894 0.8655 

0.15 0.8229 0.9081 0.7297 0.7945 0.7731 0.8474 

0.20 0.7942 0.8727 0.7269 0.7944 0.7587 0.8316 

0.25 0.7692 0.8470 0.7217 0.7944 0.7445 0.8198 

0.30 0.7391 0.8250 0.7039 0.7934 0.7209 0.8088 

0.35 0.7097 0.8154 0.6844 0.7922 0.6967 0.8036 

0.40 0.6697 0.7913 0.6624 0.7867 0.6659 0.7890 

0.45 0.6332 0.7573 0.6295 0.7564 0.6313 0.7568 

0.50 0.5998 0.7282 0.6013 0.7282 0.6005 0.7282 

0.55 0.5497 0.6808 0.5497 0.6808 0.5497 0.6808 

0.60 0.5189 0.6663 0.5189 0.6663 0.5189 0.6663 

0.65 0.4893 0.6387 0.4893 0.6387 0.4893 0.6387 

0.70 0.4547 0.6230 0.4547 0.6230 0.4547 0.6230 

0.75 0.4222 0.5450 0.4222 0.5450 0.4222 0.5450 

0.80 0.3992 0.5214 0.3992 0.5214 0.3992 0.5214 

 

Table 11: Performance comparison for Yeast-D1 in terms of        ,           , and    

for an average of 30 different runs. The results are reported for the proposed EA with GO-

based mutation (      ) and Jaccard functional similarity against the topological-based  EA 

(     ). 

    
                      

                                       

0.10 0.9441 0.9447 0.7893 0.8000 0.8597 0.8663 

0.15 0.9042 0.9152 0.7854 0.7969 0.8406 0.8519 

0.20 0.8786 0.8881 0.7853 0.7959 0.8293 0.8394 

0.25 0.8523 0.8624 0.7844 0.7952 0.8169 0.8274 

0.30 0.8174 0.8266 0.7825 0.7935 0.7995 0.8096 

0.35 0.8054 0.8127 0.7787 0.7887 0.7918 0.8005 

0.40 0.7804 0.7903 0.7749 0.7846 0.7777 0.7874 

0.45 0.7629 0.7642 0.7620 0.7629 0.7624 0.7636 

0.50 0.6927 0.7161 0.6927 0.7161 0.6927 0.7161 

0.55 0.6741 0.6953 0.6741 0.6953 0.6741 0.6953 

0.60 0.6595 0.6728 0.6595 0.6728 0.6595 0.6728 

0.65 0.6229 0.6308 0.6229 0.6308 0.6229 0.6308 

0.70 0.6062 0.6096 0.6062 0.6096 0.6062 0.6096 

0.75 0.5403 0.5405 0.5403 0.5405 0.5403 0.5405 

0.80 0.5201 0.5229 0.5201 0.5229 0.5201 0.5229 
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Table 12: Performance comparison for Yeast-D1 in terms of        ,           , and    

for an average of 30 different runs. The results are reported for the proposed EA with GO-

based mutation (      ) and Maximum functional similarity against the topological-based  

EA (     ). 

    
                      

                                       

0.10 0.9441 0.9464 0.7893 0.7974 0.8597 0.8655 

0.15 0.9042 0.9081 0.7854 0.7945 0.8406 0.8474 

0.20 0.8786 0.8727 0.7853 0.7944 0.8293 0.8316 

0.25 0.8523 0.8470 0.7844 0.7944 0.8169 0.8198 

0.30 0.8174 0.8250 0.7825 0.7934 0.7995 0.8088 

0.35 0.8054 0.8154 0.7787 0.7922 0.7918 0.8036 

0.40 0.7804 0.7913 0.7749 0.7867 0.7777 0.7890 

0.45 0.7629 0.7573 0.7620 0.7564 0.7624 0.7568 

0.50 0.6927 0.7282 0.6927 0.7282 0.6927 0.7282 

0.55 0.6741 0.6808 0.6741 0.6808 0.6741 0.6808 

0.60 0.6595 0.6663 0.6595 0.6663 0.6595 0.6663 

0.65 0.6229 0.6387 0.6229 0.6387 0.6229 0.6387 

0.70 0.6062 0.6230 0.6062 0.6230 0.6062 0.6230 

0.75 0.5403 0.5450 0.5403 0.5450 0.5403 0.5450 

0.80 0.5201 0.5214 0.5201 0.5214 0.5201 0.5214 

 

Table 13: Performance comparison for Yeast-D2 in terms of        ,           , and    

for an average of 30 different runs. The results are reported for the proposed EA with a GO-

based mutation (      ) and Jaccard functional similarity against the canonical EA (  ). 

