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Abstract  

    Applying the finite difference method for the time discretization. We present a 

numerical method to approximate the inverse system of Burgers equations (ISBE) 

with the time-fractional. By using the finite difference formula and extended cubic 

B-splines collocation method (EXCBSM), we determine the approximated solution 

of this inverse system problem. The convergence analysis is investigated and the 

order of convergence is obtained. The advantage of this study is comparing it with 

the other method such as the cubic B-spline collocation method. Also, to clarify 

the presented method, figures and comparisons of the approximate solutions with the 

exact value have been presented. Finally, the diagrams of errors for our methods are 

shown in the figures. 

 

 Keywords: System of time fractional Burgers equations, Inverse problems, Noisy 

data, Finite difference method, Cubic B-splines collocation method, Time-fractional 

derivatives, Convergence analysis 
   

  

1   Introduction 

In the world of mathematical problems, there exist models of problems that cannot be 

answered directly, such as reconstruction and identification problems. These kinds of 

problems, which have a description of the parameters that we cannot directly 

observe, are called inverse problems (IPs). In this problem, aside from the main function, the 

unknown functions include some of the functions in formulating the direct problem, that 

nominated the solution to the inverse problem. These equations have been extensively 

discussed in a wide spectrum of applications in mathematics and physics, suchastheBurgers’

equation, which is a fundamental partial differential equation (PDE) that appears in various 

branches of engineering and physics [1], such as heat equation [2] [3] [4]  fluid mechanics, 

nonlinear acoustics, gas dynamics, modeling of turbulence [5], boundary layer 

behavior, shock wave formation [6], mass transport, electrohydrodynamic (EMHD) model in 

plasma physics [7], parabolic equation [8] and traffic flow. This equation describes the 

integrated process of convection-diffusion in physics [9]. This equation was first introduced 

by Bateman in 1915 [10] and later developed by Burgers in 1948 [11].  The study of the 

motion of particles in a fluid goes back to Brown. If the effect of gravity upon the particles is 

                                                      
 

              ISSN: 0067-2904 

 



Erfanian et al.                                           Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2659-2678 

 

2660 

considered, these particles will be heavier than the surrounding fluid, and the resulting motion    

is called sedimentation. In the dilute limit, in which the volume fraction of the particles is 

much less than one, the velocity resembles very closely the famous Burgers equation of one-

dimensional. The time-dependent evolution of particle motion is predicted by the Burgers 

equation. Also, the one-dimensional coupled Burgers’ equation can be taken as a simple

model of sedimentation and evolution of scaled volume concentrations of two kinds of 

particles in fluid suspensions and colloids under the effect of gravity [12]. The extended 

model of coupled Burgers’ equation was first derived by Esipov to study the model of

polydispersive sedimentation [13].  TosolvethecoupledsystemofBurgers’equationswith

time-fractional derivative numerically, various approaches have been studied by many authors 

[14]. Space and time-fractional Burgers’ differential equationwas first treated byMomani 

[1]. The coupled system of time-fractional derivatives of non-homogeneous Burgers’

equations is solved by the fractional homotopy analysis transform method [15], and the 1D 

time-fractional coupled Burger equation is solved analytically via fractional complex 

transform [16].  In the polydispersive case, Esipove [13], introduced a system of the coupled 

Burgers equations. The coupled Burgers equations predict an interesting phenomenon, which 

was termed phase shifts. This phenomenon is observable in a bidisperse system. The particle 

size distribution function evolves in an interesting way near the interface.  In the Episov 

model, he applied the continuity equation which describes the conservation of species with 

concentration  (   ) and the particle flux  (     ). In the case of very small particles, they 

experience Brownian motion at this equation [8] 

  

 
  

  
                         ( )   ( )    (1) 

 

     The  ( ) distribution and the  ( ) velocity is known from Brownian motion. It was 

recognized that Eq. 1 with c-dependent velocity resembles very closely the famous Burgers 

equation of one-dimensional compressible flow. 

