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Abstract

Applying the finite difference method for the time discretization. We present a
numerical method to approximate the inverse system of Burgers equations (ISBE)
with the time-fractional. By using the finite difference formula and extended cubic
B-splines collocation method (EXCBSM), we determine the approximated solution
of this inverse system problem. The convergence analysis is investigated and the
order of convergence is obtained. The advantage of this study is comparing it with
the other method such as the cubic B-spline collocation method. Also, to clarify
the presented method, figures and comparisons of the approximate solutions with the
exact value have been presented. Finally, the diagrams of errors for our methods are
shown in the figures.

Keywords: System of time fractional Burgers equations, Inverse problems, Noisy
data, Finite difference method, Cubic B-splines collocation method, Time-fractional
derivatives, Convergence analysis

1 Introduction

In the world of mathematical problems, there exist models of problems that cannot be
answered directly, such as reconstruction and identification problems. These kinds of
problems, which have a description of the parameters that we cannot directly
observe, are called inverse problems (IPs). In this problem, aside from the main function, the
unknown functions include some of the functions in formulating the direct problem, that
nominated the solution to the inverse problem. These equations have been extensively
discussed in a wide spectrum of applications in mathematics and physics, such as the Burgers’
equation, which is a fundamental partial differential equation (PDE) that appears in various
branches of engineering and physics [1], such as heat equation [2] [3] [4] fluid mechanics,
nonlinear acoustics, gas dynamics, modeling of turbulence [5], boundary layer
behavior, shock wave formation [6], mass transport, electrohydrodynamic (EMHD) model in
plasma physics [7], parabolic equation [8] and traffic flow. This equation describes the
integrated process of convection-diffusion in physics [9]. This equation was first introduced
by Bateman in 1915 [10] and later developed by Burgers in 1948 [11]. The study of the
motion of particles in a fluid goes back to Brown. If the effect of gravity upon the particles is
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considered, these particles will be heavier than the surrounding fluid, and the resulting motion
is called sedimentation. In the dilute limit, in which the volume fraction of the particles is
much less than one, the velocity resembles very closely the famous Burgers equation of one-
dimensional. The time-dependent evolution of particle motion is predicted by the Burgers
equation. Also, the one-dimensional coupled Burgers’ equation can be taken as a simple
model of sedimentation and evolution of scaled volume concentrations of two kinds of
particles in fluid suspensions and colloids under the effect of gravity [12]. The extended
model of coupled Burgers’ equation was first derived by Esipov to study the model of
polydispersive sedimentation [13]. To solve the coupled system of Burgers’ equations with
time-fractional derivative numerically, various approaches have been studied by many authors
[14]. Space and time-fractional Burgers’ differential equation was first treated by Momani
[1]. The coupled system of time-fractional derivatives of non-homogeneous Burgers’
equations is solved by the fractional homotopy analysis transform method [15], and the 1D
time-fractional coupled Burger equation is solved analytically via fractional complex
transform [16]. In the polydispersive case, Esipove [13], introduced a system of the coupled
Burgers equations. The coupled Burgers equations predict an interesting phenomenon, which
was termed phase shifts. This phenomenon is observable in a bidisperse system. The particle
size distribution function evolves in an interesting way near the interface. In the Episov
model, he applied the continuity equation which describes the conservation of species with
concentration c(s,r) and the particle flux J(x. t). In the case of very small particles, they
experience Brownian motion at this equation [8]

Z+div J=0, that J=V(c)c—D(c)Ve.

The D(c¢) distribution and the V(c) velocity is known from Brownian motion. It was
recognized that Eq. 1 with c-dependent velocity resembles very closely the famous Burgers
equation of one-dimensional compressible flow.

Let 9,(s,r), and 9, (s, r) be the concentrations of particles with a bimodal distribution of
particle sizes, both obeying continuity equations. In simplified form, at small concentrations,
the two coupled Burgers equations are introduced [7] for s, € [0,1],

091 (s,r)  0%91(s,7)

_ 39:(sr) 3(91(s,r)92(s,1))
S T ez + 29,(s, 1) o5 Py + F(s,7),
and
aazais,r) 92 192(51') +20,(s, )6192(57') a(al(s,;)jz(s,r)) +G(s,7).

In equations (2) and (3) s,r are spatlal coordinates and temporal coordinates
respectlvely — and are unsteady terms, 191 and 192 are the nonlinear convection
t ds2
term.

It is well known that the integer-order differential operators and the integer-order integral
operators are local but the fractional-order differential operators and the fractional-order
integral operators are nonlocal. To solve the coupled system of Burgers’ equations with time-
fractional derivative numerically, various approaches have been studied by many authors [14]
[17] [18] [19]. Space and time-fractional Burgers’ differential equation was first treated by
Momani [20]. The coupled system of time-fractional derivatives of non-homogeneous
Burgers’ equations is solved by the fractional homotopy analysis transform method [15], at
the Gegenbauer wavelets are used to present two numerical methods for solving the coupled
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system of Burgers’ equations with a time-fractional derivative [14]. Consider one dimensional
coupled nonlinear Burgers’ time fractional Caputo derivatives equation in the generalized
form [14], with s,r € [0,1]and 0 < a,B < 1 as follow

0“9, (s.1) _ 62191(?") +2l91(s,r)6l91(8,r) _8(191(5,|’)192(S,r))+ F(S,I’),
ara as 88 as

