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Abstract 

     In this paper, we introduce new concepts of pseudo- -closed -injective module, 

and quasi- pseudo-  -closed- injective module. This work which is generalization of 

pseudo-injective modules and y-closed-injective modules. We have provided some 

characteristics and descriptions of those concepts. CLS-modules have been 

characterized in terms of pseudo- - closed-injective modules. We have shown the 

relationships of quasi-pseudo- -closed-injective with other concepts, including a 

Co-Hopfian, directly finite modules. 

 

Keywords:   pseudo- -closed- injective module ;   quasi - pseudo - -closed-

injective module ; fully pseudo   - stable 

 

 

مقاسات الاغمارية                               من النمط -yالكاذبة                                 
 المغلقة

                                      
    

  مهدي صالح نايف   , *احمد علي عريبي
  الجامعة المستنصرية ، بغداد ، العراق. ،كلية التربية  ،قسم الرياضيات

 

                                                                                                                 الخلاصة

 ساتمقاو  ، الكاذبةy -المغلقة من النمط الاغمارية ساتمقا  ;هجديد مفاهيم قدمنا، الورقةهذه في      
و المقاسات  الاغمارية الكاذبة اتسلمقاهذا العمل هو تعميم .شبه الكاذبة  - y ة من النمطالمغلق ريةالاغما

. تم وصف حول تلك المفاهيم والتوصيفات بعض الخصائص  لقد قدمنا.   y-الاغمارية المغلقة من النمط 
علاقات مقاس  بيناالكاذبة . y-من النمط همن حيث مقاسات الاغمارية المغلق CLS -من النمط  مقاسات

، و وحدات  Co-Hopfianبما في ذلك    ,المفاهيم الاخرى  مع  شبة الكاذبة y-ة من النطالاغمارية المغلق
 محدودة مباشرة .

 
1. Introduction 

     Throughout this paper, R is a ring with identity, and every R-module is a unitary left R-

module, B ⊆ D denotes B is a submodule of an R-module D. Hom R(D, K)                      (Mon 

R(D,K)) denotes all an R-homomorphism (R-monomorphism) from D to R- module K over 

ring R.  Let D and K be R-modules, D is called (a pseudo)-K-injective if for any                   

 ∈ Hom R(A, D) ( Mon R (A, D) ) where A ⊆ K there exist   ∈ Hom R(K, D) with     =  , 

where   be an inclusion map. An R-module D is said to be (pseudo)-quasi-injective if D is a 
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(pseudo)-D- injective. Also, we say D is an injective if it is a K-injective for any R-module K 

(see [1-3]). 

A submodule B of an R-module D is called an essential submodule of D denote by (B ⊆e D) 

if B∩H ≠0, ∀ 0 ≠ H ⊆ D, and an R-module D is said to be uniform if every submodule of D is 

an essential submodule of D, see [4]. For a submodule B of an R-module D is said to be 

closed in D (briefly, B ⊆c D) if B has no proper essential extension inside D. The submodule 

Z (B) of D define as Z (B) = {b∈B: ann (b) ⊆e R} is called singular of D. If    Z (D) =D (Z 

(D) = 0), then D is singular (nonsingular). A submodule B of an R-module D is called  -

closed (briefly, B ⊆yc D) if D∕ B be a nonsingular. Every  -closed submodule is closed, but 

the convers is not true, see [4]. 

                           

     An R-module D is called extending (or CS-module) if any closed submodule of D is direct 

summand. For an R- module D is said to be CLS-module if each  -closed submodule is direct 

summand. Clearly, every CLS-module is CS- module, see [5]. 

 

     H.S. Lamyaa in [6], introduces the concept of   - injectivity. Let K be an R-module, an  

R-module D is called K-  -closed -injective (briefly, D is K-  -injective), if for any                       

 ∈ Hom R(B, D), where B ⊆yc K, there exists  ∈ Hom R(K, D) with     =  . If D is D -   -

injective, then D is said to be self- -closed-injective or quasi- -closed- injective (briefly, D is 

quasi-  -injective). We say D is   -injective if it is K-    -injective, for any R-module K. 

