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Abstract

Let M be a n-dimensional manifold. A C'- map f: M — M is called transversal if
for all me N the graph of f™ intersect transversally the diagonal of MxM at each
point (x,x) such that x is fixed point of ™. We study the minimal set of periods of
f(M per (f)), where M has the same homology of the complex projective space and
the real projective space. For maps of degree one we study the more general case of
(M per (f)) for the class of continuous self-maps, where M has the same homology
of the n-dimensional sphere.
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1. Introduction:-

Let M be a compact manifold of dimension n. Let f :M — M be a continuous map, a fixed point of
fis a point x of M such that f(x) = x, denoted the totality of fixed points by Fix(f).

The point x € M is periodic of period m if x e Fix (f™) but x ¢ Fix (f*) forallk=1, ..., m-1. Let
per(f) denote the set of periods for all the periodic points of f. Llibre, J. in [1] gave the concept of the
minimal set of periods of f in the class of continuous (resp. transversal , transversal holmorphic [2])
self — maps of M as the set
MPerc(f)= Ny per g (resp. MPer(f) = N, pr g , MPer, (f) = N4 per g).

Where g runs over all continuous self - maps of M of the same degree of f (resp. g runs over all
transversal self — maps of M of the same degree of f, g runs over all transversal holomorphic self —
maps of M of the same degree of f). In[1] Llibre completely described the minimal set of periods of
transversal holomorphic self — maps , so he was deal with the complex manifolds such as a n-
dimensional sphere S" (n even) and a complex projective space . In this paper we investigated the
minimal set of periods of self — maps which is only transversal on some spaces such as a real
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projective space and a complex projective space. For maps of degree one, we study the minimal set of
periods of continuous maps of S" for each n.
2. Transversal self — maps.

Let M be a C' — compact manifold. It is known a continuous map f : M — M induces
endomorphisms f,; : H;(M ; Q) —» H;(M ; Q) , (for j=0,1, ...... , n) on the rational homology groups
of M (see, for instance [3]). The Lefschetz number of f is defined by:

n

LD = Y (~1)¥trace ()
k=0

By the Lefschetz fixed point theorem , if L(f) # 0 then f has fixed points (see , for instance [4]). In
[1] LLibre investigated the minimal set of periods of f in the class of transversal holomorphic self
maps of M , where M has the same homology of the n — dimensional Sphere (n even) . For maps of
degree one on S", we have the following theorem :

Theorem 2.1. Let f: S" — S" be a continuous map of degree one, then :

R R

Proof: Since | (f) = L(f) = XR_o(— DX trace (f.r)
=1+ (-1)"1=2#0
Hence, by the Lefschetz fixed point theorem 1 e per f and f is arbitray implies 1 € MPer(f) . Now
since
MPer(f) = Ng per(g)

Where g run over all continuous self — map of S" of degree 1 . Thus one of these maps is the
identity map which is continuous of degree one and it is not difficult to show that it has no periodic
point of period greater than one , hence

Ngperg = MPer(f) = 1

For n odd , in [5] was proved that S" admits infinite number of fixed point free homeomorphisms.
Thus infinite number of these maps containd in the collection maps of degree one (of Course
homeomorphisms degree +1) , which leads to 1 ¢ MPer(f). Similarly as case (a) the identity map has
no periodic point greater than one , implies MPer(f) = @ which complete the proof [

We can consider the Lefschetz number of (f ™ is an iterate of f) but in general it is not true that
L(f™ # 0, then f has periodic points of period m. It could have periodic points with period some
proper division of m. Therefore, we will use the Lefschetz numbers for periodic points [6] for
analyzing if a given period belongs to the set of periods of a self — map. More precisely, for every m e
N the Lefschetz number of period m, I(f™) is defined as follows :

m
r

L(E™) = Zrjmu() L(f7) (1)

Where ¥, /., denoted the sum over all positive divisors r of m , and p is the Moebius function
defined by :

1 ifm=1
u(im) =40 if k*/m for Some k € IN
(=" if m= p;..p, distinct prime factors

According to the inversion formula (see for instance[7]).
L (fm) = Zr/m l(f r)

The Leschetz number of period m, will become interesting after showing that for some classes of
self — maps we have , if I(f™) # 0 then m e Per(f). This is almost the case when f is a transversal
self map since for a transversal self — map f , the fixed points of f™ are isolated and M compact ,
the cardinal of Fix (f ) is finite for every m € N. Dold [8] showed that m divides [(f™) for every m
e N. The following result will play an important role in this paper and it was proved by using the
Leschetz zeta function, see [6].
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Theorem 2.2 [6] : Let f be a transversal self map. Suppose that | (f™) #0 for some m e N.