(4)
0’9, (s.r) _ 9 (s.1) +232(S’r)892(31r) 6(91(s,r)92(s,r))+G(S’r).

or? s s s
Also, the initial conditions and the Dirichlet boundary conditions for s € (0,1) and r €
[0, T], respectively are

191(5' 0) = fl(s)i 192(5» 0) = fZ(s)l (5)

191((); T) = pl(r)l 792(0; T) = D2 (T'),l91(1,7") = Ch(r)' 192(1,7") =42 (7'), (6)

over specified condition, for a € (0,1),and r € [0,T] is
191 (a, T') =w (T'), 192(61, T') =Wy (T), (7)

which T represents the final time. Furthermore, the functions 9,(s,r) and 9,(s,r) and the
boundary conditions p,(r), p,(r) are unknown and must be determined from over-specified
data. One of the best subjects in many branches of engineering and science is inverse
problems. In 1911, the first examples of inverse problems have been published by German
mathematician Hermann Weyl; see [21]. Inverse problems are applied in remote
sensing, geophysics, the heat capacity of solids, natural language processing, heat
transfer, signal processing, oceanography, thermal conductivity, and many other fields; see
[22] [23] [24] [25].

The fractional differential equations are employed in mathematics such as dynamical systems
and control systems; in physics and engineering, for example, electrochemistry, physical
phenomena, and fluid mechanics; and in economics, biological population models and social
science such as food supplements; see [26] [27].

In this work, we solve one system of time-fractional inverse parabolic problems by using
finite difference formula for time discretization and the extended cubic B-splines for spatial
variables [28] [29]. In July 2006, Momani has published an article on the subject of the
physical processes of acoustic waves through a gas-filled pipe, which is one of the first works
in the fractional Burgers equation. Also, this equation is shock waves or a class of physical
flows and the evolution of the scaled volume effect of gravity [30]. Furthermore, in [31],
solved by using a A hybrid scheme a time fractional inverse parabolic problem were solved.
This article is organized into four sections. In section 2, a description of the extended cubic
B-splines functions and procedure for implementation of the present method is illustrated
. Also, we obtain numerical solutions for these problems. In section 3, we prove the
convergence of our method. Also, we calculate the order of the method. In section 4, we
consider two examples and solve them by finite difference method (FDM) and extended cubic
B-splines collocation method (EXCBSM), cubic B-splines method (CBSM), trigonometric
cubic B-spline method (TCBSM) and radial basis function method (RBFM). The conclusion
of the work is shown in Section 5.

and

2 Description of the EXCBS functions
In this section, we define the basic function and discretization of problem 4, for this
purpose, we have used the EXCBS that defined the interval [0,1], as [32]

2661



Erfanian et al. Iragi Journal of Science, 2024, Vol. 65, No. 5, pp: 2659-2678

4h(1_ ﬂ)(S - Si_z)3 + 31(3 - Si_2)4, S€ [Si-z J Si-l]v

(4— A)h* +120°(s—s,,) +6h*(2+ A)(s =5, )’

_12h(s_si—l)3 _3/1(5_Si71)41 S E[Si—l’si]!
EO)= 5 3 : :
24h* | (4—-2)h* +12h%(s,,, —s) +6h*(2+ A)(S;,, = S)
~12h(s,,, —s)* —3A(s., —5)", se[s;, Sl
4h(1-A)(s.,, - 5)3 +3A(s,,, — S)4, se[si1 S 2],
0, otherwise, ®
that 4 € R. In this definition, we introduce a uniformly distributed set of nodes as 0=

Sg < §1 < -+ < sy = 1 over the spatial domain [0,1], that the step length is h = s;,; — s;, for
i=01,..,N—1. Also, for using these bases we should extend the set of nodal points
t0s_3<s_, <S_; <Sg,and sy < sSyy1 < Sytz < Sy+z [32].

In addition, the derivatives of E;(s) at the nodes s;’s are obtained as the following formulas
[32]

8+1

—_—, if m=i,
12

E_(s,) = ;/1 if Im—i|=1, 9)

0, iflm-if2,
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0, if m=i,
i, if m=i-1,
2h
E.(s)= 1 (10)
e if m=i+1,
2h
0, if Im—i|>2,

_2+l

, if m=i,

2+ A4

En(s)= PTER

if [m—i|=1, (11)

0, iflm-if2.

Definition 1. The Caputo fractional derivatives of order a concerning time t, is defined as
[33]:

r A
#I (r—xy et CAEN g g 1cq<y,
'A-a)o OX
0“4 (s,r) _
or?
—8/1191(8' " a=AeN
ort '

Where h = % and T = % are the step size in s and r axes respectively. We assume the
discretization of the time-fractional derivative as follows [34]:

DED (St Tierr) = =gy 01T = 01 + Bisa af On 7 = 9377 )) (12)

that 9, is a numerical approximation of 9;(s;, 1), and agf = (k + 1)1~% — (k)*~* with
s;=ihandr,=ktfori=0,1,..,N,and k = 0,1, ..., M, respectively. Also,

3%94(s,1)
a _ 1(s,
DFY.(s,1r) = P
k k k
D1y =201 01 ]

h2 !