In [7] and [8], an R- module D is  a pseudo-K-c-injective if for any  ∈ Mon R(A,D) where A 

⊆c K, there exists  ∈Hom R(K, D) such that    =  . An R-module D is said to be co-Hopfian 

(Hopfian) if each surjective (injective) endomorphism  : D → D is automorphism see [9]. An 

R- module D is directly finite if it is not isomorphic to a proper direct summand of D, see [1]. 

A submodule B of R-module D is said to be stable, if for any  ∈Hom R(B, D), then    (B) ⊆ 

B. We say D is a fully stable if any submodule of D is stable see [10]. An homomorphism  : 

B ⟶D is called C- homomorphism if  (B) is closed in D see [8]. 

 

     In this work, we give more characterizations of pseudo -y-closed - injective. Also, we 

prove that an R-module K is CLS- module iff every module is pseudo -K-yc-injective iff for 

any y-closed submodule of K is pseudo -K-yc-injective. And a sufficient condition for quasi- 

pseudo- y-closed-injective to be Co-Hopfian is given. 

 

2. Pseudo- -closed- Injective Module.  

     In this section, we introduce the concept of pseudo- y - closed-injective module with some 

example and the relation with other concepts. This concept is generalization of yc-injective 

and pseudo-K- injective.  

 

Definition 2.1: Let D and K be R-modules. Then D is pseudo-K- -closed-injective (briefly D 

is pseudo-K-  -injective) if for any  ∈ Mon R(A, D) where (A is an y-closed submodule of 

K), there exists  ∈ Hom R(K,D) with     = . Where   be an inclusion map, i.e, the following 

diagram: 

is commute.                        

Also, an R- module D is referred pseudo-  -injective, if D is pseudo-K-  -injective, for any 

K be R-module. 
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Examples and Remarks 2.2: 
1. Clearly, every pseudo -K-injective module is a pseudo-K-   -injective. The opposite is 

explained in (6).  
2. For an R- module K is simple  -closed R- module, if (0) and K are only  -closed 

submodule of K. Consider the module Z2 as Z-module, clear that itis simple, but Z2 is 

singular, thus by [6] we get Z2 is only  -closed submodule of Z2. Hence, Z2 is not simple  -

closed Z-module. We know that Z as Z-module is not simple, (0) and Z are only  -closed 

submodules of Z see [6], therefore, Z is simple  -closed Z-module. This means there are no 

relationship between simple R- module and simple  -closed R- module.                                                                                                                                          
3. If K be a simple  -closed R- module, then each R- module D is pseudo- K-  -injective.    

Proof: Aussme that D be R-module. Let A ⊆yc K and   ∈ Mon R(A, D). Consider               

the illustration below:   

                                                  
Since K be a simple  -closed R-module, we have A=0 or A=K. If A=0, then for any  ∈Mon 

R(A, D)  let  (a)=0 for all a∈ A, so there exist  an R- homomorphism  : K⟶D such that 

 (k)=0 for all k ∈ K, it is follows that   (a)= (a)=0= (a), a ∈A, hence   is an extension of  . 

Now, if A= K. Clearly, D is a pseudo-K-   - injective. 
4. If K be a nonsingular uniform R-module. Then any R- module D is a pseudo-K-  -

injective.  

Proof: Let D be an R-module. As K is uniform, then it is easy to verify that (0) and K are 

only closed submodule of K. But K is nonsingular, thus by [4, Proposition 2.4, p.43] we get 

(0) and K are  -closed submodule of K, let A ⊆yc K where A is not trivial, hence A ⊆c K 

because every  -closed submodule is closed see [6], this is a contradiction. Therefore, K is a 

simple  -closed R-module. So, by (3) we have D is a pseudo- K-  -injective. 
5. Consider the modules Q and Z as Z- module. By (4), it is clear any R-module D is a 

pseudo Q -    -injective and pseudo - Z-   - injective. 
6. The converse of (1) is not true. A Z-module Z by (5) is a pseudo-Q-   -injective, but Z is 

not a pseudo- Q- injective. 