    

/.,mn  

                      

                              

0.10 0.5538 0.5931 0.7217 0.7594 0.6265 0.6659 

0.15 0.5395 0.5822 0.7113 0.7551 0.6134 0.6574 

0.20 0.5051 0.5503 0.6955 0.7458 0.5849 0.6332 

0.25 0.4728 0.5218 0.6684 0.7287 0.5536 0.6080 

0.30 0.4386 0.4964 0.6415 0.7218 0.5207 0.5885 

0.35 0.4103 0.4601 0.6184 0.6925 0.4930 0.5529 

0.40 0.3703 0.4344 0.5864 0.6710 0.4537 0.5273 

0.45 0.3314 0.3774 0.5542 0.6444 0.4146 0.4759 

0.50 0.3005 0.3456 0.5323 0.6190 0.3839 0.4435 

0.55 0.2505 0.3021 0.4873 0.5887 0.3305 0.3992 

0.60 0.2247 0.2779 0.4571 0.5630 0.3009 0.3721 

0.65 0.1980 0.2528 0.4215 0.5283 0.2689 0.3418 

0.70 0.1618 0.1915 0.3752 0.4876 0.2256 0.2749 

0.75 0.1445 0.1730 0.3401 0.4369 0.2025 0.2478 

0.80 0.1188 0.1529 0.2880 0.3832 0.1679 0.2185 
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Table 14: Performance comparison for Yeast-D2 in terms of        ,           , and    

for an average of 30 different runs. The results are reported for the proposed EA with GO-

based mutation (      ) and Maximum functional similarity against the canonical EA (  ). 

    
                      

                              

0.10 0.5538 0.5909 0.7217 0.7453 0.6265 0.6591 

0.15 0.5395 0.5769 0.7113 0.7424 0.6134 0.6493 

0.20 0.5051 0.5454 0.6955 0.7333 0.5849 0.6254 

0.25 0.4728 0.5120 0.6684 0.7127 0.5536 0.5959 

0.30 0.4386 0.4885 0.6415 0.6999 0.5207 0.5754 

0.35 0.4103 0.4541 0.6184 0.6764 0.4930 0.5433 

0.40 0.3703 0.4189 0.5864 0.6542 0.4537 0.5107 

0.45 0.3314 0.3687 0.5542 0.6291 0.4146 0.4649 

0.50 0.3005 0.3341 0.5323 0.5998 0.3839 0.4290 

0.55 0.2505 0.2984 0.4873 0.5823 0.3305 0.3946 

0.60 0.2247 0.2709 0.4571 0.5631 0.3009 0.3657 

0.65 0.1980 0.2501 0.4215 0.5218 0.2689 0.3381 

0.70 0.1618 0.1877 0.3752 0.4741 0.2256 0.2690 

0.75 0.1445 0.1702 0.3401 0.4276 0.2025 0.2434 

0.80 0.1188 0.1506 0.2880 0.3787 0.1679 0.2154 

 

Table 15: Performance comparison for Yeast-D2 in terms of        ,           , and    

for an average of 30 different runs. The results are reported for the proposed EA with GO-

based mutation (      ) and Jaccard functional similarity against the topological-based  EA 

(     ). 