62
ﬁffﬁ (SiyTk+1) =

k+1 k+1
191i+1 _1911'—1

a
£ﬁ1(5i:7’k+1) =~ 2h

First, for applying the proposed method (EXCBSM), we expressing 9, (s,r) and 9, (s, ), as
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vi(s,7) = L0 GME(),  vals,r) = XiET Di(r)E(s). (13)

We know that C; and D; are unknown time-dependent quantities which must be
determined. Thus, by using conditions (4)-(7), we approximate solutions to the boundary
value problem. For this purpose by extended cubic B-spline functions and their derivatives in
(11), and substituting (13) into (4) at the points s = s,,,, we have

(e1Cm—1 t exC +e1C 1) = {(eaCip—1 + e5Cp + e4Cp41) +
2e3(e1Cn—1 + €20 + €1C0n41)(— Gy + Cpq) — €3(e1Cp—1 + €20 + e1Cy1) (—
Dpy1+ Diq) —es(e1Di—q + €30 + 1Dy 1) (—Crpgq + Cm1)} + F(Sip, 1), (14)

and
(31D51_1 + ezDrﬁ + 310514.1) = {(e4Di—1 + 5Dy + €4Dpn 1) +
2e3(e1Dp—q + €D + €Dy 1) (—Diypi1 + Dip—y) — e3(e1C—q + €0 +

e1Cm+1)(—Dmy1 + Dip—1) — e3(e1Dy—y + €D + €101y 1) (—Cii1 + Cpm1)} + G (S, 7),  (15)
where

e_4—)L e_8+)L 1 242
17 547 P27 427 T3 7T o’ T4 T pp2)
242 a _ 0%Cy(r) B __ 0%Dpy (1)
es = ——, CE = e D}, = —F (16)

Using the Caputo derivative formulation for C,‘fl,,Dﬁ we discretize the time-fractional

m?

derivative as (12) at r = r,.,. After simplifying, we have

) (e Gty + izcr’fl“ + %Cr’flﬁ); ya{(e467’7‘1_1k+ esCh, + e4CJ;+13 +
ZiS(elcm—kl + eZCrlfl + elka+1)( - Cm+1 + im—l) - i3 (elcmzl + eZCfv(l + elcm+1)( -
Dm+1 + Dm—l) - 83(81Dm_1 + eZDrlfl + ele+1)(_Cm+1 + Cm—l)} + Yai(slm' 7”k+12(‘|'_ (1 -
af)(e1C—q + e;Cry + e1Cyy) + af 91 (s, 0) + §(=_11 (af — af+1)(elcm_]1 +e,Cp |+

i
e1Cot) (17)
and
(e Dyt + e, D + ey DEEY) = yp{(eaDfi—q + esDyy + e4Dyf i) +
2i3(elDTI$lI:1 + e, D) + e’%Drlgl+1)( — DSy +k Dk_) ; e3 (61D§—1 + e, DF + e, DE L D(—
Crpr + Cro1) — e3(e1Ch—q + €20 + 1 1) (=Diiq + D)} + ¥ G (S Tiewn) + (1 —
_ k—j k—j
at)(erD—y + €Dk + e Dl 1) + a9, (5, 0) + TI21 (af —al, (eDi + e +

e D). (18)
Where

Yo =T(Q2—a)t%,,y5 =T(2 - )P
For simplifying, we set
XK = val{(esCl 1 + esCl 4+ e,CK L) + 2,e3(e,CF 1 + e,CK + e, Cl ) (—
Cri1 4+ CE_1) —es(eCloy +erCl +e.Cry)(— DYyt + Dl ) — es(er Dl 4 + e,D +
e1DX ) (—Cryy + CE_ DY+ VaF (SmyTir1) + (L — af) (e CR 1 + €2CK + e, Cle 1) +

_ k—j k—j k—j
afd; (sm, 0) + 221 (af — afy ) (erCr + €2Cr ) + €.C ),

and

2664



Erfanian et al. Iragi Journal of Science, 2024, Vol. 65, No. 5, pp: 2659-2678

Yy = yg{(esDy—1 + esDfy, + €4 D5y 1) + 2e3(e1 Dy + .00 +
1D 1) (= Diypq + Dhy_1) — es(e1Dfyy + €D + €D ) (= Chiq + Cimy) —
es(e1Cl_y +e,CK + e Cl L) (=Dl +DE_ D3+ YeG (SmyTis1) + (1 — af)(31Drl;(1—1 +
e, D + e, Dk 1) + al 9, (5, 0) + XK1 (ajﬁ - af+1)(81DrI;—_jl +e,DT 4 e, DF

m+1/"

Thus,
(e, CEMY + ,Cl™ + e, CEAY) = XK,

19
(e:DEMY + e, DI + e, DEL) = YE, (19)

But, to obtain a unique solution of the system of (19), consisting of 2(N + 1) equations in
2(N + 3) unknown coefficients, we need four additional constraints. Thus, by imposing the
boundary conditions (6) and the specified condition (7), so, fors, =zh =a,,1<z<N —
1, we have

91(a, Te1) = vi(@,Ties1) = G0 + e,CF4 + e, O = wy(ern),

V1(sn, Tka1) = V1(Sns Ties1) = 31C1§t% + eZC,’§+1 + 91C1]§I% = q1(Tes1),
U2(a, Ter1) = v2(a, Tg41) = 31051-11 +e,Df + 31D§:11 = wy(Tk+1),
02 (S The+1) = V2(SnTier1) = e1DNET + €D + e DRET = q2(Tes1),

or
AX = B, (20)
where
X = [CKL, cktt, ek, ., cktt, DR Dty DR+ DEYLT,
B =Xk, Xk xk XK L YELYE YR YE LT,
where