Proof: Suppose that Z is a pseudo - Q - injective. Consider the illustration below: 

 

                                             
Where I is the identity map. Since Z is a pseudo -Q- injective, there exist  ∈     Hom Z(Q, Z) 

such that   = I. But Hom Z(Q, Z) =0 see [11], we have I=0, which is a 

 contradiction. Therefore, Z is not pseudo- Q -injective 
7. Clearly, K-    - injective which is a pseudo -K-  -injective. By [6], it follows that for a 

singular R- module K, any R- module D is a pseudo- K-   - injective. 
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8. Every pseudo-K-c-injective module is a pseudo-K-  -injective, the converse case has been 

discussed in an R-module K = Z8 Z2 as Z-module. A submodule B=  (2, 1)   of K is closed 

but it is not direct summand of K by [12]. Assume that B is a pseudo-K-c-injective. By [7] we 

get B ⊆  K which is a contradiction. So, B is not a pseudo-K-c-injective. But K is a singular, 

hence B is a pseudo-K-   -injective by (7). 
9. Let K be an R-module. An R-module D is called a K-c-injective if any closed submodule 

A of K, and any β∈ Hom R(A, D) can be extended to α ∈                         Hom R(A,D).  Also, 

we say D is a quasi-c-injective if it is a D-c-injective, see [13].  Clearly, any K-c-injective is a 

pseudo-K-c-injective. Therefore, by [13] and by Remark 2.2, (8) we have for CS-module H 

then every R-module is a pseudo-K-   –injective 

♦K-injective⟹ pseudo-K-injective ⟹ pseudo-K-c-injective ⟹ pseudo-K-yc-injective. 

In the result below we show that, for an R- module is a nonsingular semi-simple   then the 

concepts of the pseudo- K-injective, pseudo- K-c-injective and pseudo-K-  - injective are 

equivalents. 

 

Proposition 2.3: Let K be an R-module. If K is a nonsingular semi-simple, then the following 

statements are equivalent:   

1. pseudo-K-  -injective-module;   

2. pseudo-K-c-injective-module;    

3. pseudo- K – injective- module. 

Proof: (1) ⟹ (2) Suppose that D is a pseudo-K-  -injective module. Let A ⊆c K and  ∈ 

Mon R(A, D). Since K is a nonsingular, thus by [4, Proposition 2.4, p.43] we get                    A 

⊆yc K. By the assumption, there exists  ∈ Hom R(K, D) such that   = . Hence, D is a 

pseudo-K-c- injective.  

(2)⟹ (3) Assume that D is a pseudo- K-c-injective module. Let B ⊆ K and                             

∈ Mon R(B, D).  As K is a semi-simple, hence B ⊆  K and it follows B ⊆c K. By (2), there 

exist  ∈Hom R(K, D) such that    =  , so D is a pseudo - K – injective.  

(3) ⟹ (1) It is obvious. 

Now, we give the properties of direct summand in a pseudo-   -injective module. 

 

Proposition 2.4: Let D and K be R- modules. If D is a pseudo -K-  -injective and A is a 

direct summand of D and B is y-closed submodule of K, then  

1. A is a pseudo- B -  -injective module.                                                                                                            

2. A is a pseudo-K-  - injective module. 

Proof: (1). Assume that X ⊆yc B and   ∈ Mon R(X, A). Since A ⊆  K, there exists a 

submodule U of D such that K= A⊕U. Consider the illustration below: 

                                              
Where   X∶X⟶B,  B∶B⟶K,  A∶A⟶D be inclusion maps of  X  in B, B in K  and  A  in  D 

respectively, since X ⊆yc B and B ⊆yc K, thus by [6] we get X ⊆yc K, but D is a  pseudo-K-

   -injective and  A  : X⟶D be an R-monomorphism, there exists α∈Hom R(K, D) such that 

α  B  K =  A  . Put =Pα B, where P is a projection map from D to A. Clearly,  is an R- 

homomorphism,    X = P α  B  K = P  A   = . Hence A is pseudo - B -    -injective.  
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2. Since K ⦤yc K, see [6]. By (1), we have A is pseudo- K-    -injective module. 

Corollary 2.5: Let D and L be two R- modules. Then D is a pseudo-L-  -injective if and 

only if D is pseudo- H-    -injective, for any H is  -closed submodule of L. 

Proof: Suppose that D is a pseudo-L-   -injective. Let H ⊆yc L. Clearly, D is a direct 

summand from itself and so, by Proposition 2.4, (1) we have D is a pseudo-H-  -injective. 

Conversely, since L ⊆yc L, hence D is a pseudo- L-    - injective. 

 

Corollary 2.6: Let D be an R-module and K be a nonsingular R- module. If D is a pseudo- K-

  -injective, X ⊆  D and Y ⊆  K, then X is a pseudo-Y-  - injective. 