 

     Let   (   ), and   (   ) be the concentrations of particles with a bimodal distribution of 

particle sizes, both obeying continuity equations. In simplified form, at small concentrations, 

the two coupled Burgers equations are introduced [7] for     [   ],  
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 In equations (2) and (3)     are spatial coordinates and temporal coordinates 

respectively. 
   

  
, and 

   

  
 are unsteady terms,   

   

  
 and   

   

  
 are the nonlinear convection 

term. Also, 
    

    and 
    

    are the diffusion term, finally  (   ) and  (   ) are the source 

term. 

 It is well known that the integer-order differential operators and the integer-order integral 

operators are local but the fractional-order differential operators and the fractional-order 

integral operators are nonlocal. TosolvethecoupledsystemofBurgers’equationswithtime-

fractional derivative numerically, various approaches have been studied by many authors [14] 

[17] [18] [19]. Space and time-fractionalBurgers’ differential equationwas first treatedby

Momani [20]. The coupled system of time-fractional derivatives of non-homogeneous 

Burgers’equations is solvedby the fractionalhomotopyanalysis transformmethod [15], at 

the Gegenbauer wavelets are used to present two numerical methods for solving the coupled 
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systemofBurgers’equationswith a time-fractional derivative [14]. Consider one dimensional 

coupled nonlinear Burgers’ time fractional Caputo derivatives equation in the generalized

form [14], with     [   ] and              as follow  
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 Also, the initial conditions and the Dirichlet boundary conditions for   (   )  and   
[   ], respectively are  

   (   )    ( )       (   )    ( )  (5) 

 and  

   (   )    ( )       (   )    ( )   (   )    ( )       (   )    ( )  (6) 

 over specified condition, for   (   ), and   [   ] is  
   (   )    ( )    (   )    ( )  (7) 

 which   represents the final time. Furthermore, the functions   (   ) and   (   ) and the 

boundary conditions   ( )   ( ) are unknown and must be determined from over-specified 

data. One of the best subjects in many branches of engineering and science is inverse 

problems. In 1911, the first examples of inverse problems have been published by German 

mathematician Hermann Weyl; see [21]. Inverse problems are applied in remote 

sensing, geophysics, the heat capacity of solids, natural language processing, heat 

transfer, signal processing, oceanography, thermal conductivity, and many other fields; see 

[22] [23] [24] [25]. 

 The fractional differential equations are employed in mathematics such as dynamical systems 

and control systems; in physics and engineering, for example, electrochemistry, physical 

phenomena, and fluid mechanics; and in economics, biological population models and social 

science such as food supplements; see [26] [27]. 

 In this work, we solve one system of time-fractional inverse parabolic problems by using 

finite difference formula for time discretization and the extended cubic B-splines for spatial 

variables [28] [29]. In July 2006, Momani has published an article on the subject of the 

physical processes of acoustic waves through a gas-filled pipe, which is one of the first works 

in the fractional Burgers equation. Also, this equation is shock waves or a class of physical 

flows and the evolution of the scaled volume effect of gravity [30]. Furthermore, in [31], 

solved by using a A hybrid scheme a time fractional inverse parabolic problem were solved. 

 This article is organized into four sections. In section 2, a description of the extended cubic 

B-splines functions and procedure for implementation of the present method is illustrated 

. Also, we obtain numerical solutions for these problems. In section 3, we prove the 

convergence of our method. Also, we calculate the order of the method. In section 4, we 

consider two examples and solve them by finite difference method (FDM) and extended cubic 

B-splines collocation method (EXCBSM), cubic B-splines method (CBSM), trigonometric 

cubic B-spline method (TCBSM) and radial basis function method (RBFM). The conclusion 

of the work is shown in Section 5.  

 

2  Description of the EXCBS functions 

 In this section, we define the basic function and discretization of problem 4, for this 

purpose, we have used the EXCBS that defined the interval [   ], as [32]  
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 that    . In this definition, we introduce a uniformly distributed set of nodes as              
             over the spatial domain [   ], that the step length is          , for 

           . Also, for using these bases we should extend the set of nodal points 

to               , and                   [32]. 