@) If mis odd then m < per f

()  Ifmiseventhen {2 m}nperf #9

This results on the transversal self — maps on arbitrary compact manifolds given in theorem (2-2)
are in general difficult to apply because of the computation of [(f™). Of course, if the homological
rational groups are simple then these computations become easier. We will investigate in this section
the complex projective space while the real projective space in the next section.
The complex projective Space of dimension nis the quotient of ¢™ by the equivalence relaction :

(20,20, .00y 20)~(M20,A21,.....,A2Z) ; AeC,A#£0
Point in CP(n) are represented in homogeneous coordinates by
[zo:21:.....:2)], Zi# 0 for some 0 <i<n ; which denotes an equivalence class . The Space CP(n) is

then the natural compactification of ¢€" and can be thought as adding at infinity a subspace of
dimension n-1. For example, (p(1) , the Riemann sphere , is the compactification of C , obtained by
adding the point at infinity.

Now, it is well known facts from topology (see for instance[9]) the homology groups of CP(n) with
rational coefficients are :

Hi(CP(n); O = {2

Moreover, any Continuous mapping f of CP(n) with degree d induces homomorphisms on the
homology groups.

fiox =(d*¥) fork=01,.....,n

Hence

2n
L(f) = Z(—l)i trace (f * 1)

—1rde e+ d

The following theorem was proved in [1].
Theorem 2.3 Let M be a compact Complex manifold and f: M — M be a non constant transversal
holomorphic map, then MPer,(f) = Per(f).
As an immediate consequence of this theorem is Mpery(f) = per(f) , where f :C P(n) — C P(n) .
We shall compute the minimal set of periods for self — maps on ¢ P(n) which is transversal not
necessary holomorphic for some cases and we have the following theorem.
Theorem 2.4 Let f:C(n) — CP(n) be a transversal map of degree d ,

@) If mis prime then m € MPer(f)

(b) If m is even of the form 2% r (r prime). Then
2k r, 251} nMPer,(f) = 0
Proof: (a) Suppose first d > 2 and m > 2. Now Since the non zero homology groups of CP(n) are one —
dimensional and degree(f™) = (degree f)™ , so we have for any m

i=02....2n
otherwise

L™ =1+ d™+ d*™ + .......+d"™  butmis prime implies
m
L™ = ) ur) L)
r/m
= (1) L(E™) + p(m) LD
=1+d™+ d*™+ A d"™ -1 —d + d* — = d”

=(d"™ — d™) + (d V™ — @) 4 (d™ - d) > 0
Hence m € MPer, (f) (theorem 2.2) which Complete the proof
(b) Since m = 2%r and r (prime) So we have two steps:

Step (1) If r=1, then u(m) = pu(2%) =0 implies
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I(f™) = u() L™ + u(2)L (f%)
=L(f™) + (=1L (f%)

Clear now I(f™) greater than zero and we have done by theorem 2.2
Step(2) for r > 3 we have
m m m
(F™) = p( LG™ + p@L(F2) +p@) L(F7 ) + uC@r) L(fzr)
If u(r) = +1, then by Moebius function p(2r) = -1 and conversely .
Case (1) Suppose u(r)=1, u2r)=-1 leads
m
) LE™ > w(@)L(f2) and
m m
kI L(f7)> nrL(r2r)
Hence L(f™) >0 i.e. L(f™) # 0
Case 2 1f p(r) =-1 and i (2r) =+1 then I(fM=1+d™ + dzm ......... +d" —1-dz —
dz— dz—l—dr—dr— d +1+dzr +dzr
Now by Mathematlcal induction we have