Proof: Assume that D is a pseudo-K-   - injective and X ⊆  D, Y ⊆  K. It follows that Y 

⊆c K, as K is a nonsingular, thus by [4, Proposition 2.4, p.43] we have Y ⊆yc K, therefore, X 

is a pseudo- Y-  -injective by Proposition 2.4, (1). 

 

Proposition 2.7:  Let C1 and C2 be two R-modules and D =C1  C2. Then the following are 

equivalent:                                           

1. C2 is a pseudo -C1-    -injective module;                                                                                            

2. for any K ⊆ D, K  C2 = 0 and   1(K) ⊆yc C1 where (  1 the natural projection of  D  into    

       C1), there  exists  submodule  K1  of   D  such that K ⦤ K1   and  D = K1 C2 .                         

Proof: (1) ⟹ (2) Suppose that K⊆ D such that K C2 = 0 and let  1: D ⟶ C1,            2: D 

⟶C2 are the projection mapping with  1(K) ⊆yc C1. Define  :  1(K) ⟶ C2 as follows for all 

k =a b (a ∈C1, b ∈ C2),  (a) = b. Clear that,   is well- define and R-monomorphism. So, by 

(1), there exist  ∈ Hom R(C1, C2) such that   = . Define K1={a  (a): a∈ C1}, and claim D= 

K1  C2. Let d ∈ D, we get d= d1 d2 where d1∈C1 and d2 ∈ C2, thus d 

=d1 d2=(d1  (d1) d2  (d1))∈ K1 C2. Now, suppose that d ∈ K1 C2, therefore, d = 

d2=d1  (d1) such that d1∈ C1, d2 ∈ C2. Hence d1=d2   (d1)∈ C1 C2=0.  So K1 C2 =0. Thus 

D = K1  C2. Let k = a b ∈K, where a ∈C1, b ∈C2. Since  1(k) = a,  2(k) = b, we have k 

=  1(k)  2(k) =  1(k)+   1(k) ∈ K1, since    1(k) =    1(k) =  2(k), hence K ⊆ K1. 

(2)⟹ (1). Let X ⊆yc C1 and  ∈ Mon R(X, C2). Define K={x  (x): x ∈X}, clear that    K 

⊆D. To show that K  C2=0, let h∈K  C2, then h∈C2 and h = x  (x), x ∈X, hence x= 

h  (x) ∈ C1 C2, therefore, we get x= 0, then K  C2=0. It’s easy to prove X =  1(k), so  1(k) 

⊆yc C1, then by (2), there exists K1 be submodule of D such that K ⊆ K1, D= K1 C2. Let  2: 

D ⟶ C2  denote the projection with Ker  2=K1 and let  : C1⟶C2 be the restriction of   to C1. 

Consider    the following diagram: 

                                                
For every x ∈ X,  (x) = (x) = [(x) –  (x)   (x)] =  [x −  (x)]  (x)=  (x), hence   extends 

 , therefore, C2 is a pseudo-C1-   - injective. 

Now, we provide some basic properties of a pseudo-   - injective module.  

 

Proposition 2.8: Let D1, D2 and K be R- modules, D1  D2. If D1 is a pseudo-K-   - injective 

then D2 is a pseudo-K-    -injective. 

Proof: Assume that D1 is pseudo-K-   -injective. To show that D2 is a pseudo-K-  -

injective. Let A ⊆yc K and T ∈ Mon R(A, D2). Consider the illustration below: 
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Since D1   D2, there exists    D2⟶D1 be an R- isomorphism, therefore   -1 D1⟶D2 also be 

an R- isomorphism. Clearly,  T is an R-monomorphism from A to D1. As D1 is a pseudo-D-

  -injective, there exists  ∶K ⟶D1be an R-homomorphism such that   =  T. Define 

 ∶K ⟶D2 by  =  -1 , hence   is R-homomorphism and   =  -1   =  -1  T = T. 

Therefore, D2 is a pseudo-K-    -injective module. 

 

Proposition 2.9: Let A, B and D be an R-modules such that A B and for any  -closed 

submodule X of B, Ker   ⊆ X with  ∈ Hom R(A, B). If D is a pseudo-A -  -injective, then D 

is a pseudo-B-    injective. 