In addition, the derivatives of   ( ) at the nodes   ’sareobtainedasthefollowingformulas 
[32]  
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Definition 1.  The Caputo fractional derivatives of order   concerning time  , is defined as 

[33]:  
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   Where   
 

 
 and   

 

 
 are the step size in   and   axes respectively. We assume the 

discretization of the time-fractional derivative as follows [34]:  
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       and        for          , and          , respectively. Also,  
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 First, for applying the proposed method (EXCBSM), we expressing   (   ) and   (   ), as  
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   (   )  ∑     
      ( )  ( )           (   )  ∑     

      ( )  ( )  (13) 

 

 We know that    and    are unknown time-dependent quantities which must be 

determined. Thus, by using conditions (4)-(7), we approximate solutions to the boundary 

value problem. For this purpose by extended cubic B-spline functions and their derivatives in 

(  ), and substituting (  ) into ( ) at the points     , we have  
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  [     ]       [     ]       [     ]      
 

 With solving (  ) by the Tikhonov regularization method, the coefficients    and    are 

obtained and with these coefficients, we can obtain the approximation solutions.  
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 By using condition (5) the initial vectors    and    are calculated. Also,  the following 

expressions the boundary and over specified conditions such as (6) and (7) by the following 

expressions are found.  

 

   (   )        
      

        
    ( )  

 

  (   )        
      

        
    ( )  

 

  (    )        
      

        
    (  )                  

 

  (    )        
      

        
    (  )                  

 

  (    )        
      

        
    ( )  

 

  (    )        
      

        
    ( )  

 or  

          (22) 

 

 where the matrix of singular and ill-posed    is equal with   and  

 

    [   
    

    
        

     
    

    
        

 ]   
   [  ( )   (  )   (  )     (  )   ( )   ( )   (  )   (  )     (  )   ( )]

   
 To solve and obtain the solution of the linear algebraic equations (20) and (22) and then to 

estimate of    we can use the Tikhonov regularization method as [35] 
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 If the order of the Tikhonov regularization method is one or two, thus the matrix  ( ), for       

       and    (   ) is given by  
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 Therefore, by using the generalized cross-validation (GCV) scheme we determine a suitable 

value of  , [36] [37] [38] . 

 

 The Tikhonov regularized solutions of the systems (20) and (22) are given by  
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3  Convergence analysis 

 

 In this section, we have proved the convergence and calculated the order of the method. For 

this purpose, we prove three theorems.   

Theorem 1. The collocation approximations   (    ) and   (    ) for the solutions   (    ) 

and   (    ) of the inverse problem ( )  (  ) satisfy the following error estimate  

  (  (    )   (    )   (    )   (    ))         (25) 

 

 for sufficiently small   (i.e. for sufficiently large  ) where   is a positive constant.   

Proof.  Let   (   ) and   (   ) be the exact solutions to the problem (4) with the boundary 

conditions, initial conditions, over specific conditions, and also  
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 Similar results can be obtained for   
   ̂ 

 , i.e.  
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 (      ( ( ))   ( ))               

   (35) 

 where  

     (      ( ( ))   ( ))          
 

 Now, we compute  (  (    )   (    )   (    )   (    ))    as the following  

 

  (  (    )   (    )   (    )   (    ))       (    ) 
  (    )       (    )   (    )       (    )   ̂ (    )      ̂ (    ) 
  (    )       (    )   ̂ (    )      ̂ (    )   (    )     
 such that   (    )   ̂ (    )  ∑     

    (  
   ̂ 

 )  ( )  
 and  

    (     )   ̂ (     )     
        

    
   ̂ 

   ∑     
       (  )       

   
 and  

   (    )   ̂ (    )  ∑     
    (  

   ̂ 
 )  ( )  

 thus  

    (     )   ̂ (     )     
        

    
   ̂ 

   ∑     
       (  )       