A" >2d% n >1
So

(n— 1)m m

AP 4 dDM L @2y gm > 2(d s +d 2+ et d2),
and Since r > 3, implies

(n 1)m (n 1m m
dm g qmDm g gms T v d 4t di+ dr +d T+t dr
Which certainly implies

m 2m (n 1)m m

dnm+ d-Dm o pogim oy gm oy g dar 4t dor > dz 4+ d 2 4+ ot dz 4

(n— 1)m m

d +d r +dr
That’s mean I(f ™) > 0 . Thus case (1) and (2) gives I(f ™) # 0 and by theorem (2.2) we have
{2%r, 2%} n MPer, (f) # 0 m
Note: By use Lefschetz number of period m case m=1 and d=0,1, theorem (2.4) follows immediately
from theorem 2.2.
3. Real projective space

Real projective space , or RP(n) , is the topological space of lines passing through the origin 0 in
R™! . It is a compact, smooth manifold of dimension n ( for more details , see [3],[4] ) . The rational
homology group of RP(n) is given by :

- (0 k=0n
Hi(RP(n); Q) = {0 otherwise

We will investigate in this section the minimal set of period of RP(n) (n odd). Now since any

continuous mapping f of RP(n) induces homomorphisms on the homology groups , hence
L(f) =21 ,(—1)" tracefs  (nodd)

=1-d (d = degree 1)

=0iff d=1
That’s mean 1 € Per(f) for any map with d #1 . So for m > 1 we have the following Theorem.
Theorem 3.1 For m even of the from 2P (p prime) , let f:RP(n) — RP(n) be atransversal map of
degreed, s.t.d ¢ {-1,0,1}, then either 2*P or 2**P belongs to MPer, (f) .
Proof : By use formula (1) we have

™) = WDLG™ + kL (F7) + w(PL(£7) + w@PIL (F2F)
=(1—d™+ (D (1-d?7P)+ (-1 (1-d*) + (1 - @2
=1-d27P -1+ d?7P —14+4? +1- @
=d?* 4+ q? 7P — g2 — g2
=27 (a? +dP)— d¥ 7 (1+d? P)

k-1

)
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=d* 7 (d* +dP - 1- d? )
=7 (aP(—d? +1)+@ -1)

= g2 (dp (1-a®)-(1-a2 ))
= (1= a2 )+ (a0 1))

=0ifandonlyifd e {-1,0,1}

Implies L(f™) # 0 and by theorem 2.2 we have done n
Theorem 3.2 For (m odd) , let f: RP(n) — RP(n) be a transversal map of degree # 1 , then m
MPer(f) .

Proof : first Similarly as theorem (3.1) we have

I(f™) = Bemult) L(f1)

=1-degf ...... 2)
By use the fundamental theorem of Arithmetic [7], we have
M= P;" Dy v . P, WHETE Py, Dy, eev oo, Ds ar€ Prime numbers and 121 (i=1,....,s).

Thus
(™) = u() LY™) + z;lu(pi)L(mei) + Zfl,iﬁu(pilpiz)L(fW) +

m

Zf1,i2,i3=1 H(pllplzplg,) L <fPi1PizPi3> + + le lz lS =1 I’l(pllplz ".pis—l) L (fpilpiz-..Pi5_1> +

u(py - ps)L (fplip)

Hence
l(fm) = L(fm) - Zf:lL (fP_l) + 211 =1 <f_> 211 iiz=1 (fpilpizpi3> +

(-1)° L (f%)
By (2) we have

(f™) = [1—degf™]~ (Z(l — deg f?—”i)> +
i=1

m
+ (_1)5—1 z (1 — degfpilPiZ'" Pis_1> + ...

i1,i2,-

N

_m_
z <1_degfpilpiz> +...

il,i2=1

+ (—1)5+? [1 — deg <fP1---PS)]

Implies
S m
I(f™) = [1—degf™] - (s—Zdeng—i> + [cs - dengl1Plz
i=1 i1,ip=1
3 _m
- |C5 - Z degfpllplzpls + [c5 - Z deg fPuPizPisPis [ 4 ...
i1,i2,i3=1 iq,ip,iz,ig=1

+ (1) deg (/77

Now by the properties of combinations [10] we have
1-S+C; —C5+ - +(—1)°C: =0
And by induction we have

degf™ = (deg)™ > ) (degf) (degf >1,m>1)

r/m
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Which gives (f™) # 0 , hence by theorem (2.2) we have done =
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