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 Abstract 

 Throughout this paper we study the properties of the composition operator 

C
1p o

2p o…o
np  induced by the composition of finite numbers of special 

automorphisms of U, 

ip (z)  i

i

p z

1 p z




 

Such that pi  U, i  1, 2, …, n, and discuss the relation between the product of 
finite numbers of automorphic composition operators on Hardy space H2 and some 

classes of operators. 
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 خلاصةال
 :المؤثر التركيبي  المحتث من تركيب عدد منتهي من الدوال التالية بحثفي هذة ال درسنا

ip (z)  i

i

p z

1 p z




. 

 عدد منتهي صحيح غير سالب. ودرسنا العلاقة بين خواص n عندما  i  1, 2, …, n, pi  U ,حيث ان 
oالدالة 

2p o…o
np 

1p والطيف والمدى العددي للمؤثر التركيبي 
pn

Cpn 1
C


…

p1
C 

 . H2على فضاء هارديالمعرف  المحتث منها
 

Introduction 

Let U denote the unit ball in the complex plane, the Hardy space 
2 

is  the collection of 

functions
n

n 0

ˆf (z) f (n)z




  , which holomorphic on U such that 
2

n 0

ˆ| f (n) |




   with f̂ (n)  

denoting the n-th Taylor coefficient of f, and the norm of f is defined by: 
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2 2

n 0

ˆ|| f || | f (n) |




  . 

The particular importance of 
2
 is due to the fact that it is a Hilbert space. Let  be a holomorphic 

self-map of U, the composition operator C induced by  is defined on 
2 

by the equation C f  fo,   

for every f  
2
 (see [1]). A conformal automorphism of U is a univalent holomorphic mapping of U 

onto itself. Each such map is a linear fractional, and can be represented as product w.p, where: 

p(z)  
p z

1 pz




, (z  U) 

For some p  U and w  U (see [2]).  

The map p is called special automorphism of U interchanges the point p and the origin and it is 

self-inverse map. Let  holomorphic self-map of U,  is called an inner function if |(z)|  1 almost 

every where on U (see [3]). Clearly every conformal automorphism of U is an inner function. 
It is well known that these are all linear fractional transformations, and they come in three flavors 

(see, e.g., [1, chapter 0]): 

 Elliptic: If it has one interior fixed point in U and one outsideU . These automorphisms having 

derivative < 1 at the interior fixed points.   

 Hyperbolic: If it has two distinct fixed points on U. These automorphisms having derivative < 1 
at the boundary fixed points. 

 Parabolic: If it has one fixed point of multiplicity 2 on U. These automorphisms having 

derivative  1 at a boundary fixed point.  

The eigenvalue equation for a composition operator fo  f is called Schröder’s equation. A 

functional equation has been around 1870. The numerical range of C is the set of all complex 

numbers of the form < Cf,f >, where f  
2
 and || f ||  1, it is denoted by W(C), [4]. 

In this paper, we try to give a comprehensive picture to the spectrum and the numerical range of the 

product of finite numbers of automorphic composition operators on Hardy space H
2
. This paper 

consists of two sections. In section one, we give the Schröder’s equation and try to give complete 
picture of the spectrum of the product of a finite numbers of automorphic composition operators on 

Hardy space 
2
. In section two, we describe the numerical range of it. 

The study of composition operators on Hardy space 
2
 provides a rich area in which to explore the 

connection between operator theory and classical function theory. In [5]  Eiman H. A., Samira N. K. 

and Sara M. K. studied the composition operator  C
1p o

2p o…o
np  induced by the composition of 

finite numbers of special automorphisms of U: 

ip (z)  i

i

p z

1 p z




. 

Such that pi  U, i  1, 2, …, n and n is a fixed positive integer number and discussed how the change 

of  p1, p2, …, pn affects on the properties of the operator 
pn

C pn 1
C


 …

p1
C . We proved that the 

composition of finite numbers of special automorphisms of U is a conformal automorphism of U. 

Theorem 1 [5, Theorem 1]: 

For all n  Z
+
, 

1p o
2p o…o

np (z)  wm
mh

 (z) , where pi  U, hm  U and wm  U, for  m  Z
+
.  

1. The Sprctrum of the Product of Finite Numbers of Automorphic Composition Operators on 

Hardy Space 
2
. 

If  is a holomorphic self-map of U, the eigenvalue equation for the composition operator is  Cf  

f  or  fo  f. This equation is called the Schröder's equation [6]. 

Recall that the point spectrum of an operator T on a Hilbert space H, denoted by (T) is the set of 

all eigenvalues of T, and the spectrum of T denoted by (T) is the set of all complex numbers  for 

which T  I is not invertible. 
In this section we give the spectral information about the product of finite numbers of automorphic 

composition operators on Hardy space H
2
. We start by the following lemma which is appeared in [7]. 
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Lemma 1.1: 

Let  be a holomorphic self-map of U and p  U is a fixed point of . Let   p o  o
1

p
 , then 

(0)  0, (0)  (0), p(C)  p(C) and (C)  (C). 