   
 

 By using the values of   (  )’sgiveninSection2, one can easily see that  

 

 ∑     
       (  )  

 

 
              

 therefore  

    (     )   ̂ (     )    
 

 
   

     (     )   ̂ (     )    


 

 
   

   (36) 
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 So, according to (25) and (36), we obtain  

 

  (  (    )    (    )   (    )    (    ))         
  

 

 
   

  
 

 
   

  

 since   (   ) then       then  

 

  (  (    )    (    )   (    )    (    ))         
  

 

 
   

  


 

 
   

       
  

 

 
   

    (     
 

 
  ), 

 Setting              
 

 
  , 

 thus  

  (  (    )    (    )   (    )    (    ))                              
  

 In addition, we calculate the time discretization process of Eq. (19). For this purpose, we 

discretize the system of (4) in the time variable  

 

   
   (     )  

 

 (   )
∫  

  

 

  (    )

  
(    )     

 

 (   )
∑   

   ∫  
  

(   ) 
[
   

 
    

   

 
  ( )](    )     

 

 (   )
∑   

    [
   

 
    

   

  
 

 (  )][(     )    (   )   ] 
    

   
 

   

 (   )
∑   

   (   
 
    

   )((     )    

(   )   ) 
 

 (   )
∑   

   ((     )    (   )   ) (    )  (37) 

 

 

 Theorem 2.  Let   (   ) and   (   ) be the solutions of the initial boundary value problem 

(4)-(7). Also, suppose that   (    ) and   (    ) are the collocation approximation to the 

solutions   (    )  and   (    )  after the temporal discretization stage. Then the error 

estimate of the discrete scheme is given by  

  (  (    )    (    )   (    )    (    ))     (       )  
 where   is some finite constant.   

Proof.  The time discretization process (19) that we use to discretize the system (4)-(7) in the 

time variable has one-order convergence. So, according to Theorem 3, we have  

  (  (    )    (    )   (    )    (    ))     (       )  
 where   is some finite constant. Thus the order of convergence of our process is  (     
  )           
 

4  Numerical examples 

 In real world applications, there are many components that affect data quality, 

such as data source, the sampling period and how the information is collected. Some studies 

estimate that even in controlled environments there are at least 5% of errors in a data set, we 

named of nosey data. In many of works, researchers are using this technique 

 for cleaning a data set. We distinguish the noisy data two types of noise, in predictive 

attributes and in the target attribute. In this work we using data noisy for nearest of data to 

exact solution. We set a arbitrary little number near zero   
 

  
 for my examples. 

In this section, we consider two examples to show the utility of the FDM in solving the 

inverse system of Burgers equations. For this purpose, we obtain the solution of the linear 

algebraic equations by applying the extended cubic B-splines collocation method 
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(EXCBSM). Also, we have compared all of the examples with other methods such as the 

extended cubic B-splines collocation method (EXCBSM), CBSM, TCBSM, and 

RBFM. Finally, we have shown in Tables 1 and 2 the comparison between exact and 

numerical solutions of   (   ) and   (   ) in         in which        and       . 

Example 1.   Consider the problem (4)–(6) with      
 

  
, and  

   (   )      (   )           
  (   )       (   )      (   )       (   )           
  (   )        (   )     (   )        (   )          

 the exact solution is   (   )    (   )        (   )  , and  

 

  (   )    
   (   )    

 (   )
           (   )         (   )  

 (   )    
   (   )    

 (   )
           (   )         (   )  

 

First, for applying the proposed method (EXCBSM), we expressing   (   ) and   (   ), as  

 

   (   )  ∑     
      ( )  ( )           (   )  ∑     

      ( )  ( )   
 

Then we approximate solutions of the boundary value problem. we extended cubic B-spline 

functions and their derivatives in (  ), and substituting (  ) into my example, and by using 

the Caputo derivative formulation we discretize the time-fractional derivative. 