Proof: Let X ⊆yc B and  :X ⟶D be an R-monomorphism. Since A B, there exist  : B⟶A 

be an R-isomorphism. Put H =  (X), as Ker   ⦤ X, thus by [6] we get H ⊆yc A Consider the 

illustration below: 

                                 
Where  X,  H are the inclusion maps. Define    H⟶D by  ( (x)) = (x), x ∈ X. It is clear that 

  is an R- monomorphism. As D is a pseudo-A-  -injective, there exists   A⟶D such that 

   H =  . Put   =   . Clearly,   be R- homomorphism, therefore,  (x) =  ( (x)) =   H 

( (x)) =  ( H ( (x))) =   ( (x)) =  (x) =  ( X(x)) = ( X(x)) =    X(x). Hence D is a 

pseudo-B-  -injective.   

 

Proposition 2.10: Let D1, D2 and K be R-modules. If D1 and D2 are pseudo -K-  - injective 

modules, then D1⊕D2 is a pseudo -K-  - injective. 

Proof: Assume that D1 and D2 are pseudo -K-  - injective modules. Let A ⊆yc K and let 

 ∈Mon R(A, D1⊕D2).Consider the illustration below: 
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Where  1,  2 are the inclusion maps, P1, P2 are the projection map. As D1 and D2 are pseudo -

K-  - injective, there exists  1∈ Hom R(K, D1)and  2∈ Hom R(K, D2) such that  1 = 1  and 

 2   =  2  . Define: K⟶D1⊕D2 by  (k) = ( 1(k),  2(k)), for all k ∈K. We prove that   = . 

Let a ∈ A, then  (a) = (d1, d2), where d1∈D1 and d2∈D2.   (a) =  ( (a)) = ( 1( (a)),  2( (a))) = 

( 1 (a),  2 (a)) = (d1, d2). Therefore, D1⊕D2 is pseudo -K-  - injective modules. 

 

Proposition 2.11: Let D be an R- module and K ⊆yc D. If K is a pseudo-D-   -injective, 

then K ⊆  D 

Proof: Suppose K is pseudo- D-    -injective. Let I: K ⟶K be the identity map. Consider   

the illustration below: 

                                                     
Since K is a pseudo-D-   - injective, there exists  ∈ Hom R(D, K) such that I=   . To show 

that D = Ker  K, since Ker  and K ⊆ D, we have Ker   K ⊆M, let d ∈ D clearly, d 

  (d) ∈ Ker  , therefore, d= (d   (d))   (d) ∈ Ker   K. Hence Ker    K = D.  Now, 

we to show that Ker  ∩K= 0, let  ∈Ker   K, hence  (a)= 0 but  (a)=   (a)= I(a) = a  we 

have a 0. Therefore, K ⊆  D. 

We introduce concept prior to the following outcome.   

 

Definition 2.12: A homomorphism (monomorphism)  :A⟶ B is called   -homomorphism 

(   - monomorphism) if   (A) ⊆yc B. 

 

Example: If we take Z4 and Z2 as Z-module, let  : Z4⟶ Z2such that  (0) =  (2) =0,  (1) = 

 (3) =1. It is easy to prove that    is homomorphism and  (Z4) = Z2, hence   is   -

homomorphism. Clear that any   -homomorphism is a C- homomorphism. The converse is 

not true, let     : Z2⟶Z2 defined as follows  (Z2) = 0, therefore,   is C -homomorphism, but 

is not   -homomorphism since 0 is not  -closed of Z2. 

In the following proportion, we give a characteristics of a pseudo -   -injective.  

Proposition 2.13:  Let D and K be two an R-modules, then the following are equivalence.               
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1. D is a pseudo -K-    -injective module;                                                                            

2. For any R- module A, any    -monomorphism   A⟶K and for any  ∈ Mon 

R(A, D), there exists T ∈ Hom R(K,D) with   = T  .  

Proof :(1) ⟹ (2) Let A be an R- module,  :A⟶K be an    -monomorphism and              ∈ 

Mon R(A, D). Since  : A⟶K is an   - monomorphism, we have  (A) ⊆yc K. Defined 

 : (A) ⟶D by   ( (a)) =  (a) for all a∈A. Consider the illustration below: 

                                                  
Clearly,   is R-monomorphism. As D is a pseudo-K-  -injective, there exists T∈                       

Hom R(K, D), such that T   = . Therefore, we have T  (a) =T ( (a)) = T  ( (a)) =  ( (a)) = 

  (a). Hence   =T  .  

