Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2679-2692 DOI: 10.24996/ijs.2024.65.5.26

ISSN: 0067-2904

Pseudo -y- closed - Injective Modules

Ahmed Ali Arabi^{*}, Mahdi Saleh Nayef

Mathematical Department, College of Education, University of Al-Mustansiriyah, Baghdad, Iraq

Received: 16/2/2023 Accepted: 15/5/2023 Published: 30/5/2024

Abstract

In this paper, we introduce new concepts of pseudo-y-closed -injective module, and quasi- pseudo- y-closed- injective module. This work which is generalization of pseudo-injective modules and y-closed-injective modules. We have provided some characteristics and descriptions of those concepts. CLS-modules have been characterized in terms of pseudo-y- closed-injective modules. We have shown the relationships of quasi-pseudo-y-closed-injective with other concepts, including a Co-Hopfian, directly finite modules.

Keywords: pseudo-y-closed- injective module ; quasi - pseudo -y-closed-injective module ; fully pseudo yc- stable

مقاسات الاغمارية من النمط -yالكاذبة المغلقة

احمد علي عريبي^{*} , مهدي صالح نايف قسم الرياضيات، كلية التربية ، الجامعة المستتصرية ، بغداد ، العراق.

الخلاصة

في هذه الورقة، قدمنا مفاهيم جديده ; مقاسات الاغمارية المغلقة من النمط-y الكاذبة ، و مقاسات الاغمارية المغلقة من النمط-y الكاذبة ، و مقاسات الاغمارية المغلقة من النمط - y شبه الكاذبة . هذا العمل هو تعميم لمقاسات الاغمارية الكاذبة و المقاسات الاغمارية المغلقة من النمط - y . لقد قدمنا بعض الخصائص والتوصيفات حول تلك المفاهيم . تم وصف مقاسات من النمط - y . لقد قدمنا بعض الخصائص والتوصيفات حول تلك المفاهيم . تم وصف مقاسات من النمط - y . في ما الاغمارية العمل هو تعميم لمقاسات الاغمارية الكاذبة و المقاسات الاغمارية المغلقة من النمط - y . في معايمات الاغمارية المغلقة من النمط - y . في معايمات الاغمارية المغلقة من النمط - y . في ما معاسات من النمط - y . في ما معاس الاغمارية المغلقة من النمط - y . في معاسات ما الاغمارية المغلقة من النمط - y . معاسات ما معاسات الاغمارية المغلقة من النمط - y . معامل معاسات الاغمارية المغلقة من النمط - y . معامل معاسات الاغمارية المغلقة من النمط - y . معاسات من النمط - y . معاس

1. Introduction

Throughout this paper, R is a ring with identity, and every R-module is a unitary left R-module, B \subseteq D denotes B is a submodule of an R-module D. Hom _R(D, K) (Mon _R(D,K)) denotes all an R-homomorphism (R-monomorphism) from D to R- module K over ring R. Let D and K be R-modules, D is called (a pseudo)-K-injective if for any $\beta \in$ Hom _R(A, D) (Mon _R (A, D)) where A \subseteq K there exist $\lambda \in$ Hom _R(K, D) with $\lambda i = \beta$, where *i* be an inclusion map. An R-module D is said to be (pseudo)-quasi-injective if D is a

*Email: aklhlkm1669@gmail.com

(pseudo)-D- injective. Also, we say D is an injective if it is a K-injective for any R-module K (see [1-3]).

A submodule B of an R-module D is called an essential submodule of D denote by (B \subseteq e D) if B \cap H \neq 0, \forall 0 \neq H \subseteq D, and an R-module D is said to be uniform if every submodule of D is an essential submodule of D, see [4]. For a submodule B of an R-module D is said to be closed in D (briefly, B \subseteq c D) if B has no proper essential extension inside D. The submodule Z (B) of D define as Z (B) = {b \in B: ann (b) \subseteq e R} is called singular of D. If Z (D) =D (Z (D) = 0), then D is singular (nonsingular). A submodule B of an R-module D is called *y*-closed (briefly, B \subseteq yc D) if D/B be a nonsingular. Every *y*-closed submodule is closed, but the convers is not true, see [4].

An R-module D is called extending (or CS-module) if any closed submodule of D is direct summand. For an R- module D is said to be CLS-module if each *y*-closed submodule is direct summand. Clearly, every CLS-module is CS- module, see [5].

H.S. Lamyaa in [6], introduces the concept of *yc*- injectivity. Let K be an R-module, an R-module D is called K- *y*-closed -injective (briefly, D is K-*yc*-injective), if for any $\beta \in \text{Hom}_{R}(B, D)$, where $B \subseteq yc K$, there exists $\delta \in \text{Hom}_{R}(K, D)$ with $\delta i = \beta$. If D is D - *yc*-injective, then D is said to be self-*y*-closed-injective or quasi-*y*-closed- injective (briefly, D is quasi-*yc*-injective). We say D is *yc*-injective if it is K- *yc* -injective, for any R-module K. In [7] and [8], an R- module D is a pseudo-K-c-injective if for any $\beta \in \text{Mon}_{R}(A,D)$ where A $\subseteq c K$, there exists $\lambda \in \text{Hom}_{R}(K, D)$ such that $\lambda i = \beta$. An R-module D is said to be co-Hopfian (Hopfian) if each surjective (injective) endomorphism : D \rightarrow D is automorphism see [9]. An R-module D is directly finite if it is not isomorphic to a proper direct summand of D, see [1]. A submodule B of R-module D is said to be stable, if for any $\beta \in \text{Hom}_{R}(B, D)$, then $\beta(B) \subseteq B$. We say D is a fully stable if any submodule of D is stable see [10]. An homomorphism β : B \rightarrow D is called C- homomorphism if $\beta(B)$ is closed in D see [8].