X’f1 = w1 (Tk+1), X§+1 = q1(Tk+1)) Y’fl = W(Tk41)) Yzl\(/+1 = q2(Tk+1),
and the matrix of A,y 4+3)x2(v+3) IS
M | 0

A=y | ou (21)

The matrix O is a zero matrix, and the matrix of My, 3)xn+3) is defined as follows

0 0 e e e 0 0
e, e, e 0 0 0 O 0
0 e e e 0 0 O 0
M == )
0O 0 0 O 0 e e e
0O 0 0 O 0 e e e

that
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M[].,Z+ 1] = e1nM[1,Z+2] = ez,,M[l,Z+3] = eq.

With solving (20) by the Tikhonov regularization method, the coefficients C; and D; are
obtained and with these coefficients, we can obtain the approximation solutions.

pl(rk) = 6’1Cfl + EZC(I)C + elcf, k= O, 1,

ey

pz(rk) = ellel + ezD(])( + elDi{,

k=0,1,..,
vi(s;p %) = ey +eCf +eCly, k=0,1,.., j=0,1,..,,N,
Vvo(sj %) = ;D + e,Df +eDfy,  k=0,1,..., j=01,...,,N.

By using condition (5) the initial vectors C° and D° are calculated. Also, the following

expressions the boundary and over specified conditions such as (6) and (7) by the following
expressions are found.

v1(a,0) = e;C2_; + e,C2 + e, CLrqy = wyi(0),
Vz(a, O) = eng_l + ezDg + 81D3+1 = Wz(O),

vi(s;,0) = e.C)q +e,C0 + e Chy = fi(s;),  ,0<j <N,

vy(s;,0) = eiDY 1 + D) + e Dy = fos5),  LO<j<N,

v1(sy, 0) = 9161(\)1—1 + ‘3261(\)1 + 9161(\)1+1 = q,(0),

Vo(sy,0) = e;DY_; + e;,Dy + e: Dy 14 = q(0),
or
A*X0 = B*,

(22)
where the matrix of singular and ill-posed A* is equal with A and

x°=1c%,cd,co, .. co,,, D%, D3 DY, .., DY 1",
B* = [w1(0), f1(S0), f1(51), «vs fi(Sn), q1(0), @2(0), f2(S0), f2(51), ---s f2(Sw), G2 (0)]".

To solve and obtain the solution of the linear algebraic equations (20) and (22) and then to
estimate of X° we can use the Tikhonov regularization method as [35]

FEX)=IAX—=BIl3 +0 Il R®,X, 13,
F,(X) =IAX°—B* 15 +o I R®, X% 5.

If the order of the Tikhonov regularization method is one or two, thus the matrix R®, for
z=1,2,and M = 2(N + 3) is given by
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e RM-Dx(),

e RM-2x(M)

( R
.f |

2 | & : : : : :
K 0 0 1 -2 1 0
0 O 0 w1 -2 1 /
Therefore, by using the generalized cross-validation (GCV) scheme we determine a suitable
value of o, [36] [37] [38] .
The Tikhonov regularized solutions of the systems (20) and (22) are given by
X, =[AT A+ c(RO)T,R@714TB, (23)
X9 =[AT A+ a(R®)T,R®|714TB", (24)
3 Convergence analysis
In this section, we have proved the convergence and calculated the order of the method. For
this purpose, we prove three theorems.

Theorem 1. The collocation approximations v, (s, 1) and v, (s, 1) for the solutions 9, (s, 1)
and 9, (s, ry,) of the inverse problem (4) — (47) satisfy the following error estimate

I @15, 1) = v (5,71), 92(5,73) — v2(5, 7)) llew < ph?, (25)
for sufficiently small h (i.e. for sufficiently large N) where u is a positive constant.

Proof. Let9,(s,r) and 9,(s,r) be the exact solutions to the problem (4) with the boundary
conditions, initial conditions, over specific conditions, and also

vi(s,m) = T G(ME(S), va(s,m) = T Di(ME(D),
be the extended B-spline collocation approximations to 9; (s, r) and 9,(s,r). Due to round-

off errors in computations, we assume that v, (s, ) and 7, (s, r) be the computed splines for
v1(s,r) and v, (s, 1) so that

1(s,7) = 22 GME(s), Va(s,m) = T2 Di(r)E;(s).