(2) ⟹ (1) Let H ⊆yc K and    H⟶D be a monomorphism. It is clear that the inclusion map  

  is   - monomorphism. By (2), then there exists T∈ Hom R(K , D) such that T  =  . Hence D 

is a pseudo-K-  -injective module.  

 

Proposition 2.14: If H is a pseudo- K-  -injective module, then any   -monomorphism from 

H to K is splits.  

Proof: Let   H⟶K is   -monomorphism, we get  (H) ⊆yc K. Consider the illustration 

below: 

                                              
Define  -1∶   H ⟶H such that  -1 (H) = H. As H is a pseudo-K-   -injective, there exists 

  1∈Hom R(K, H), where  1   =  −1
. So, for all h∈H we have 1 (h) =  1( ( (h))) =  1  ( (h)) = 

 −1
( (h)) =  −1 (h) =h= IH(h). Therefore,   is splits by [10]. 

 

The CLS-module is described in terms of pseudo-    -injective modules in the proposition 

that follows. 

 

Proposition 2.15: Let K be an R-module, then the next are equivalent. 

1. K is CLS- module;                                                                                                                     

2. Every module is pseudo-K-  - injective module;                                                                                             

3. For any S, S ⊆yc K then S is pseudo-K-    - injective module.  

Proof: (1) ⟹ (2). Let H be any R-module. We show H is a pseudo- K-   -injective module, 

let B ⊆yc K and  ∈ Mon R(A, H). Consider the illustration below: 
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By (1), we have B ⊆  K. So,   B1 ⊆ K, where K= B B1. Define  : K⟶Hby  (b b1) = 

 (b), if b1 = 0 and   (b b1) = 0otherwise, b∈Band b1∈B1.Therefore,   extends to.  

(2) ⟹ (3) It is clear.                                                                                                                             

(3) ⟹ (1) Let S ⊆yc D, by (3), then S is a pseudo-K-   - injective module, therefore,                

S ⊆  D by Proposition 2.11. 

If  for every  intersection  of  two  direct summand  in  R- module D is direct summand , then 

D  is has  the summand   intersection  property (SIP)  see [14] . 

 

Proposition 2.16: Let D be a nonsingular R- module, if for any y-closed submodule of D is a 

pseudo -D-  -injective module, then D has SIP. 

Proof: Let A1 and A2 be two direct summand of D. To show A1 A2 ⊆  D, since D be a 

nonsingular, we have Ai ⊆yc D, i =1, 2. So, A1∩A2 ⊆yc D by [6]. Thus by hypothesis A1 A2 

is pseudo-D-  -injective. Hence A1 A2  ⊆  D by Proposition.2.11. 

 

3. Quasi- pseudo - -closed- Injective Module.  

     In this section, we introduce the concept of quasi -pseudo- y - closed-injective module 

which is a proper generalization of pseudo - injective. 

 

Definition 3.1: An R- module D is called a quasi -pseudo-  -closed -injective module 

(briefly, D is a quasi- p -  - injective). If for each A ⊆yc D and  ∈Mon R(A, D), there exists 

  ∈ End R(D) such that   =    ,  i.e., the following diagram: 

 

is commute.                           

A ring R is referred self - pseudo-   - injective module, if R is pseudo -RR -   - injective 

module.                                                                                                                                                

Note that: An R-module D is a quasi- p-  -injective, if it is a pseudo -D- yc- injective. 

Therefore, every pseudo-   -injective is quasi - p-  - injective. If D is quasi - injective 

module, then D is quasi-  -injective and clearly D is quasi-p-  -injective, the opposite is not 

true in general. 

     

Examples and Remarks 3.2: 

1. A Z-module D= Zp ⊕Q. By [13], we get D is quasi-c-injective. Clearly, D is a quasi-  -

injective. Hence, D is a quasi- p -  -injective.  
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2. Any pseudo-injective is quasi- p-  - injective. The opposite is not true, by Remark.2.2, 

(5) Z as Z-module is a quasi- p -   -injective. But Z is not pseudo- injective 

Proof:  Assume that Z is a pseudo-injective and ∈ Mon R(2Z, Z),  (2n)= n for each n∈ Z. 