In this work, we give more characterizations of pseudo -y-closed - injective. Also, we prove that an R-module K is CLS- module iff every module is pseudo -K-yc-injective iff for any y-closed submodule of K is pseudo -K-yc-injective. And a sufficient condition for quasi-pseudo- y-closed-injective to be Co-Hopfian is given.

2. Pseudo-y-closed- Injective Module.

In this section, we introduce the concept of pseudo- y - closed-injective module with some example and the relation with other concepts. This concept is generalization of yc-injective and pseudo-K- injective.

Definition 2.1: Let D and K be R-modules. Then D is pseudo-K-*y*-closed-injective (briefly D is pseudo-K-*yc*-injective) if for any $\beta \in \text{Mon}_{R}(A, D)$ where (A is an y-closed submodule of K), there exists $\lambda \in \text{Hom}_{R}(K,D)$ with $\lambda i = \beta$. Where *i* be an inclusion map, i.e, the following diagram:

is commute.

Also, an R- module D is referred pseudo-*yc*-injective, if D is pseudo-K-*yc*-injective, for any K be R-module.

Examples and Remarks 2.2:

1. Clearly, every pseudo -K-injective module is a pseudo-K-yc -injective. The opposite is explained in (6).

2. For an R- module K is simple y-closed R- module, if (0) and K are only y-closed submodule of K. Consider the module Z_2 as Z-module, clear that it is simple, but Z_2 is singular, thus by [6] we get Z_2 is only y-closed submodule of Z_2 . Hence, Z_2 is not simple y-closed Z-module. We know that Z as Z-module is not simple, (0) and Z are only y-closed submodules of Z see [6], therefore, Z is simple y-closed Z-module. This means there are no relationship between simple R- module and simple y-closed R- module.

3. If K be a simple y-closed R- module, then each R- module D is pseudo- K-yc-injective.

Proof: Aussme that D be R-module. Let $A \subseteq yc$ K and $\delta \in Mon_{R}(A, D)$. Consider the illustration below:

Since K be a simple y-closed R-module, we have A=0 or A=K. If A=0, then for any $\delta \in$ Mon $_{R}(A, D)$ let $\delta(a)=0$ for all $a \in A$, so there exist an R- homomorphism α : K \rightarrow D such that $\alpha(k)=0$ for all $k \in K$, it is follows that $\alpha i(a)=\alpha(a)=0=\delta(a)$, $a \in A$, hence α is an extension of δ . Now, if A= K. Clearly, D is a pseudo-K- *yc*- injective.

4. If K be a nonsingular uniform R-module. Then any R- module D is a pseudo-K-yc-injective.

Proof: Let D be an R-module. As K is uniform, then it is easy to verify that (0) and K are only closed submodule of K. But K is nonsingular, thus by [4, Proposition 2.4, p.43] we get (0) and K are y-closed submodule of K, let $A \subseteq yc$ K where A is not trivial, hence $A \subseteq c$ K because every y-closed submodule is closed see [6], this is a contradiction. Therefore, K is a simple y-closed R-module. So, by (3) we have D is a pseudo- K-yc-injective.

5. Consider the modules Q and Z as Z- module. By (4), it is clear any R-module D is a pseudo Q - yc -injective and pseudo - Z- yc- injective.

6. The converse of (1) is not true. A Z-module Z by (5) is a pseudo-Q- yc-injective, but Z is not a pseudo-Q- injective.

Proof: Suppose that Z is a pseudo - Q - injective. Consider the illustration below:

Where I is the identity map. Since Z is a pseudo -Q- injective, there exist $\beta \in \text{Hom}_Z(Q, Z)$ such that $\beta i = I$. But Hom $_Z(Q, Z) = 0$ see [11], we have I=0, which is a

contradiction. Therefore, Z is not pseudo- Q -injective

7. Clearly, K- *yc* - injective which is a pseudo -K-*yc*-injective. By [6], it follows that for a singular R- module K, any R- module D is a pseudo- K- *yc*- injective.

8. Every pseudo-K-c-injective module is a pseudo-K-*yc*-injective, the converse case has been discussed in an R-module $K = Z_8 \oplus Z_2$ as Z-module. A submodule $B = \langle (2, 1) \rangle$ of K is closed but it is not direct summand of K by [12]. Assume that B is a pseudo-K-c-injective. By [7] we get $B \subseteq \bigoplus K$ which is a contradiction. So, B is not a pseudo-K-c-injective. But K is a singular, hence B is a pseudo-K-*yc*-injective by (7).

9. Let K be an R-module. An R-module D is called a K-c-injective if any closed submodule A of K, and any $\beta \in \text{Hom}_{R}(A, D)$ can be extended to $\alpha \in \text{Hom}_{R}(A, D)$. Also, we say D is a quasi-c-injective if it is a D-c-injective, see [13]. Clearly, any K-c-injective is a pseudo-K-c-injective. Therefore, by [13] and by Remark 2.2, (8) we have for CS-module H then every R-module is a pseudo-K-*yc* –injective

K-injective \Rightarrow pseudo-K-injective \Rightarrow pseudo-K-c-injective \Rightarrow pseudo-K-yc-injective.