In addition, we explain the proposed method in equation 19 and 20 and solve  the linear 

algebraic equations (20), (22) and generalized cross-validation (GCV) scheme we solve the 

problem. In Table 1, and Table 2, we have shown the comparison between exact and 

numerical solutions of   (   ) and   (   ) respectively at     with noisy data as         

and        and             . 

 

Table  1:  Approximate result of   (   ) for Example 4 with noisy data as         

   time Exact EXCBSM CBSM TCBSM RBFM 

  r   ( )     

                                                   

                                                  

                                                  

                                                  

                                                  

                                                  

                                                  

                                                  

                                                  

                                                

  RMS                                                 

 

  The approximation of error for Example 4 with EXCBSM at    ( )    
 ( )  and    ( )  

  
 ( )  is shown in Figure 4. 
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  Table  2:  Approximate result of   (   ) for Example 4. 

 time Exact EXCBSM CBSM TCBSM RBFM   

  r   ( )       

                                                   

                                                  

                                                  

                                                  

                                                  

                                                  

                                                  

                                                  

                                                  

                                                

  RMS                                                 

 

   

              

             

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1: Comparison between the exact and numerical solutions   (   ) and   (   ) using 

the EXCBSM. 

                

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2: Diagrams of error for Example 4 by using the EXCBSM 
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Example 2:  Consider the problem (4)–(6) with the exact solution  

   (   )    (   )  
  

     
  

 where the terms  (   ) and  (   ) are  

  (   )    
    

(     ) (   )
   

       

(     ) 
 

     

(     ) 
  

 (   )    
    

(     ) (   )
   

       

(     ) 
 

     

(     ) 
  

 and the initial conditions are  

 

   (   )                      (   )     
 

 with the following boundary conditions  

   (   )  
  

     
                     (   )  

  

     
                              

  (   )  
  

     
                    (   )  

  

     
                             

 in which   
 

  
.  In Tables 3, and 4, we have shown the comparison between exact and 

numerical solutions of   (   ) and   (   ) at    ,        and      . Furthermore,  to 

clarify the accuracy of the present method, the corresponding graphical illustrations are 

presented in Figure 3.    

 

Table  3: Approximate result of   (   ) for Example 2 

 time Exact EXCBSM CBSM TCBSM RBFM   

  r   ( )      

                                                   

                                                  

                                                  

                                                  

                                                  

                                                  

                                                  

                                                  

                                                  

                                                

  RMS                                                 
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Table  4: Approximate result of   (   ) for Example 2 

  time Exact EXCBSM CBSM TCBSM RBFM   

  r   ( )     

                                                   

                                                  

                                                  

                                                  

                                                  

                                                  

                                                  

                                                  

                                                  

                                                

  RMS                                                 

 

              

 

 

 

 

 

  

 

 

  

 

 

 

 

Figure  3: Comparison between the exact and numerical solutions   (   ) and   (   ) using 

the EXCBSM. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

               Figure  4: Diagrams of error for Example 2 by using the EXCBSM. 
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5  Conclusion 

 It is a fact that the calculated solutions of the time-fractional inverse problem are generally 

complicated. Hence mathematicians often attempt to achieve approximate solutions. Some of 

the most efficient and suitable methods of solving this equation are the 

FDM, EXCBSM, CBSM, TCBSM, and RBFM. In this work, we present a numerical method 

to approximate the ISB with the time-fractional. For this purpose, we have used the 

EXCBSM. These techniques do not need to simplify the equation and do not require extra 

effort to deal with the nonlinear terms, which are the advantages of this study in comparison 

to the previous methods. First, for applying the proposed method, we extended the cubic B-

spline functions. Also, in this study, we proved the convergence of our method and calculated 

the order of the method. A comparison of the approximation result for Examples 4 and 2 with 

EXCBS, CBS, TCBS, and RBF, have been demonstrated in Tables 1-4. The approximation of 

error for examples with extended cubic B-splines collocation method (EXCBSM) at    ( )  
  

 ( )  and    ( )    
 ( )  are shown in Figures 1 and 2.  
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