Consider the illustration below: 

 

                                                     
Since Z is a pseudo- injective, there exist  ∈Hom R(Z) such that   = . For each n∈Z, we get 

n =  (2n) =  ( (2n)) =  (2n) = 2n  (1) we have  (1) = 1 ∕ 2   Z, which is a contradiction. 

Therefore, Z is not a pseudo injective.  

In the next result we discuss the relationship between a quasi- p -  - injective module and a 

quasi-  - injective module. 

 

Proposition 3.3: Every nonsingular uniform quasi-p-  -injective module is a quasi -   -

injective. 

Proof: Assume that D is nonsingular uniform quasi- p-  -injective module. Let                     

A ⊆yc D and  ∈ Hom R(A, D). Consider the illustration below: 

 

                                                   
Ker   ⊆ A, then Ker  =0 or Ker   0. If Ker  =0, thus   is an R-monomorphism. Then   is 

extendable to an R-homomorphism  : D⟶D, because D is a quasi- p-  - injective, hence D 

is a quasi-  -injective. If Ker  ≠0. As D is a nonsingular, then Ker   ⊆c A by [15], since any 

submodule in uniform is uniform, thus A is uniform submodule, hence Ker   A.   In this 

case   can be extended to a homomorphism of D to D. Therefore, D is a quasi-   injective. 

A submodule H of R- module D is referred a fully invariant if for each  ∈ End R(H), then 

 (H) ⊆ H, see [10]. 

An R- module D is said to be a multiplication, if for all S be submodule of D, then S =I D for 

some I is ideal of R see [16]. 

The next result, we give a condition under which an  -closed submodule of a quasi - p-    - 

injective module is a quasi -p -   - injective. 
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Proposition 3.4: Let D be a quasi-p-   -injective module and B ⊆yc D, then the next 

statements hold: 

1. If B is fully invariant of D, then B is a quasi- p-   - injective. 

2. If D is multiplication, then B is a quasi- p-   - injective. 

Proof :(1) Suppose that B is fully invariant of D. Let X ⊆yc B and  ∈ Mon R(X, B). Consider 

the illustration below: 

 

                                   
Since X ⊆yc Band B ⊆yc D, we have X ⊆yc D by [6]. As D is a quasi-p -  -injective, there 

exists  ∈End R(D) such that   =    . Since B is fully invariant, then                     (B) ⊆ B and 

 │B∈ End R(B). Hence,    extends  │B.  

Proof: (2) Assume that D is a multiplication. Let A ⊆yc B and  ∈ Mon R(A, B). Since        B 

⊆yc D.  It follows that by [5], A ⊆yc D. Now, consider the illustration below:  

 

                                             
Since D is a quasi-p -   -injective, there exist  ∈ End R(D) such that   B A =  B . Since D is 

multiplication, we get B = I D for some ideal I of R. Therefore,  │B =  (B) =   (I D) = I  (D) 

⊆ I D =B. Hence,   extends  │B. 

The R- modules D and L are referred relatively injective module, if D is L-injective and L is 

D- injective see [15].  

 

In the following definition we introduce the concept of the relatively pseudo-  -injective 

module:  

 

Definition 3.5: Let B1 and B2 be R- modules. B1 and B2 are called relatively pseudo-  -

injective module, if B1is pseudo -B2 -    -injective and B2 is pseudo-B2 -   -injective. 

 

Theorem 3.6: Let D = D1 D2 be a quasi- p -  - injective module and nonsingular, then D1 

and D2are relatively pseudo-  -injective module. 

Proof: Let D be a quasi -p-   -injective module and nonsingular. To show that D1 is a 

pseudo-D2-   - injective. Let A ⊆yc D2,   : A⟶D1 be any R- monomorphism,                   : 
D1⟶D be an injection homomorphism, and  :D⟶D1 be a projection homomorphism. Define 

 :A⟶ D by   (a) = ((a), a) for each  a ∈ A. Consider the illustration below: 
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Clearly,   is an R-monomorphism, since D2 ⊆  D, then D2 ⊆yc D, this is because D is a 

nonsingular,  as D is a quasi- p-  - injective, this means D is a pseudo-D-  -injective, which 

implies D is a pseudo D2-  -injective by Corollary 2.5. Then there exists  ∈Hom R(D2, D) 

such that    =  , put =   . Therefore,   (a) =    (a) =   (a) =   ( (a)) =   (  (a), a) =   (a). 