In the result below we show that, for an R- module is a nonsingular semi-simple then the concepts of the pseudo- K-injective, pseudo- K-c-injective and pseudo-K-*yc*- injective are equivalents.

Proposition 2.3: Let K be an R-module. If K is a nonsingular semi-simple, then the following statements are equivalent:

1. pseudo-K-*yc*-injective-module;

2. pseudo-K-c-injective-module;

3. pseudo- K – injective- module.

Proof: (1) \Rightarrow (2) Suppose that D is a pseudo-K-*yc*-injective module. Let A \subseteq c K and $\beta \in$ Mon_R(A, D). Since K is a nonsingular, thus by [4, Proposition 2.4, p.43] we get A \subseteq yc K. By the assumption, there exists $\alpha \in$ Hom_R(K, D) such that $\alpha i = \beta$. Hence, D is a pseudo-K-c- injective.

(2)⇒ (3) Assume that D is a pseudo- K-c-injective module. Let B ⊆ K and $\delta \in Mon_R(B, D)$. As K is a semi-simple, hence B ⊆⊕ K and it follows B ⊆c K. By (2), there exist $\varphi \in Hom_R(K, D)$ such that $\varphi i = \delta$, so D is a pseudo - K – injective. (3) ⇒ (1) It is obvious.

Now, we give the properties of direct summand in a pseudo-yc -injective module.

Proposition 2.4: Let D and K be R- modules. If D is a pseudo -K-*yc*-injective and A is a direct summand of D and B is y-closed submodule of K, then

1. A is a pseudo- B -*yc*-injective module.

2. A is a pseudo-K-yc- injective module.

Proof: (1). Assume that $X \subseteq yc$ B and $\beta \in Mon_R(X, A)$. Since $A \subseteq \bigoplus K$, there exists a submodule U of D such that $K = A \bigoplus U$. Consider the illustration below:

Where $i_X: X \to B$, $i_B: B \to K$, $i_A: A \to D$ be inclusion maps of X in B, B in K and A in D respectively, since $X \subseteq yc$ B and $B \subseteq yc$ K, thus by [6] we get $X \subseteq yc$ K, but D is a pseudo-Kyc -injective and $i_A \beta: X \to D$ be an R-monomorphism, there exists $\alpha \in \text{Hom}_R(K, D)$ such that $\alpha i_B i_K = i_A \beta$. Put $\varphi = P\alpha i_B$, where P is a projection map from D to A. Clearly, φ is an R-homomorphism, $\varphi i_X = P \alpha i_B i_K = P i_A \beta = \beta$. Hence A is pseudo - B - yc -injective. **2**. Since $K \leq yc K$, see [6]. By (1), we have A is pseudo- K- yc -injective module.

Corollary 2.5: Let D and L be two R- modules. Then D is a pseudo-L-*yc*-injective if and only if D is pseudo- H- *yc* -injective, for any H is *y*-closed submodule of L.

Proof: Suppose that D is a pseudo-L- *yc*-injective. Let $H \subseteq yc$ L. Clearly, D is a direct summand from itself and so, by Proposition 2.4, (1) we have D is a pseudo-H-*yc*-injective. Conversely, since $L \subseteq yc$ L, hence D is a pseudo-L- *yc* - injective.

Corollary 2.6: Let D be an R-module and K be a nonsingular R- module. If D is a pseudo- Kyc-injective, $X \subseteq \bigoplus D$ and $Y \subseteq \bigoplus K$, then X is a pseudo-Y-yc- injective.

Proof: Assume that D is a pseudo-K- *yc*- injective and $X \subseteq \bigoplus D$, $Y \subseteq \bigoplus K$. It follows that $Y \subseteq c$ K, as K is a nonsingular, thus by [4, Proposition 2.4, p.43] we have $Y \subseteq yc$ K, therefore, X is a pseudo- Y-*yc*-injective by Proposition 2.4, (1).

Proposition 2.7: Let C_1 and C_2 be two R-modules and $D = C_1 \bigoplus C_2$. Then the following are equivalent:

- **1.** C_2 is a pseudo - C_1 *yc* -injective module;
- 2. for any $K \subseteq D$, $K \cap C_2 = 0$ and $\pi_1(K) \subseteq \text{yc } C_1$ where $(\pi_1 \text{ the natural projection of } D \text{ into } C_1)$, there exists submodule K_1 of D such that $K \leq K_1$ and $D = K_1 \bigoplus C_2$.