To estimate the errors
1 9:(5,7) = v1i(5,7) oo, 19205, 7) = v2(5,7) lloo,

we must estimate the errors

I 91(5,7) = V1(5,7) oo, N V105, 7) = v1(5,7) lloo,
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and
Il 95(5,7) = V2(5,7) ooy N1 0205, 7) = V2 (S, 7) Nl

from (20) for ¥; and v, we have

AX =B,
where
v ~Ak+1 Ak+1 Ak+1 Ak+1 Ak+1 Ak+1 Ak+1 Ak+171T
X =[C5Co, CF o NI VT, 06, 077, o Ol
5 _ rvk Tk Ok Tk vk k Tk Ok Gk vk 1T
B = [X*,, X5, XT, oo, XN, XNa, Yo, Y8, Y5, o, YR, YNaa s
with

XIﬁ1 = wy (), Xz’fr+1 = q1(1), Y]—c1 = wy (%), YII\(I+1 = q2(1%)-

By subtracting (20) from (26), we have

AX—-X)=(B-B),
where

B—B=[0,Xk—-Xkxk_Xk . Xk_—XKo0,0YK—YkYE-YE . YE-YE O]

and forevery 0 <m < N,

an =Ya [Vl” (Sm: rk) + 2v, (Sm' Tk)V1' (Smr Tk) -V (Smr rk)VZ (Sm; rk))s ]
k—1

Qv (5, 0) + (1= @)y (5o 7) + ) (@ = @4y )B1 (5 Ty,

j=1
and
X?n =Ya [ﬁil (Sm' rk) + 21;1 (Sm' Tk)vll(sm' rk) - 191 (Sm' rk)ﬁz (Sm' Tk))x ]
k-1
801 (5, 0) + (1 = )4 (i) + ) (@F = @)1 (o),
j=1
and
leil = VB [VHZ(Sm» rk) + 2V2 (Sm' rk)dlz (Sm' Tk) - (Vl (Sm' Tk)VZ (Sm; rk))s ]
k—1
ﬁ19 0 1— B B _ B ]
+ a 2(Sm, 0) + ( a; Wa(Sm, k) + (aj aj+1)V2 (Smo T'k—])'
=1
and
leil =B [V’IZ (Sm» rk) + 27, (Sm' rk)vlz(sm' rk) -1 (Sm; rk)ﬁz (Sm' Tk))x ] +
05 (Sm, 0) + (1 — a0, (s 1) + 2621 (@f = af, )0, (s mie)).
So

X5 = XRl = el (V1 (Sme ) — V1 (S 1)) = 2V1 (S TV 1 (S Tie) +
201 (S i) V"1 (Smo i) = (V1 (Sm M) V2 (S Tie))s + (D1(Sim Tie) V2 (Smo Ti))s] +
af (V1 (Sm 0) = V1 (S, 0)) + (1 = @) (V1 (S 7i0) = V1. (SmuTi)) + Zh2t (af —
aja+1)(V1 SmoTie—j) = V1 (Sms Te— ) |-
By using the Cauchy-Schwarz inequality, we have
X5 = Xl < Vel V"1 (Smo i) = 7" 1(Smy i) | + [af | (V1 (Sm) 0) —
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01(Sm O + |1 = af [|[v1(Smy i) = P1(Smy )| + BS2L 1@ = @[ |vi (5o Tiemy) =
1ljl(s‘mr rk—j)l + Va(l)r

that

O )
| - 2Vl (Sm' rk)V,1 (SmJ rk) + 21’)1 (Sm'rk)vll(smrrk) - (Vl (Smrrk)vz (Sm' rk))x +
(ﬁl (Smr rk)ﬁZ (Smi rk))x |'

)=
[V (S 1) = V7 (S 7)) + (V1 (S TiIV2 (S ) — (01 (S 1) V2. (S i) 15| =
I[(V1 (S 1)) (V1 (S 1) + V2 (S 1)) — (V1 (S 1)) (V1 (S i) + V2 (S 1)) 15| =
I[(v1(Smo 1)) (V1 (S ) — V1(Sm i) + (VA (S 7)) (V2 (St Tie) — V2 (S 1)) +

(V1 (S0 1) = V1. (S 7)) (V1. (S i) + V2 (S 11D ]| = [[2(V1 (S 11)) (Va (S 7)) —
V1(5m 1)) + 1 (Sm D) V2 (S i) = Va(Sm ) = (Va(Sim, i) — V1 (Smy i) +
(V2 (S 1)) (V1 (S 1) = V1(Smi i) — (V2 (S Tie) = V2 (S0, 1)) (Vi (S Tie) —
1l)l(s‘mr Tk))]sl:

then, after simplifying, we have

X5 = Xl < Vel (V"1 (Smo i) = vnl(;f"i' 1) + [ag || (v1(Sm, 0) —

D1(Sm O + 11 = af Vi (Sm Tie) = D1(Sim i) | + 221 14" — @[ [vi(Sim, i) —
D1(Sims Tk= D + Va2V 1 (S T V1 (S Tie) = V1. (S TiD | + 2]va (S T V"1 (S Ti) —
Vi (STl + V(S V2 (S Ti) = D2(Sims i) |+ V1 (S TV 2 (S i) =
Al A ! AT
Va(Sm il + 2[vi(Sm 1) = Vi(Smo i)V (oms i) = V4 (my i) | +

14 A / Al
V"2 (S T V1 (S i) = V1.(Smo i) |+ [V2 (S TV 1 (S 7)) = V1 (S i) | +

! AT ~n A I
V72 (S i) = V72 (S T VA (St i) = V1(Sm T |+ [V2 (S i) = V2 (S TV 1 (S i) —

V'1(Smr i) 1]-
By using the theorem (2.4.3.3) by Stoer and Bulirsch [39], we have