    
                      

                                       

0.10 0.5878 0.5931 0.7506 0.7453 0.6592 0.6659 

0.15 0.5764 0.5822 0.7448 0.7424 0.6498 0.6574 

0.20 0.5427 0.5503 0.7364 0.7333 0.6247 0.6332 

0.25 0.5125 0.5218 0.7151 0.7127 0.5970 0.6080 

0.30 0.4855 0.4964 0.7051 0.6999 0.5750 0.5885 

0.35 0.4598 0.4601 0.6817 0.6764 0.5491 0.5529 

0.40 0.4183 0.4344 0.6535 0.6542 0.5100 0.5273 

0.45 0.3710 0.3774 0.6255 0.6291 0.4657 0.4759 

0.50 0.3390 0.3456 0.6068 0.5998 0.4349 0.4435 

0.55 0.2968 0.3021 0.5786 0.5823 0.3922 0.3992 

0.60 0.2679 0.2779 0.5568 0.5631 0.3616 0.3721 

0.65 0.2430 0.2528 0.5272 0.5218 0.3325 0.3418 

0.70 0.1842 0.1915 0.4608 0.4741 0.2631 0.2749 

0.75 0.1730 0.1730 0.4347 0.4276 0.2474 0.2478 

0.80 0.1490 0.1529 0.3756 0.3787 0.2133 0.2185 
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Table 16: Performance comparison for Yeast-D2 in terms of        ,           , and    

for an average of 30 different runs. The results are reported for the proposed EA with GO-

based mutation (      ) and Maximum functional similarity against the topological-based  

EA (     ). 

    
                      

                                       

0.10 0.5878 0.5909 0.7506 0.7453 0.6592 0.6591 

0.15 0.5764 0.5769 0.7448 0.7424 0.6498 0.6493 

0.20 0.5427 0.5454 0.7364 0.7333 0.6247 0.6254 

0.25 0.5125 0.5120 0.7151 0.7127 0.5970 0.5959 

0.30 0.4855 0.4885 0.7051 0.6999 0.5750 0.5754 

0.35 0.4598 0.4541 0.6817 0.6764 0.5491 0.5433 

0.40 0.4183 0.4189 0.6535 0.6542 0.5100 0.5107 

0.45 0.3710 0.3687 0.6255 0.6291 0.4657 0.4649 

0.50 0.3390 0.3341 0.6068 0.5998 0.4349 0.4290 

0.55 0.2968 0.2984 0.5786 0.5823 0.3922 0.3946 

0.60 0.2679 0.2709 0.5568 0.5631 0.3616 0.3657 

0.65 0.2430 0.2501 0.5272 0.5218 0.3325 0.3381 

0.70 0.1842 0.1877 0.4608 0.4741 0.2631 0.2690 

0.75 0.1730 0.1702 0.4347 0.4276 0.2474 0.2434 

0.80 0.1490 0.1506 0.3756 0.3787 0.2133 0.2154 

 

Table 17: Performance comparison for Yeast-D1 and Yeast-D2 in terms of            , 

    , and          for an average of 30 different runs. The results are reported for the 

proposed EAs with GO-based mutation (      ) and Jaccard functional similarity and EAs 

with GO-based mutation (      ) and Maximum functional similarity against the canonical 

EA (  ) and the topological-based EA (     ). 

                          

  Yeast-D1  

   2.9227 0.7363 0.8109 

      0.9646 0.7904 0.8732 

       0.9625 0.8004 0.8777 

       0.9662 0.7977 0.8779 

  Yeast-D2  

   2.2629 0.2912 0.4229 

      0.5933 0.4269 0.4269 

       0.5978 0.3025 0.4253 

       0.5972 0.3000 0.4233 

  

7. Conclusions 

      The main contribution of this paper is to improve the detection reliability of the well-

known modularity density model when used as the optimization model in the framework of an 

evolutionary-based complex detection algorithm. To this end, the design of the EA is 

extended by adding a gene ontology-based mutation operator. With Jaccard and maximum 

functional similarity, the GO information of gene products is injected into the mechanism of 

the mutation operator. On two yeast PPINs and two benchmark sets of gold complexes, the 

proposed EA is proven to produce more accurate complexes with more accurate quality than 

the counterpart canonical and topological-based EAs. According to the results, a gene 

ontology-based mutation operator complements modularity density well, allowing for the 
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discovery of additional complexes. Further investigation and future work are recommended to 

improve the quality of the detected complexes in terms of            ,     , and         . 
This would open the door for redefining the modularity density model to cope with the 

biological domain rather than the topological domain.  Also, more research investigations are 

required for detecting disease-related (e.g., bone, cancer, endocrine, and cardiovascular) 

complexes. 
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