Proof: (1) \Rightarrow (2) Suppose that $K \subseteq D$ such that $K \cap C_2 = 0$ and let $\pi_1: D \to C_1$, $\pi_2: D \to C_2$ are the projection mapping with $\pi_1(K) \subseteq \text{yc } C_1$. Define $\beta: \pi_1(K) \to C_2$ as follows for all k = a+b ($a \in C_1$, $b \in C_2$), $\beta(a) = b$. Clear that, β is well- define and R-monomorphism. So, by (1), there exist $\delta \in \text{Hom }_R(C_1, C_2)$ such that $\delta i = \beta$. Define $K_1 = \{a + \delta(a): a \in C_1\}$, and claim $D = K_1 \oplus C_2$. Let $d \in D$, we get $d = d_1 + d_2$ where $d_1 \in C_1$ and $d_2 \in C_2$, thus $d = d_1 + d_2 = (d_1 + \delta(d_1) + d_2 - \delta(d_1)) \in K_1 \oplus C_2$. Now, suppose that $d \in K_1 \cap C_2$, therefore, $d = d_2 = d_1 + \delta(d_1)$ such that $d_1 \in C_1$, $d_2 \in C_2$. Hence $d_1 = d_2 - \delta(d_1) \in C_1 \cap C_2 = 0$. So $K_1 \cap C_2 = 0$. Thus $D = K_1 \oplus C_2$. Let $k = a+b \in K$, where $a \in C_1$, $b \in C_2$. Since $\pi_1(k) = a$, $\pi_2(k) = b$, we have $k = \pi_1(k) + \pi_2(k) = \pi_1(k) + \delta \pi_1(k) \in K_1$, since $\delta \pi_1(k) = \beta \pi_1(k) = \pi_2(k)$, hence $K \subseteq K_1$.

(2) \Rightarrow (1). Let X \subseteq yc C₁ and $\beta \in$ Mon _R(X, C₂). Define K={x- β (x): x \in X}, clear that K \subseteq D. To show that K \cap C₂=0, let h \in K \cap C₂, then h \in C₂ and h = x- β (x), x \in X, hence x= h+ β (x) \in C₁ \cap C₂, therefore, we get x= 0, then K \cap C₂=0. It's easy to prove X = π_1 (k), so π_1 (k) \subseteq yc C₁, then by (2), there exists K₁ be submodule of D such that K \subseteq K₁, D= K₁ \oplus C₂. Let π_2 : D \rightarrow C₂ denote the projection with Ker π_2 =K₁ and let δ : C₁ \rightarrow C₂ be the restriction of π to C₁. Consider the following diagram:

For every $x \in X$, $\delta(x) = \pi(x) = [(x) - \beta(x) + \beta(x)] = \pi[x - \beta(x)] + \beta(x) = \beta(x)$, hence δ extends β , therefore, C₂ is a pseudo-C₁- *yc*- injective.

Now, we provide some basic properties of a pseudo- yc- injective module.

Proposition 2.8: Let D_1 , D_2 and K be R- modules, $D_1 \cong D_2$. If D_1 is a pseudo-K- *yc*- injective then D_2 is a pseudo-K- *yc* -injective.

Proof: Assume that D_1 is pseudo-K- *yc*-injective. To show that D_2 is a pseudo-K-*yc*-injective. Let $A \subseteq yc$ K and $T \in Mon_R(A, D_2)$. Consider the illustration below:

Since $D_1 \cong D_2$, there exists $\beta: D_2 \rightarrow D_1$ be an R- isomorphism, therefore $\exists \beta^{-1}: D_1 \rightarrow D_2$ also be an R- isomorphism. Clearly, βT is an R-monomorphism from A to D_1 . As D_1 is a pseudo-Dyc-injective, there exists $\varphi: K \rightarrow D_1$ be an R-homomorphism such that $\varphi i = \beta T$. Define $\Psi: K \rightarrow D_2$ by $\Psi = \beta^{-1} \varphi$, hence Ψ is R-homomorphism and $\Psi i = \beta^{-1} \varphi i = \beta^{-1} \beta T = T$. Therefore, D_2 is a pseudo-K- yc -injective module.

Proposition 2.9: Let A, B and D be an R-modules such that A \cong B and for any *y*-closed submodule X of B, Ker $\beta \subseteq$ X with $\beta \in$ Hom_R(A, B). If D is a pseudo-A -*yc*-injective, then D is a pseudo-B- *yc* injective.

Proof: Let $X \subseteq yc B$ and $\lambda: X \longrightarrow D$ be an R-monomorphism. Since $A \cong B$, there exist $\beta: B \longrightarrow A$ be an R-isomorphism. Put $H = \beta(X)$, as Ker $\beta \leq X$, thus by [6] we get $H \subseteq yc A$ Consider the illustration below:

Where i_X , i_H are the inclusion maps. Define $\varphi: H \rightarrow D$ by $\varphi(\beta(x)) = \lambda(x), x \in X$. It is clear that φ is an R- monomorphism. As D is a pseudo-A-*yc*-injective, there exists $\varphi:A \rightarrow D$ such that $\varphi i_H = \varphi$. Put $\delta = \varphi \beta$. Clearly, δ be R- homomorphism, therefore, $\lambda(x) = \varphi(\beta(x)) = \phi i_H (\beta(x)) = \phi(i_H (\beta(x))) = \phi(\beta(x)) = \phi\beta(x) = \phi\beta(i_X(x)) = \delta(i_X(x)) = \delta(i_X(x))$. Hence D is a pseudo-B-*yc*-injective.

Proposition 2.10: Let D_1 , D_2 and K be R-modules. If D_1 and D_2 are pseudo -K-*yc*- injective modules, then $D_1 \bigoplus D_2$ is a pseudo -K-*yc*- injective.

