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Abstract
Throughout this paper we study the properties of the composition operator

Colp 0Oln. o..00 induced by the composition of finite numbers of special
P1" P2 Pn

automorphisms of U,

i—Z
Op; ()= b
1- pjz
Such that p; € U, i =1, 2, ..., n, and discuss the relation between the product of

finite numbers of automorphic composition operators on Hardy space H? and some
classes of operators.
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Introduction
Let U denote the unit ball in the complex plane, the Hardy space H? is the collection of

0 o n
functions f(z) = D’ f(n)z", which holomorphic on U such that > f(n) |2 <oo with f(n)
n=0 n=0
denoting the n-th Taylor coefficient of f, and the norm of f is defined by:
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n=0
The particular importance of H? is due to the fact that it is a Hilbert space. Let ¢ be a holomorphic
self-map of U, the composition operator C,, induced by ¢ is defined on H* by the equation C, f = foo,
for every f € H? (see [1]). A conformal automorphism of U is a univalent holomorphic mapping of U
onto itself. Each such map is a linear fractional, and can be represented as product w.o,, Where:

0@ = (< V)

For somep € Uandw e oU (see [2]).

The map o, is called special automorphism of U interchanges the point p and the origin and it is
self-inverse map. Let ¢ holomorphic self-map of U, ¢ is called an inner function if |p(z)| = 1 almost
every where on 0U (see [3]). Clearly every conformal automorphism of U is an inner function.

It is well known that these are all linear fractional transformations, and they come in three flavors
(see, e.g., [1, chapter 0]):

e Elliptic: If it has one interior fixed point in U and one outside U . These automorphisms having
derivative < 1 at the interior fixed points.

o Hyperbolic: If it has two distinct fixed points on oU. These automorphisms having derivative < 1
at the boundary fixed points.

e Parabolic: If it has one fixed point of multiplicity 2 on 0U. These automorphisms having
derivative = 1 at a boundary fixed point.

The eigenvalue equation for a composition operator foe = Af is called Schroder’s equation. A
functional equation has been around 1870. The numerical range of C, is the set of all complex
numbers of the form < C,f,f >, where f € H?and || f|| = 1, it is denoted by W(C,), [4].

In this paper, we try to give a comprehensive picture to the spectrum and the numerical range of the
product of finite numbers of automorphic composition operators on Hardy space H2 This paper
consists of two sections. In section one, we give the Schroder’s equation and try to give complete
picture of the spectrum of the product of a finite numbers of automorphic composition operators on
Hardy space H2. In section two, we describe the numerical range of it.

The study of composition operators on Hardy space H? provides a rich area in which to explore the
connection between operator theory and classical function theory. In [5] Eiman H. A., Samira N. K.

and Sara M. K. studied the composition operator Capl 0Olp, 0.0COlp induced by the composition of
finite numbers of special automorphisms of U:
OLpi @)= 1pi __.Z '

—piz
Suchthatp; e U,i=1,2,...,nand nis a fixed positive integer number and discussed how the change
of pi, pa, ..., Pn affects on the properties of the operator Capn C .C%1 . We proved that the

Uppg
composition of finite numbers of special automorphisms of U is a conformal automorphism of U.
Theorem 1 [5, Theorem 1]:

Foralln e Z, Ol 0 0p, 00 Olp () =wWna,, (2),wherep; e U, hye Uandwy € oU, for me A

1. The Sprctrum of the Product of Finite Numbers of Automorphic Composition Operators on

Hardy Space H?.

If ¢ is a holomorphic self-map of U, the eigenvalue equation for the composition operator is C,f =
Af or fop = Af. This equation is called the Schrider's equation [6].
Recall that the point spectrum of an operator T on a Hilbert space H, denoted by o,(T) is the set of
all eigenvalues of T, and the spectrum of T denoted by o(T) is the set of all complex numbers A for
which T — Al is not invertible.

In this section we give the spectral information about the product of finite numbers of automorphic
composition operators on Hardy space H® We start by the following lemma which is appeared in [7].
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Lemma 1.1:
Let ¢ be a holomorphic self-map of U and p € U is a fixed point of ¢. Let ¢ = oy 0 ¢ oocgl, then

¢(0) =0, ¢'(0) = ¢'(0), 5p(Cs) = 6p(Cy) and 5(Cy) = (Co).
By lemma (1.1) it is not restriction to assume that a fixed point p of ¢ in U isp =0.
Corollary 1.2:

Letpi € U, i=1,2, ..., n; such that Olpy 00Lp, 0-0Olp is an elliptic automorphism of U, then
Gp(CO‘pn C

Proof:
Since y = Olp, 0 Olp, 00 Ol is elliptic automorphism of U, then y has a fixed point p € U. This