By lemma (1.1) it is not restriction to assume that a fixed point p of  in U is p  0. 

Corollary 1.2: 

Let pi  U, i  1, 2, …, n; such that 
1p o

2p o…o
np  is  an elliptic automorphism of U, then 

p(
pn

C pn 1
C


 …

p1
C )   n

m

n

m ww , . 

Proof: 

Since   
1p o

2p o…o
np  is elliptic automorphism of U, then  has a fixed point p  U. This 

implies by lemma (1.1) that p  0. But by theorem (1) (z)  wm
mh

 (z)  then it is clear that   (z)  

wm z. Now, set em(z)  z
n
, n  0, 1, … . Therefore: 

Cen(z)  en((z))  ((z))
n
  (wmz)

n
   nmw z

n
  (   n

m

n
w1 )en(z). 

Therefore,  
m m

n1 w  is an eigenvalue of C for some nonnegative integer m. Thus it is clear that, 

p(C)  n

m

n

m ww , , as desired.                                                                                                               

Lemma 1.3 [7]: 

Suppose that (z)  z, ||  1. If  is a root of unitary, then for some nonnegative integer m: 

(C)  {1, , 
2
, …, 

n1
}. 

Moreover, if  is not a root of unitary, then: 

(C)  { : ||  1}  U. 

Corollary 1.4: 

Let pi  U, i  1, 2, …, n; such that 
1p o

2p o…o
np  is an elliptic  automorphism of U, then 

either for some nonnegative integer n: 

(
pn

C pn 1
C


 …

p1
C )  {1, , 

2
, …, 

n1
}, 

or 

(
pn

C pn 1
C


 …

p1
C )  { : ||  1}  U. 

Proof: 

Since   
1p o

2p o…o
np  is an elliptic automorphism of U, then  has a fixed point p  U and 

 has a form   p o  o
1

p
 , where (z)  z, ||  1. 

Hence, the one can get the result immediately by lemma (1.2) and lemma (1.3).                                 

Theorem 1.5 [8]: 

Let  be an inner function, which is a linear fractional has a Denjoy-Wolff point p  U, then: 

(C)  { : |(p)|
1/2

  ||  |(p)|
1/2

}. 

Corollary 1.6: 

Let pi  U, i  1, 2, …, n; such that 
1p o

2p o…o
np  is a parabolic automorphism of U, then: 

(
pn

C pn 1
C


 …

p1
C )  { : ||  1}  U. 

Proof: 

Since   
1p o

2p o…o
np  is parabolic, then  has only one fixed point p  U such that |(p)| 

 1. But  is an inner function, then by theorem (1.5), we have 

(C)  { : 1  ||  1}  { : ||  1}  U.                                                                                     

Corollary 1.7: 

Let pi  U, i  1, 2, …, n; such that   
1p o

2p o…o
np is hyperbolic automorphism of U, with 

Denjoy-Wolff point p  U, then: 
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(
pn

C pn 1
C


 …

p1
C )  { : |(p)|

1/2
  ||  |(p)|

1/2
}. 

Proof: 

Since   
1p o

2p o…o
np  is hyperbolic, then  has a Denjoy-Wolff point p  U,  

such that |(p)| < 1. Since  is an inner function, then the proof follows immediately  
from theorem (1.5).                                                                                                                              

Now, we give the complete description of the spectrum of the product of finite numbers of 

automorphic composition operators on Hardy space H
2
. 

Recall that [9] a Hilbert space operator T that satisfies an equation T
2
 + T + I  0, where ,  are 

two complex numbers is called quadratic operator. 

Proposition 1.8: 

Let pi  U, i  1, 2, …, n; then 

(
pn

C pn 1
C


 …

p1
C )   mm ww , . 

Proof: 

By [,corollary (22)] C is a quadratic composition operator on 
2
, such that 

2C   wmI, where (z) 

 wm
mh

 (z), such that wm  U and hm  U (see theorem (1)). Hence, by the spectral mapping 

theorem [11, Chapter 6], we have ((C))
2
  (

2C )  (wmI)  {wm}. 

Therefore, (C)  mm ww , .                                                                                                  

Therefore, by proposition (1.8) one can conclude that the spectrum of a quadratic operator can 

consists of at least two points. 

2. The Numerical Range of the Product of Finite Numbers of Automorphic Composition 

Operators on Hardy Space 
 2
. 

Recall that the numerical range of an operator T on a Hilbert space H is the set of complex 
numbers, 

W(T)  {< Tf, f > : f  H, || f ||  1},    [10]. 
The following proposition collects some properties of the numerical range of an operator, for more 

details we refer the reader to [10]. 

Proposition 2.1[10]: 
1. W(T) lies in the disc of center 0 and radius ||T||. 

2. W(T) contains every eigenvalues of T. 

3. (T)  W(T) . ( W(T)  denotes the closure of W(T)). 

4. If T is normal operator, then Conv (T)  W(T) . 

(Conv (T)  denotes the convex hull of (T)). 
5. W(T) is convex set of C. 