Proof: Assume that D_1 and D_2 are pseudo -K-*yc*- injective modules. Let $A \subseteq yc$ K and let $\beta \in Mon_R(A, D_1 \bigoplus D_2)$. Consider the illustration below:

Where i_1 , i_2 are the inclusion maps, P_1 , P_2 are the projection map. As D_1 and D_2 are pseudo -K-*yc*- injective, there exists $\lambda_1 \in \text{Hom}_R(K, D_1)$ and $\lambda_2 \in \text{Hom}_R(K, D_2)$ such that $\lambda_1 i = P_1 \beta$ and $\lambda_2 i = P_2 \beta$. Define: $K \longrightarrow D_1 \bigoplus D_2$ by $\varphi(k) = (\lambda_1(k), \lambda_2(k))$, for all $k \in K$. We prove that $\varphi i = \beta$. Let $a \in A$, then $\beta(a) = (d_1, d_2)$, where $d_1 \in D_1$ and $d_2 \in D_2$. $\varphi i(a) = \varphi(i(a)) = (\lambda_1(i(a)), \lambda_2(i(a))) = (P_1\beta(a), P_2\beta(a)) = (d_1, d_2)$. Therefore, $D_1 \bigoplus D_2$ is pseudo -*K*-*yc*- injective modules.

Proposition 2.11: Let D be an R- module and K \subseteq yc D. If K is a pseudo-D- *yc*-injective, then K $\subseteq \bigoplus$ D

Proof: Suppose K is pseudo- D- *yc* -injective. Let I: $K \rightarrow K$ be the identity map. Consider the illustration below:

Since K is a pseudo-D- *yc*- injective, there exists $\varphi \in \text{Hom}_R(D, K)$ such that $I = \varphi i$. To show that $D = \text{Ker}\varphi \oplus K$, since $\text{Ker}\varphi$ and $K \subseteq D$, we have $\text{Ker}\varphi + K \subseteq M$, let $d \in D$ clearly, $d -\varphi(d) \in \text{Ker}\varphi$, therefore, $d = (d -\varphi(d)) + \varphi(d) \in \text{Ker}\varphi + K$. Hence $\text{Ker}\varphi + K = D$. Now, we to show that $\text{Ker}\varphi \cap K = 0$, let $a \in \text{Ker}\varphi \cap K$, hence $\varphi(a) = 0$ but $\varphi(a) = \varphi i(a) = I(a) = a$ we have a = 0. Therefore, $K \subseteq \oplus D$.

We introduce concept prior to the following outcome.

Definition 2.12: A homomorphism (monomorphism) $\beta: A \rightarrow B$ is called *yc*-homomorphism (*yc* - monomorphism) if $\beta(A) \subseteq yc B$.

Example: If we take Z_4 and Z_2 as Z-module, let $\beta: Z_4 \rightarrow Z_2$ such that $\beta(0) = \beta(2) = 0$, $\beta(1) = \beta(3) = 1$. It is easy to prove that β is homomorphism and $\beta(Z_4) = Z_2$, hence β is *yc*-homomorphism. Clear that any *yc*-homomorphism is a C-homomorphism. The converse is not true, let $f: Z_2 \rightarrow Z_2$ defined as follows $f(Z_2) = 0$, therefore, f is C-homomorphism, but is not *yc*-homomorphism since 0 is not *y*-closed of Z_2 .

In the following proportion, we give a characteristics of a pseudo -yc -injective.

Proposition 2.13: Let D and K be two an R-modules, then the following are equivalence.

1. D is a pseudo -K- *yc* -injective module;

2. For any R- module A, any *yc* -monomorphism Ψ :A \rightarrow K and for any $\lambda \in$ Mon _R(A, D), there exists T \in Hom _R(K,D) with $\lambda =$ T Ψ .

Proof :(1) \Rightarrow (2) Let A be an R- module, $\Psi: A \rightarrow K$ be an *yc* -monomorphism and $\lambda \in M$ on _R(A, D). Since $\Psi: A \rightarrow K$ is an *yc*- monomorphism, we have $\Psi(A) \subseteq yc$ K. Defined $f:\Psi(A) \rightarrow D$ by $f(\Psi(a)) = \lambda(a)$ for all $a \in A$. Consider the illustration below:

Clearly, f is R-monomorphism. As D is a pseudo-K-*yc*-injective, there exists T \in Hom _R(K, D), such that T i = f. Therefore, we have T $\Psi(a) = T(\Psi(a)) = Ti(\Psi(a)) = f(\Psi(a)) = \lambda(a)$. Hence $\lambda = T \Psi$.

(2) ⇒ (1) Let H ⊆yc K and g: H→D be a monomorphism. It is clear that the inclusion map *i* is *yc*-monomorphism. By (2), then there exists T∈ Hom _R(K, D) such that T *i*= g. Hence D is a pseudo-K-*yc*-injective module.

Proposition 2.14: If H is a pseudo- K-*yc*-injective module, then any *yc*-monomorphism from H to K is splits.

Proof: Let λ :H \rightarrow K is *yc*-monomorphism, we get λ (H) \subseteq yc K. Consider the illustration below:

Define λ^{-1} : $\lambda(H) \longrightarrow H$ such that $\lambda^{-1}\lambda(H) = H$. As H is a pseudo-K- *yc*-injective, there exists $\lambda_1 \in \text{Hom }_{R}(K, H)$, where $\lambda_1 i = \lambda^{-1}$. So, for all $h \in H$ we have $\lambda_1 \lambda(h) = \lambda_1(i(\lambda(h))) = \lambda_1 i(\lambda(h)) = \lambda^{-1}(\lambda(h)) = \lambda^{-1}(\lambda(h)) = h = I_H(h)$. Therefore, λ is splits by [10].