- Cag) = W)

implies by lemma (1.1) that p = 0. But by theorem (1) y(z) = wn o, (z) thenitisclear that w(z) =
—Wn 2. Now, set en(z) =2", n=0, 1, ... . Therefore:
Cyen() = en(w (@) = (W(@)" = (~Wm2)" = (=W, )" 2" = ((=1)"W}, )ex(2).
Therefore, (—1)m wy' is an eigenvalue of C,, for some nonnegative integer m. Thus it is clear that,

cp(Cy) = {— Wy, Wy } as desired. |
Lemma 1.3 [7]:
Suppose that ¢(z) = Az, |A| = 1. If A is a root of unitary, then for some nonnegative integer m:
o(Co) ={1, A, A%, ..., A"}
Moreover, if A is not a root of unitary, then:
o(Cy)={1:A|=1}=0U.

Corollary 1.4:
Letpi € U, i=1,2, ..., n; such that Olp, 0Olp, 00 Ol is an elliptic automorphism of U, then
either for some nonnegative integer n:
C, C L Co ) ={L 05 AT,
ol % " %na 0Lpl) { ¥
or
C C ...C ={A:|A|=1}=0U.
o(Cqp Cayp, - Cap ) =001 =1}
Proof:

Since y = Olp, 0 Olp, 00 OLp is an elliptic automorphism of U, then y has a fixed pointp € U and

v hasaformy =a,0 ¢ oocgl, where ¢(z) = Az, [A| = 1.

Hence, the one can get the result immediately by lemma (1.2) and lemma (1.3). |
Theorem 1.5 [8]:
Let ¢ be an inner function, which is a linear fractional has a Denjoy-Wolff point p € oU, then:

o(Co) = {1 1 1o’ (I < M < o' (D)2}
Corollary 1.6:

Letpie U,i=1,2, ..., n; such that Olpy 00l 00 Ol is a parabolic automorphism of U, then:
n

o(Cayp. Cap ;- Copy )= (1M =1}=0U.

Proof:

Since y = Olpy 00, 00Ol is parabolic, then y has only one fixed point p € dU such that |y'(p)|
= 1. But y is an inner function, then by theorem (1.5), we have
oCy)={:1<<1}={A:A|=1}=T. [
Corollary 1.7:

Letpie U,i=1,2,...,n;such that y = Olp, 0 Olp, 000l is hyperbolic automorphism of U, with

Denjoy-Wolff point p € dU, then:
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o(Cop, € +Cop ) =80 WO < < v ()3

%pn "%ppa’
Proof:
Since y = Olp, 0 Olp, 00 Ol is hyperbolic, then y has a Denjoy-Wolff point p e 0U,

such that |y'(p)] < 1. Since w is an inner function, then the proof follows immediately
from theorem (1.5). [ |
Now, we give the complete description of the spectrum of the product of finite numbers of
automorphic composition operators on Hardy space H2.
Recall that [9] a Hilbert space operator T that satisfies an equation T? + AT + pul = 0, where A, p are
two complex numbers is called quadratic operator.
Proposition 1.8:
Letpie U,i=1,2,...,n;then

o(Cay Cap , +Cap )= A
Proof:
By [,corollary (22)] C,, is a quadratic composition operator on H?, such that C\ZV = Wpl, where y(z2)

= Wma,, (z), such that wy € 0U and hn € U (see theorem (1)). Hence, by the spectral mapping
m

theorem [11, Chapter 6], we have (c(C,))* = o( C\ZV ) = o(Wpl) = {wn}.

Therefore, o(C,) = {— \/W_m , \/W_m } ]

Therefore, by proposition (1.8) one can conclude that the spectrum of a quadratic operator can
consists of at least two points.
2. The Numerical Range of the Product of Finite Numbers of Automorphic Composition

Operators on Hardy Space H?

Recall that the numerical range of an operator T on a Hilbert space H is the set of complex
numbers,

W(TM)={<Tf,f>:feH,|f|]=1} [20].

The following proposition collects some properties of the numerical range of an operator, for more
details we refer the reader to [10].
Proposition 2.1[10]:

1. WI(T) lies in the disc of center 0 and radius ||T]|.

2. W(T) contains every eigenvalues of T.

3. oT) < W(T).(W(T) denotes the closure of W(T)).

4. 1If T is normal operator, then Conv o(T) = W(T) .
(Conv o(T) denotes the convex hull of o(T)).

5. W(T) is convex set of C.

6. If T is the identity, then W(T) = {1}. More generally, if o and  are complex numbers, then
W(aT + B) = aW(T) + B.

In [4] the shapes of the numerical range for composition operators on H? induced by some
conformal automorphism of U, specially parabolic and hyperbolic are investigated. The authors
proved other things in the following results.