IXF, — XK | < Va(A2, Ly, ,h?) + (1 — af)Ao, Ly, ,h* + af Ao, Ly, ,h* +
(Ao, Lo, v h X721 1(af — aft )| + Ve ((2Mg, Ao, Lo, ,h*) + 2Myg, (A1, Lo, ,h*) +
My, (Ao, Lo, ,h*) + My, (A1, Ly, , h®) + 2(A, Ly, ,h*) (A4, Lg, , B®) + My, (Ao, Ly, ,h*) +
Mg, (A1, Ly, h*) + (A4, Ly, ,h*), (Ao, Lg, ,h*) + (Ao, Lo, , B*), (A1, Ly, , B*)).
After simplifying, we get

X5 — Xl < R2(Ya(Az2, Ly, ) + (1 = af)Ao, Ly, , h* + af Ao, Ly, , h* +
(Ao, Lo, , W) X521 (@) — afe )| + Ve ((2My, Ao, L, , h?) + 2My, (A1, Ly, , h?) +
M191 (AO' L192 , hz) + M191 (Alf L192 , hl) + 2h5 (AO' Lﬁl)()ll' L192) + M192 (/10' L191 , hz) +
Mg, (A1, Ly, ,hY) + h°(A4, Lg,), (Ao, L,) + h° (Ao, L), (A, L, ). (29)
We can rewrite (29) as follows

Xk, — Xk | < h2M,, (30)
where

M, =
(Ya(A2 Lo, ,) + (1 —af)Ag, Ly, ,h* + af Ao, Ly, ,h* + (Ao, Ly, , h*) Z?:]l |(af — afy)| +
Ya((2Myg, A, Ly, ,h?) + 2My (A1, Ly, , h*) + My, (A9, Ly, ,h*) + Mg, (A1, Lg, ,h") +
2h5 (/10' Lﬂl)(AL L192) + M192 (’10' L191 ’ hz) + M192 (11' L191 ’ hl) + hs(/’ll,ngz), (/10' L191) +
h® (Ao, Ly,), (A1, Lg,))) -
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Similar results can be obtained for Y — Y%, i.e
YK — YE| < h?M,.
Setting M = max{M,, M, }, we have
X5 — Xl <M, h?,
YK —YE| <M A2,
From (28), (32), and (33), it is deduced that

| B—B ll,<M A2

Since, the matrix A in (27) is an ill-posed matrix, from the Tikhonov regularized solution
(23), we get

X-X)=[AT A+ a(R@)T,R@|714T,(B - B).

Using the relation (34) and taking the infinity norm, we find

I X =X lo<ll (AT A+ (RO, RE)IAT |, I B—B llo, <
Il (AT A+ c(RO)T,R@)71AT ||, M, h? < M, h?,
where

M, =Il (AT A+ a(R@)T,R@)1AT ||, M.
Now, we compute || (9:(s, 1) — v1(S,1%), 92(s, 1) — v2(s, 1)) llw as the following

I (9105, 1) = vi(S, 1), 02(S, 1) — V2 (S, 1)) oo =N 91(5,7%) —
Vl(S,Tk) ”00 + |l 192(5' rk) - VZ(SlTk) ”00 <l 191(S'Tk) - l,)1(5' rk) "00 + |l 19l(srrk) -

191(517'k) loo + |l 192(5, Tk) —ﬁZ(S,Tk) lee + |l 1’)2(5’ rk) —ﬁz(s,rk) loo
such that v, (s, 1) — 9,(s, 1) = Xt

(= CHE(s),
and
Vi(sm 1) = D1(smerdl < _max (1€ = CER R [E(sm)], 0 <m <
N,
and
V(s 1) — Vo (s, 1%) = IiV=+—11 (le - Dik)Ei(S)'
thus
[Va(smi1i) = Va(smmidl < __max{IDF = DF}EX, |Ei(sm)l, 0 < m <
N.

By using the values of E;(s,,)’s given in Section 2, one can easily see that

N+1

Y |E(sm) <5, 0<m<N,
therefore

1S Tie) = V1.(Sm i) Moo < 2 M2, 11 V(S Tie) = V2 (S Ti) leo <
Myh?. (36)
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So, according to (25) and (36), we obtain

I (91(s, 1) — v1(S,7%), 92(5, 1) — Vo (5,7%)) lloo < 2AoLR* + £M1h2 +
2 M h?
since h € (0,1) then h* < h? then

I (B1(5,710) = va(5, 7). 92(5, 1) = v2(5,1)) lloo < 240Lh* + M 2 +
IMyh? < 240Lh% + ZMih? = h2(240L + ZMy)s
Setting u =2 AyL, +%M1,
thus

I (191(5, ) — v1(S,1%), 92(5, 1) — v (s, Tk)) o< u, h2. ]

In addition, we calculate the time discretization process of Eq. (19). For this purpose, we
discretize the system of (4) in the time variable

DES (s07h) = L [T B8 (g py-aqt =

r(1-a)-0 Jat
1 N _ 191’ !
D ’-l (G-1)r [— +0(0)](nt—t) %t = F(1 o =1 {[ +
0(n)][(n - 1+1)1 “— (- P = = o= 2= (ﬁll 910" 1)((n—j+1)1—“—
(=D + tomm Ter (= + D7 = (0= HITHOE). (37)

Theorem 2. Let 9;(s,r) and 9,(s,r) be the solutions of the initial boundary value problem
(4)-(7). Also, suppose that v, (s, 1) and v, (s, 1) are the collocation approximation to the
solutions 9,(s,1,) and 9,(s,r;) after the temporal discretization stage. Then the error
estimate of the discrete scheme is given by