The CLS-module is described in terms of pseudo- yc -injective modules in the proposition that follows.

Proposition 2.15: Let K be an R-module, then the next are equivalent.

1. K is CLS- module;

2. Every module is pseudo-K-yc- injective module;

3. For any S, S \subseteq yc K then S is pseudo-K- *yc* - injective module.

Proof: (1) \Rightarrow (2). Let H be any R-module. We show H is a pseudo- K- *yc*-injective module, let B \subseteq yc K and $\varphi \in$ Mon _R(A, H). Consider the illustration below:

By (1), we have $B \subseteq \bigoplus K$. So, $\exists B_1 \subseteq K$, where $K = B \bigoplus B_1$. Define λ : $K \longrightarrow Hby \lambda(b+b_1) = \varphi(b)$, if $b_1 = 0$ and $\lambda (b+b_1) = 0$ otherwise, $b \in Band b_1 \in B_1$. Therefore, λ extends to. (2) \Longrightarrow (3) It is clear.

(3) \Rightarrow (1) Let S \subseteq yc D, by (3), then S is a pseudo-K- yc- injective module, therefore, S $\subseteq \bigoplus$ D by Proposition 2.11.

If for every intersection of two direct summand in R- module D is direct summand, then D is has the summand intersection property (SIP) see [14].

Proposition 2.16: Let D be a nonsingular R- module, if for any y-closed submodule of D is a pseudo -D-*yc*-injective module, then D has SIP.

Proof: Let A_1 and A_2 be two direct summand of D. To show $A_1 \cap A_2 \subseteq \bigoplus$ D, since D be a nonsingular, we have $A_i \subseteq yc$ D, i = 1, 2. So, $A_1 \cap A_2 \subseteq yc$ D by [6]. Thus by hypothesis $A_1 \cap A_2$ is pseudo-D-*yc*-injective. Hence $A_1 \cap A_2 \subseteq \bigoplus$ D by Proposition.2.11.

3. Quasi- pseudo -y-closed- Injective Module.

In this section, we introduce the concept of quasi -pseudo- y - closed-injective module which is a proper generalization of pseudo - injective.

Definition 3.1: An R- module D is called a quasi -pseudo- *y*-closed -injective module (briefly, D is a quasi- p -*yc*- injective). If for each A \subseteq yc D and $\beta \in$ Mon _R(A, D), there exists $\delta \in$ End _R(D) such that $\beta = \delta i$, i.e., the following diagram:

is commute.

A ring R is referred self - pseudo- yc- injective module, if R is pseudo - R_R - yc - injective module.

Note that: An R-module D is a quasi- p-yc-injective, if it is a pseudo -D- yc- injective. Therefore, every pseudo-yc -injective is quasi - p-yc- injective. If D is quasi - injective module, then D is quasi-yc-injective and clearly D is quasi-p-yc-injective, the opposite is not true in general.

Examples and Remarks 3.2:

1. A Z-module $D = Z_p \bigoplus Q$. By [13], we get D is quasi-c-injective. Clearly, D is a quasi-*yc*-injective. Hence, D is a quasi- p -*yc*-injective.

Any pseudo-injective is quasi- p-yc- injective. The opposite is not true, by Remark.2.2,
(5) Z as Z-module is a quasi- p - yc-injective. But Z is not pseudo- injective

Proof: Assume that Z is a pseudo-injective and $\beta \in \text{Mon}_{R}(2Z, Z)$, $\beta(2n) = n$ for each $n \in Z$. Consider the illustration below:

Since Z is a pseudo- injective, there exist $\alpha \in \text{Hom }_{R}(Z)$ such that $\alpha i = \beta$. For each $n \in Z$, we get $n = \beta(2n) = \alpha(i(2n)) = \alpha(2n) = 2n \alpha(1)$ we have $\alpha(1) = 1/2 \notin Z$, which is a contradiction. Therefore, Z is not a pseudo injective.

In the next result we discuss the relationship between a quasi- p - yc- injective module and a quasi-yc- injective module.

Proposition 3.3: Every nonsingular uniform quasi-p-yc-injective module is a quasi - yc-injective.

Proof: Assume that D is nonsingular uniform quasi- p-*yc*-injective module. Let $A \subseteq yc$ D and $\beta \in \text{Hom}_{R}(A, D)$. Consider the illustration below:

Ker $\beta \subseteq A$, then Ker $\beta=0$ or Ker $\beta \neq 0$. If Ker $\beta=0$, thus β is an R-monomorphism. Then β is extendable to an R-homomorphism $\varphi: D \rightarrow D$, because D is a quasi-p-yc- injective, hence D is a quasi-yc-injective. If Ker $\beta \neq 0$. As D is a nonsingular, then Ker $\beta \subseteq c$ A by [15], since any submodule in uniform is uniform, thus A is uniform submodule, hence Ker $\beta = A$. In this case β can be extended to a homomorphism of D to D. Therefore, D is a quasi-yc injective.

A submodule H of R- module D is referred a fully invariant if for each $\beta \in \text{End}_{R}(H)$, then $\beta(H) \subseteq H$, see [10].

An R- module D is said to be a multiplication, if for all S be submodule of D, then S = I D for some I is ideal of R see [16].

The next result, we give a condition under which an y-closed submodule of a quasi - p- yc-injective module is a quasi - p - yc- injective.