6. If T is the identity, then W(T)  {1}. More generally, if  and  are complex numbers, then 

W(T + )  W(T) + . 
In [4] the shapes of the numerical range for composition operators on H

2
 induced by some 

conformal automorphism of U, specially parabolic and hyperbolic are investigated. The authors 
proved other things in the following results. 

Theorem 2.2 [4]: 

If  is a conformal automorphism of U is either parabolic or hyperbolic, then W(C) is a disc 

centered at the origin. 

Theorem 2.3 [4]: 

If  is a hyperbolic automorphism of U with antipodal fixed points and it is conformally conjugate 

to a positive dilation r(z)  rz, (0 < r < 1), then W(C) is the open disc of radius 1 / r  centered at the 

origin. 
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Theorem 2.4 [4]: 

If  is elliptic automorphism of U and conformally conjugate to a rotation (z)z   (||  1) and  

is not a root of unity, then W(C )  is a disc centered at the origin. 

Theorem 2.5 [4]: 

If  is elliptic automorphism of U with multiplier 1, then W(C )  is a (possibly degenerate) 

ellipse with foci ±1. The degenerate case occurs if and only if (0)  0, in which case (z)  z. 

The closure of 
p

W(C )  was described by the authors of [4]. They showed that it is a closed 

elliptical disc with foci ±1. That disc is reduced to its focal axis if and only if 
p

W(C ) = [1,1] if and 

only if p  0 (see theorem (2.5)). The authors [4] gave a formula for the length of the major axis of the 
disc. That formula is very hard to use in practical problems. Therefore, recently, the author of [11] 

found the following practical formula for the length of the aforementioned major axis. 

Theorem 2.6 [11]: 

For each p  U, then 
p

W(C )  is an ellipse with foci at ±1 and major axis 
2

2

1 | p |

. 

We investigate the shape of the numerical range of the product of finite numbers of automorphic 

composition operators on Hardy space 
2
. For this goal, we give the following preliminaries. Recall 

that [9] the quantity ω(T)  sup {|< Tf,f >| : || f ||  1} is called the numerical radius of the operator T. 
The statement that T attains its norm, respectively attains its  numerical radius, means that there is 

some f  H, such that ||T||  || Tf ||, respectively |< Tf,f >|  ω (T). 
Matache [9] was described the composition operators that attains its norm. 

Proposition 2.7 [9]: 

A composition operator having inner symbol  attains its norm if and only if (0)  0. 
A straightforward consequence of proposition (2.7) is the following: 

Corollary 2.8: 

Let pi  U, i  1, 2, …, n. Then 
pn

C pn 1
C


 …

p1
C  attains its norm if and only if              p1  p2 

 …  pn  0. 

Proposition 2.9: 

Let pi  U, i  1, 2, …, n. If pi  0, for all i  1, 2, …, n. Then 
p p pn n 1 1

W(C C ...C )


    is a straight 

line containing the end points  mw  and mw . 

Proof: 

Since (z)  wm
mh

 (z)  and pi = 0, for all i  1, 2, …, n. Then by theorem (1) we have            hm  0, 

for m. Hence, 

 (z)  
1p o

2p o…o
np (z) 

 wmz 

Therefore, 0 is a fixed point for , this implies that 
pn

C pn 1
C


 …

p1
C  is elliptic automorphism 

of U. Thus by corollary (1.8) 

(C)  (
pn

C pn 1
C


 …

p1
C )   mm ww , . 

But by [5, Theorem (2)], C is normal operator, then by proposition (2.1)(4)  

                            Conv (C)  W(C ) .This implies that, 

                                W(C )   Conv mm ww , . 

Thus it is clear that W(C )  is a straight line containing the end points mw  and mw                 
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Theorem 2.10 [9]: 

The Numerical range of a quadratic operator having spectrum consisting of two distinct points a 

and b is an open or a closed elliptical disc, possibly, degenerate (that is, reduced to its focal axis). The 

major axis of the disc has length ||T  aI|| and the length of the minor axis is 
2 2|| T aI || | a b |   . 

The elliptical disc is closed if and only if T attains its norm or equivalently, if and only if it attains 
its numerical radius. Since the numerical range of the operator that attains norm is closed, then by 

corollary (2.8), proposition (2.9) and theorem (2.10) one can get the directly result. 

Corollary 2.11: 

Let pi  U, i  1, 2, …, n such that pi  0, for all i  1, 2, …, n; then W(
pn

C pn 1
C


 …

p1
C ) is a 

straight line containing the end points mw  and mw . 

Corollary 2.12: 

Let pi  U, i  1, 2, …, n  such that  pj  0, for some j  1, 2, …, n, then W(
pn

C pn 1
C


 …

p1
C )  

is an open elliptical disc with major axis of length ||
pn

C pn 1
C


 …

p1
C   mw  I || and the length 

of minor axis is 

 -4|| I w -...CCC  || mp11-pnpn  . 

Proof: 

Since C is quadratic operator, where   
pn

C pn 1
C


 …

p1
C  and  pj  0, for some             j  1, 

2, …, n;  then by corollary (2.8) C is not attains norm. Hence one can get the result directly by 
corollary (1.8) and theorem (2.10).                                                                                                           
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