I (191(5' Tk) - Vl(S, rk)lﬁZ(Sl Tk) — V2 (S' rk)) oo < U(Tz_a + hz))
where 7 is some finite constant.
Proof. The time discretization process (19) that we use to discretize the system (4)-(7) in the
time variable has one-order convergence. So, according to Theorem 3, we have

I (191(5' rk) - Vl(S, rk)'ﬁZ(S' rk) — V2 (S' rk)) loo < U(Tz_a + hz))
where 7 is some finite constant. Thus the order of convergence of our process is 0(t?~% +
h?). =

4 Numerical examples

In real world applications, there are many components that affect data quality,
such as data source, the sampling period and how the information is collected. Some studies
estimate that even in controlled environments there are at least 5% of errors in a data set, we
named of nosey data. In many of works, researchers are using this technique
for cleaning a data set. We distinguish the noisy data two types of noise, in predictive
attributes and in the target attribute. In this work we using data noisy for nearest of data to

. . f 1
exact solution. We set a arbitrary little number near zero a = " for my examples.

In this section, we consider two examples to show the utility of the FDM in solving the
inverse system of Burgers equations. For this purpose, we obtain the solution of the linear
algebraic equations by applying the extended cubic B-splines collocation method
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(EXCBSM). Also, we have compared all of the examples with other methods such as the
extended cubic B-splines collocation method (EXCBSM), CBSM, TCBSM, and
RBFM. Finally, we have shown in Tables 1 and 2 the comparison between exact and
numerical solutions of 9, (0,7) and 9,(0,r) in s = 0 inwhich @« = 0.75and 8 = 0.75.
Example 1. Consider the problem (4)—(6) with a = % and
91(5,0) =1,9,(5,0) =1,0<s <1,

91(a,7) =r3sin(e™®) +1,9,(a,7) =r3sin(e™) +1,0<r <T,

91 (L, r)y=r3sin(e ™) +1,9,(1,r) =rd3sin(e ) +1,0<r <T,
the exact solution is 9, (s, ) = 9,(s,r) = r3 sin(e™®) + 1, and

sin(e™%)r3-@

F(s,r) =6 rac r3e 25sin(e™%) — r3e Scos(e™),
sin(e™%)r3-8
G(s,7) =6 F((4——),8) + r3e 25sin(e™) — r3e~Scos(e™®).

First, for applying the proposed method (EXCBSM), we expressing 9, (s, r) and 9, (s, ), as
vi(s,m) = T GME(S),  va(s,m) = XIS Di(nE(s)

Then we approximate solutions of the boundary value problem. we extended cubic B-spline
functions and their derivatives in (11), and substituting (13) into my example, and by using
the Caputo derivative formulation we discretize the time-fractional derivative.

In addition, we explain the proposed method in equation 19 and 20 and solve the linear
algebraic equations (20), (22) and generalized cross-validation (GCV) scheme we solve the
problem. In Table 1, and Table 2, we have shown the comparison between exact and
numerical solutions of 9, (0,7) and 9, (0, ) respectively at s = 0 with noisy data as 0.00001
anda =0.75and B = 0.75.

Table 1: Approximate result of 9, (0, ) for Example 4 with noisy data as 0.00001

time Exact EXCBSM CBSM TCBSM RBFM

r p1(r)

0.1 1.000841 1.000872 1.000848 1.000869 1.000886
0.2 1.006731 1.006781 1.006753 1.006766 1.006938
0.3 1.022719 1.022764 1.022808 1.022778 1.023200
0.4 1.053854 1.054065 1.054086 1.054081 1.054700
0.5 1.105183 1.105697 1.105669 1.105713 1.106471
0.6 1.181757 1.182747 1.182642 1.182764 1.183546
0.7 1.288624 1.290307 1.290094 1.290326 1.290985
0.8 1.430833 1.433474 1.433115 1.433495 1.433835
0.9 1.613432 1.617352 1.616804 1.617377 1.617191
1 1.841470 1.847056 1.846270 1.847085 1.846166

RMS 2.0130 x 1073 1.7378 x 1073  2.0275x 1073 21184 x 1073

The approximation of error for Example 4 with EXCBSM at |p;(r) — pi(r)| and |p,(r) —
p5 ()| is shown in Figure 4.
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Table 2: Approximate result of 9,(0, r) for Example 4.

time Exact EXCBSM CBSM TCBSM RBFM
r p2(r)
0.1 1.000841 1.000934 1.000863 1.000889 1.001052
0.2 1.006731 1.006950 1.006884 1.006954 1.008030
0.3 1.022719 1.023398 1.023220 1.023392 1.026402
0.4 1.053854 1.055355 1.055020 1.055348 1.061484
0.5 1.105183 1.108016 1.107425 1.108009 1.118480
0.6 1.181757 1.186557 1.185561 1.186550 1.202446
0.7 1.288624 1.296151 1.294528 1.296145 1.318446
0.8 1.430833 1.441967 1.439393 1.441961 1.471242
0.9 1.613432 1.629154 1.625180 1.629149 1.665721
1 1.841470 1.862829 1.856870 1.862825 1.906655
RMS 8.1902x 1073 6.1446x 1073 8.1864 x 1073 2.8183 x 1072

p! 1(t) ~
oy
p;2(t) ~
gy

0.1 02 03 04 05 0.6 07 0.8 09 T 01 02 03 04 05 06 07 08 09
t t
| * Numerical solution O  Exact solutionl I * Numerical solution O Exact solutionl