Proposition 3.4: Let D be a quasi-p-yc-injective module and B \subseteq yc D, then the next statements hold:

1. If B is fully invariant of D, then B is a quasi- p- yc- injective.

2. If D is multiplication, then B is a quasi- p- yc- injective.

Proof :(1) Suppose that B is fully invariant of D. Let $X \subseteq yc B$ and $\varphi \in Mon_R(X, B)$. Consider the illustration below:

Since X \subseteq yc Band B \subseteq yc D, we have X \subseteq yc D by [6]. As D is a quasi-p -*yc*-injective, there exists $\lambda \in$ End_R(D) such that $j\varphi = \lambda ji$. Since B is fully invariant, then $\lambda(B) \subseteq B$ and $\lambda \mid_B \in$ End_R(B). Hence, φ extends $\lambda \mid_B$.

Proof: (2) Assume that D is a multiplication. Let $A \subseteq yc B$ and $\beta \in Mon_R(A, B)$. Since B $\subseteq yc D$. It follows that by [5], $A \subseteq yc D$. Now, consider the illustration below:

Since D is a quasi-p - *yc*-injective, there exist $\lambda \in \text{End}_{R}(D)$ such that $\lambda i_{B}i_{A} = i_{B}\beta$. Since D is multiplication, we get B = I D for some ideal I of R. Therefore, $\lambda \mid_{B} = \lambda(B) = \lambda$ (I D) = I $\lambda(D)$ \subseteq I D =B. Hence, β extends $\lambda \mid_{B}$.

The R- modules D and L are referred relatively injective module, if D is L-injective and L is D-injective see [15].

In the following definition we introduce the concept of the relatively pseudo-*yc*-injective module:

Definition 3.5: Let B_1 and B_2 be R- modules. B_1 and B_2 are called relatively pseudo-*yc*-injective module, if B_1 is pseudo - B_2 - *yc* -injective and B_2 is pseudo- B_2 - *yc*-injective.

Theorem 3.6: Let $D = D_1 \bigoplus D_2$ be a quasi- p -yc- injective module and nonsingular, then D_1 and D_2 are relatively pseudo-yc-injective module.

Proof: Let D be a quasi -p-*yc* -injective module and nonsingular. To show that D₁ is a pseudo-D₂- *yc*- injective. Let A \subseteq yc D₂, β : A \rightarrow D₁ be any R- monomorphism, *j*: D₁ \rightarrow D be an injection homomorphism, and *p*:D \rightarrow D₁ be a projection homomorphism. Define α :A \rightarrow D by α (a) = ((a), a) for each a \in A. Consider the illustration below:

Clearly, α is an R-monomorphism, since $D_2 \subseteq \bigoplus D$, then $D_2 \subseteq yc D$, this is because D is a nonsingular, as D is a quasi- p-yc- injective, this means D is a pseudo-D-yc-injective, which implies D is a pseudo D₂-yc-injective by Corollary 2.5. Then there exists $\lambda \in \text{Hom }_{R}(D_2, D)$ such that $\lambda i = \alpha$, put $\delta = p\lambda$. Therefore, $\delta i(a) = p\lambda i(a) = p\alpha(a) = p(\alpha(a)) = p(\beta(a), a) = \beta(a)$. Hence, D₁ is a pseudo- D₂ yc -injective.

Corollary 3.7: Let $D = \bigoplus_{i \in I} D_i$ be an R- modules, where $I = \{1, 2, ..., n\}$ and $n \in Z^+$. If D be a quasi -p-*yc*-injective module and nonsingular, then K_i and K_j are relatively pseudo-*yc*-injective module for all $i, j \in I$ where $i \neq j$. **Proof:** By Theorem 3.8.

Lemma 3.8: [15] An R-module D is directly finite if and only if $\beta \lambda = I$ implies that $\lambda \beta = I$ for each β , $\lambda \in U = \text{End}_{R}(D)$ such that I is an identity map of D.

The following result provides a necessary condition for the quasi -p - yc - injective module to satisfy the Hopfian condition.

Proposition 3.9: A quasi-p- *yc*-injective module D is co-Hopfian if and only if it is directly finite

Proof: Let β : D \rightarrow D be an R- monomorphism and *I*:D \rightarrow D be the identity map. As D is a quasi p-*yc* -injective, there exist $\lambda \in \text{End}_{R}(D)$ such that $\lambda\beta = I$. By Lemma 3.10, we get $\beta\lambda = I$, this means that β is an isomorphism. Hence, D is co -Hopfian. Conversely, suppose that D is a co-Hopfian. Let β , $\lambda \in U = \text{End}_{R}(D)$ such that $\lambda\beta = I$. Then β is an R – monomorphism and β^{-1} exists. Therefore, $\lambda = \lambda\beta\beta^{-1} = I\beta^{-1} = \beta^{-1}$. Hence, $\beta\lambda = \beta\beta^{-1} = I$.

Corollary 3.10: If D is an indecomposable quasi-p -*yc*-injective module, then D isco-Hopfian **Proof:** As every indecomposable module is directly finite, thus by Proposition 3.9, we get D is co-Hopfian.

Corollary 3.11: If D is a Hofian module and quasi-p-*yc*-injective, then M is co-Hopfian. A submodule A of R-module D is pseudo- stable, if β (A) \subseteq A for each $\beta \in$ Mon _R(A, D). An R-module D is referred fully pseudo-stable if each submodule of D is a pseudo-stable, see [10].