Theorem 2.2 [4]:

If ¢ is a conformal automorphism of U is either parabolic or hyperbolic, then W(C,) is a disc

centered at the origin.
Theorem 2.3 [4]:
If ¢ is a hyperbolic automorphism of U with antipodal fixed points and it is conformally conjugate

to a positive dilation ¢.(z) =rz, (0 <r < 1), then W(C,) is the open disc of radius 1 /\/F centered at the
origin.
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Theorem 2.4 [4]:
If ¢ is elliptic automorphism of U and conformally conjugate to a rotation ¢(z)=Az (JA|=1) and A

iS not a root of unity, then W(C(p) is a disc centered at the origin.
Theorem 2.5 [4]:
If ¢ is elliptic automorphism of U with multiplier -1, then W(C(p) is a (possibly degenerate)

ellipse with foci +1. The degenerate case occurs if and only if ¢(0) = 0, in which case ¢(z) = z.
The closure of W(Cap) was described by the authors of [4]. They showed that it is a closed

elliptical disc with foci £1. That disc is reduced to its focal axis if and only if W(Cap )=[-1,1] if and

only if p = 0 (see theorem (2.5)). The authors [4] gave a formula for the length of the major axis of the
disc. That formula is very hard to use in practical problems. Therefore, recently, the author of [11]
found the following practical formula for the length of the aforementioned major axis.

Theorem 2.6 [11]:
2
Ji-1p P

We investigate the shape of the numerical range of the product of finite numbers of automorphic
composition operators on Hardy space H2 For this goal, we give the following preliminaries. Recall
that [9] the quantity o(T) =sup {|< Tf,f>| : || f || = 1} is called the numerical radius of the operator T.
The statement that T attains its norm, respectively attains its numerical radius, means that there is
some f € H, such that ||T|| = || Tf |, respectively |< Tf,f>| = o (T).

Matache [9] was described the composition operators that attains its norm.
Proposition 2.7 [9]:

A composition operator having inner symbol o attains its norm if and only if ¢(0) = 0.

A straightforward consequence of proposition (2.7) is the following:
Corollary 2.8:

Letpie U,i=1,2,...,n Then Cap C
n

For each p € U, then W(Cap ) is an ellipse with foci at +1 and major axis

...C attains its norm if and only if =
1 % Y Pr =Pz

= ...= pn = 0.
Proposition 2.9:

LetpieU,i=1,2,...,n.Ifp;=0, foralli=1, 2, ..., n. Then W(Cap C
n

line containing the end points —/w_ and \/W,, .

..C is a straight
%pn “pl) g

Proof:
Since y(z) =wmary, (z) andpi=0,foralli=1,2, ..., n. Then by theorem (1) we have hm =0,
m
for m. Hence,
v(2) = Olp, 00p, 00Ol @)
== _WmZ

Therefore, 0 is a fixed point for v, this implies that Cap C .Cocp1 is elliptic automorphism
n

Uppg
of U. Thus by corollary (1.8)

6(Cy) = o(Cay Cayy - Cap )= g A

But by [5, Theorem (2)], C,, is normal operator, then by proposition (2.1)(4)
Convo(C,) = W(CW) .This implies that,

W(C,,) =Conv {— W, M}

Thus it is clear that W(CW) is a straight line containing the end points — /W, and /w,, [ |

2970



Abood et al. Iraqgi Journal of Science, 2015, Vol 56, No.4A, pp: 2966-2971

Theorem 2.10 [9]:
The Numerical range of a quadratic operator having spectrum consisting of two distinct points a
and b is an open or a closed elliptical disc, possibly, degenerate (that is, reduced to its focal axis). The

major axis of the disc has length ||T — al|| and the length of the minor axis is \/|| T-al ||2 —la=b |2 :

The elliptical disc is closed if and only if T attains its norm or equivalently, if and only if it attains
its numerical radius. Since the numerical range of the operator that attains norm is closed, then by
corollary (2.8), proposition (2.9) and theorem (2.10) one can get the directly result.

Corollary 2.11:

Letpie U,i=1,2,...,nsuchthat p;=0, foralli=1, 2, ..., n; then W(Cap Cap ) ...Capl) is a
n n-.
straight line containing the end points —\/w,, and \/w,, .
Corollary 2.12:
Letpie U,i=1,2,...,n suchthat p;=0, for somej=1,2, ..., n, then W(Cap COLIO L Capl)
n n-—.
is an open elliptical disc with major axis of length || Cap Cap e C%1 — J/W,, 1] and the length
n n-.
of minor axis is
I CCppCo Wy 114
Proof:
Since C,, is quadratic operator, where y = Cap COLIO = C%1 and p; = 0, for some j=1,
n n-—.
2, ..., n; then by corollary (2.8) C, is not attains norm. Hence one can get the result directly by
corollary (1.8) and theorem (2.10). [ |
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