Figure 1: Comparison between the exact and numerical solutions 9, (0,7) and 9, (0, ) using
the EXCBSM.

o.oosl

0.004]
0.003]
0.002

0.001

06 o4

Figure 2: Diagrams of error for Example 4 by using the EXCBSM
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Example 2: Consider the problem (4)—(6) with the exact solution

3
91(s, 1) =U9,(s,71) = ﬁ,
where the terms F(s,r) and G(s,r) are
r3—a r3e—25 .r3e—S
fls,r) =6 (e=S+2)M(4—a) ~ (e=5+2)3 ' (e5+2)?’
3-8 r3e2s r3e=s
G(s,1)=6

—2 + ,
(es+2)r4—-p) (e=s+2)3 (e5+2)2
and the initial conditions are

9,(s,0) =0, 9,(s,0) = 0,
with the following boundary conditions
9,(a, 1) =3%, 9,(a,r) =%, 0<r<T,
ﬂl(l,r)zm, 192(1,r)=m, 0<r<T,

in which a = 110 In Tables 3, and 4, we have shown the comparison between exact and

numerical solutions of 9,(0,7) and 9,(0,7) ats = 0, @« = 0.25 and 8 = 0.5. Furthermore, to
clarify the accuracy of the present method, the corresponding graphical illustrations are
presented in Figure 3.

Table 3: Approximate result of 9, (0, r) for Example 2

time Exact EXCBSM CBSM TCBSM RBFM
r p1(r)
0.1 0.000333 0.003843 0.000350 0.000384 0.000801
0.2 0.002666 0.002831 0.002795 0.002831 0.006334
0.3 0.009000 0.009469 0.009428 0.009467 0.021136
0.4 0.021333 0.022399 0.022344 0.022396 0.049658
0.5 0.041666 0.043732 0.043636 0.043725 0.096291
0.6 0.072000 0.075586 0.075396 0.075575 0.165388
0.7 0.114333 0.120094 0.119709 0.120076 0.261273
0.8 0.170666 0.179402 0.178657 0.179374 0.388239
0.9 0.243000 0.255681 0.254320 0.255640 0.550561
1 0.333333 0.351124 0.348780 0.351067 0.752492
RMS 6.5731 x 1073 5.8880x 1073 6.5522x 107 1.6018 x 107!
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Table 4: Approximate result of 9,(0,r) for Example 2

time Exact EXCBSM CBSM TCBSM RBFM
r p2(r)
0.1 0.000333 0.000360 0.000337 0.000360 0.000404
0.2 0.002666 0.002709 0.002689 0.002709 0.003178
0.3 0.009000 0.009083 0.009065 0.009083 0.010639
0.4 0.021333 0.021494 0.021477 0.021494 0.025102
0.5 0.041666 0.041952 0.041938 0.041952 0.048876
0.6 0.072000 0.072469 0.072461 0.072468 0.084273
0.7 0.114333 0.115056 0.115061 0.115055 0.133601
0.8 0.170666 0.171723 0.171750 0.171722 0.199171
0.9 0.243000 0.244481 0.244546 0.244479 0.283292
1 0.333333 0.335340 0.335462 0.335337 0.388272
RMS 7.7591 x 10™* 8.0462 x 10™* 7.7452 x 1072  2.0995 x 1072
03 Jg 03 i?
02 02
: ff 3 f
0.1 gggfﬁg 0.1 gﬁﬁﬂf&
mwuwnnHEEF"‘ﬁ## oy -’ﬁﬁ’!

01 02 03 04 05 06 07 08 09
t

I * Numerical solution O  Exact solution]

01 02 03 04 05 06 07 0.8 09

t

I * Numerical solution © Exact solutionl

Figure 3: Comparison between the exact and numerical solutions 9, (0, ) and 9, (0, r) using
the EXCBSM.

0.016—
0.014-
0.012—

0.01

0.0()8—-'
0.006—-
0.004—_
[).()()2—:

0

0.002 ()J

0.0015
0.0010

0.0005

Figure 4: Diagrams of error for Example 2 by using the EXCBSM.
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5 Conclusion

It is a fact that the calculated solutions of the time-fractional inverse problem are generally
complicated. Hence mathematicians often attempt to achieve approximate solutions. Some of
the most efficient and suitable methods of solving this equation are the
FDM, EXCBSM, CBSM, TCBSM, and RBFM. In this work, we present a numerical method
to approximate the ISB with the time-fractional. For this purpose, we have used the
EXCBSM. These techniques do not need to simplify the equation and do not require extra
effort to deal with the nonlinear terms, which are the advantages of this study in comparison
to the previous methods. First, for applying the proposed method, we extended the cubic B-
spline functions. Also, in this study, we proved the convergence of our method and calculated
the order of the method. A comparison of the approximation result for Examples 4 and 2 with
EXCBS, CBS, TCBS, and RBF, have been demonstrated in Tables 1-4. The approximation of
error for examples with extended cubic B-splines collocation method (EXCBSM) at |p, (1) —
pi(r)| and |p,(r) — p5(r)| are shown in Figures 1 and 2.
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