In the next, we give fully pseudo *yc*-stable module as a proper generalization of fully pseudo-stable.

Definition 3.12: An R- module D is referred fully pseudo *yc*-stable, if for any *y*-closed submodule of D is a pseudo-stable.

Note that, any pseudo-stable submodule is a pseudo yc-stable submodule, as well as each fully pseudo stable R- module is fully pseudoyc-stable. But the opposite is not true, for

example Z as Z -module is fully pseudo yc-stable, because (0) and Z only is y-closed submodule of Z. But, Z is not fully pseudo stable by [10].

The following result gives a characterization of fully pseudo *yc*-stable module.

Proposition 3.13: If D is fully pseudo *yc*-stable R-module, then every *yc*-monomorphism β : D \rightarrow D is an R- epimorphism.

Proof: Let $\beta: D \rightarrow D$ is *yc*-monomorphism, this means that $\beta(D) \subseteq yc D$. Define $\lambda: \beta(D) \rightarrow D$ as follows $\lambda(\beta(d)) = d$ for each $d \in D$. Clearly, λ is well-defined and an R-isomorphism but D is fully pseudo *yc*- stable, hence $\lambda(\beta(D)) \subseteq \beta(D)$. As λ is an R-epimorphism, then $\lambda(\beta(D)) = D$ this means $D \subseteq \beta(D)$. Therefore, β is an R-epimorphism.

Proposition 3.14: Let D be a multiplication R- module. If D is a quasi-p -*yc*-injective, then D is fully pseudo *yc* -stable.

Proof: Suppose D is a quasi-p- *yc*-injective. Let $A \subseteq yc$ D and $\beta \in Mon_R(A,D)$, since D is multiplication, then A= I D where I is an ideal of R. Since D is a quasi-p -*yc*- injective, there exist $\lambda \in End_R(D)$ such that $\lambda i = \beta$, where *i* be a map of inclusion. Hence $\beta(A) = \lambda i(A) = \lambda(A) = \lambda(A) = \lambda(D) \subseteq I D = A$.

4. Conclusions

Through this paper, we reached the following conclusions: Any pseudo-K- c- injective is a pseudo-K-yc- injective, we give an example of a pseudo-K- yc-injective which is no pseudo-K- c- injective. And the direct summand of a pseudo-K-y-closed -injective is a pseudo-B-y-closed -injective for any B is y-closed submodule of K. And the direct sum of pseudo-K- yc - injective is a pseudo-K- yc - injective.

5. Acknowledgement

Authors would like to thank Mustansiriyah University (<u>www.uomustansiriyah.edu.iq</u>) Baghdad-Iraq for its support in the present work.

References

- [1] S. H. Mohamed, B. J. Ller, and B. J. Müller, "*Continuous and Discrete Modules,*" *Cambridge University Press*, 1990.
- [2] H. Q. Dinh, "A note on pseudo-injective modules," *Communications in Algebra*, vol. 33, no. 2, pp. 361-369, 2005.
- [3] S. Singh and S. K. Jain," On pseudo injective modules and self pseudo injective rings," *J. Math. Sci.*, vol. 2, no. 1, pp. 125-133, 1967.
- [4] K. Goodearl, "Ring Theory: Nonsingular Rings and Modules," vol. 33, CRC Press, 1976.
- [5] L. H. Sahib and B. H. Al-Bahraany, "On CLS-modules," *Iraqi Journal of Science*, vol. 54, no. 1, pp. 195-200, 2013.
- [6] H. S. Lamyaa, "Extending, Injectivity and chain condition on Y-closed submodules," M.SC. Thesis, University of Baghdad, Baghdad, Iraq, 2012.
- [7] S. Baupradist, "On generalizations of pseudo-injectivity," *Mathematical Analysis*, vol. 6, no. 12, pp.16-80,2012. [Online]. Available: <u>https://www.researchgate.net/publication/267079715</u>. [Accessed: Apr. 17, 2023].
- [8] V. Kumar, A. J. Gupta, B. M. Pandeya, and M. K. Patel, "M-C-pseudo injective modules," vol. 14, no. 1, pp. 68-76, 2012. [Online]. Available: <u>https://www.researchgate.net /publication /265831083</u>. [Accessed: Apr. 17, 2023].
- [9] K. Varadarajan, "Hopfian and co-Hopfian objects," *Publicacions Matematiques*, pp. 293-317, 1992.
- [10] M. S. Abbas, "On fully stable modules," Ph.D. dissertation, University of Baghdad, Baghdad,

1991.

- [11] F. Kasch, "Modules And Rings," Acad. Press INC, London, 1982.
- [12] S. M. Yaseen and M. M. Tawfeek, "Supplement Extending Modules," *Iraqi J. of Science*, vol. 56, no. 3B, pp. 2341-2345, 2015.
- [13] C. A. S. Clara Gomes, "Some generalizations of Injectivity," Ph.D. dissertation, University of Glasgow, Glasgow, UK, 1998.
- [14] J. Hausen, "Modules with the summand intersection property," *Communications in Algebra*, vol. 17, no. 1, pp. 135-148, 1989.
- [15] N. V. Dungh, D. V. Huynh, P. F. Smith, and R. Wisbauer, "*Extending modules, " Pitman Research Notes in Mathematics Series 313, Longman, New York,* 1994.
- [16] A. Barnard, "Multiplication modules," J. Algebra, vol. 71, no. 1, pp. 174-178, 1981.