Hence, D1 is a pseudo- D2    -injective. 

 

Corollary 3.7: Let D=   ∈ Di be an R- modules, where I= {1, 2, ..., n} and n ∈   . If D be a 

quasi -p-  -injective module and nonsingular, then Ki and Kj are relatively pseudo-  -

injective   module for all i, j ∈ I  where i   j. 

Proof:  By Theorem 3.8. 

 

Lemma 3.8: [15] An R-module D is directly finite if and only if    =   implies that    =   
for each  ,   ∈ U = End R(D) such that I is an identity map of D . 

 

The following result provides a necessary condition for the quasi - p - yc - injective module 

to satisfy the Hopfian condition. 

 

Proposition 3.9: A quasi-p-   -injective module D is co-Hopfian if and only if it is directly 

finite 

Proof: Let  : D⟶D be an R- monomorphism and  :D⟶D be the identity map. As D is a 

quasi p-   -injective, there exist  ∈End R(D) such that    = . By Lemma 3.10, we get    = , 
this means that   is an isomorphism. Hence, D is co -Hopfian. Conversely, suppose that D is 

a co-Hopfian. Let ,  ∈ U= End R(D) such that    =  . Then   is an R – monomorphism and 

    exists. Therefore,    =      =I    =   . Hence,   =      = I. 

 

Corollary 3.10: If D is an indecomposable quasi-p -  -injective module, then D isco-Hopfian   

Proof:  As every indecomposable module is directly finite, thus by Proposition 3.9,   we get D 

is co-Hopfian. 

 

Corollary 3.11: If D is a Hofian module and quasi-p-  -injective, then M is co-Hopfian. 

A submodule A of R-module D is pseudo- stable, if β (A) ⊆ A for each β∈ Mon R(A, D). An 

R-module D is referred fully pseudo-stable if each submodule of D is a pseudo-stable, see 

[10]. 

In the next, we give fully pseudo   -stable module as a proper generalization of fully pseudo-

stable. 

 

Definition 3.12: An R- module D is referred fully pseudo   -stable, if for any  -closed 

submodule of D is a pseudo-stable. 

Note that, any pseudo-stable submodule is a pseudo   -stable submodule, as well as each 

fully pseudo stable R- module is fully pseudo  -stable. But the opposite is not true, for 
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example Z as Z -module is fully pseudo   -stable, because (0) and Z only is  -closed 

submodule of Z. But, Z is not fully pseudo stable by [10].  

                                        

The following result gives a characterization of fully pseudo   -stable module. 

Proposition 3.13: If D is fully pseudo   -stable R-module, then every   -monomorphism  : 

D⟶D is an R- epimorphism. 

Proof: Let  : D⟶D is   - monomorphism, this means that  (D) ⊆yc D.  Define               : 

  (D) ⟶D as follows  ( (d)) = d for each d∈ D. Clearly,   is well-defined and an R-

isomorphism but D is fully pseudo   - stable, hence  ( (D)) ⊆  (D). As   is an R- 

epimorphism, then  ( (D)) = D   this means D ⊆  (D). Therefore,   is an R-epimorphism.  

 

Proposition 3.14: Let D be a multiplication R- module. If D is a quasi-p -  -injective, then D 

is fully pseudo    -stable. 

Proof: Suppose D is a quasi-p-   -injective. Let A ⊆yc D and  ∈Mon R(A,D), since D is 

multiplication, then A= I D where I is an ideal of R. Since D is a quasi-p -  - injective, there 

exist  ∈ End R(D) such that    = , where   be a map of inclusion. Hence  (A) =   (A) = 

 (A) =  (I D) =I  (D) ⊆ I D=A. 

 

4. Conclusions 

     Through this paper, we reached the following conclusions: Any pseudo-K- c- injective is a 

pseudo-K-  - injective, we give an example of a pseudo-K-   -injective which is no pseudo-

K- c- injective. And the direct summand of a pseudo-K- -closed -injective is a pseudo-B- -

closed -injective for any B is  -closed submodule of K. And the direct sum of pseudo-K-    - 

injective is a pseudo-K-    - injective.  
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