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Abstract 

        An R-module M is called polyform if every essential submodule of M is rational. 

The main goal of this paper is to give a new class of modules named P-polyform 

modules. This class of modules are contained properly in the class of polyform 

modules. Several properties of this concept are introduced and compared with those 

which is known in the concept of polyform modules. Another characterization of the 

definition of P-polyform modules is given as an analogue to that in the concept of 

polyform modules. So we proved that a module M is P-polyform if and only if 

HomR(
K

N
, M)= 0, for each essential submodule N of M, which is pure in M, and a 

submodule K of M, with NKM. The relationships between this class of modules 

and some other related concepts are discussed such as monoform, QI-monoform, 

monoform, essentially quasi-Dedekind, essentially prime, purely quasi-Dedekind, 

ESQD and St-polyform modules. Furthermore, purely St-polyform is defined and its 

relationship with the P-polyform module is studied. 

Keywords: Polyform modules, P-polyform modules, Rational submodules, P-

rational submodules, Pure submodules, Essential submodules. 

 

P -المقاسات متعددة الصيغ من النمط    
 

 منى عباس أحمد ,  *مارية محمد بحر
العراق قسم الرياضيات، كلية العلوم للبنات، جامعة بغداد، بغداد،   

 
 الخلاصة 

الهدف الرئيس من هذا البحث هو    أنه متعدد الصيغ اذا كان كل مقاس جوهري فيه نسبياً.ب Mللمقاس   يُقال      
ان هذا النوع من المقاسات    P.-المقاسات يدعى بالمقاسات متعددة الصيغ من النمط    جديد من  صنفإعطاء  

محتوى بشكل فعلي في المقاسات متعددة الصيغ. العديد من الخصائص المهمة قُدمت حول المقاسات متعددة  
مناظرا لما هو معروف    P.-النمط  كما قدم تشخيص أخر للمقاسات متعددة الصيغ من    P.-النمط  الصيغ من  

اذا    P.-من النمط  يكون متعدد الصيغ    Mعلى سبيل المثال برهنا ان المقاس    في المقاسات متعددة الصيغ. 
HomRوفقط اذا تحقق   (

K

N
, M) = حيث    K≤Mولكل    Mبحيث يكون نقياً في    Nلكل مقاس جزئي جوهري    0

 NKM.ان 
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  ، الصيغة عدد من المقاسات الاخرى مثل المقاسات احادية  بعلاقة هذا الصنف من المقاسات  أيضاً  نوقشت        
النمط من  الصيغة  احادية  الجوهرية QI-مقاسات  الأولية  المقاسات  الجوهرية،  الديديكاندية  شبه  المقاسات   ،  ،
- المقاسات متعددة الصيغ من النمط  فضلًا عن ذلك تم تعريف  ESQD.   المقاسات شبه الديديكاندية الأولية، 

St  النمط ة ودُرست علاقاتها بالمقاسات متعددة الصيغ من النقي-.P 
 

1. Introduction 

     Polyform modules play a large and important role in module theory. A non-zero submodule 

N of M is said to be large or essential (briefly N≤𝑒M), if N∩L≠0 for every non-zero submodule 

L of M, [1, Definition 5.1.1, P.106]. An R-module M is called injective if for every 

monomorphism f:M⟶B and for every homomorphism g: M⟶C there is a homomorphism h: 

B⟶C with g=h∘f, [2, P.9]. An essential monomorphism is a monomorphism f: S⟶T such that 

f(S) ≤𝑒T, [1, Definition 5.6.5(1)]. An injective hull of M is denoted by E(M), and it is defined 

as a monomorphism f: M⟶E(M) with E(M) is an injective module and f is an essential 

monomorphism, [1, P.124]. A submodule N of an R-module M is called rational (simply 

N≤𝑟M) if HomR(
M

N
, E(M))=0, where E(M) is the injective hull of M, [3, P.274]. An R-module 

M is called polyform if every essential submodule of M is rational, [4]. A submodule N of M 

is called pure if N∩IM=IN for every ideal I of R, [5, P.18].  A submodule N of M is called a P-

rational submodule if N is a pure submodule and HomR(
M

N
, E(M))=0, [6]. Note that every P-

rational submodule is rational. 

 

        By using the concept of P-rational submodules, a new type of module is introduced and 

studied in this paper, it is called P-polyform modules, and it is contained properly in the class 

of polyform modules. We try to investigate several results of P-polyform modules as analogues 

to results which is known in the polyform modules. 

  

          This paper consists of four sections. Section two discussed the main properties of P-

polyform modules. Among these results are the following: 

• Let M be a prime R-module, and N be a non-zero pure and essential submodule of M such 

that annR (
M

N
)⊈annR(M), then M is P-polyform, see Proposition 2.5. 

• If M is a P-polyform and N≤𝑒M, then N is a P-polyform module, see Proposition 2.6. 

Moreover, another characterization of the definition of a P-polyform module is given as 

follows: 

• Let M be an R-module. Then M is a P-polyform module if and only if HomR(
K

N
, M)= 0, for 

every essential submodule N of M, which is pure in M, and a submodule K of M, with NKM. 

See Theorem 2.8. 

• For any R-module M, consider the following statements: 

1. M is a P-polyform module. 

2. M is a polyform module. 

3. For any submodule N of M, and each non-zero homomorphism f: N→M, implies kerf is 

closed in N. 

4. For any non-zero pure submodule N of M, and any non-zero homomorphism f: N→M, 

implies kerf≰𝑒N. 

Then (1) ⇒ (2) ⇒ (3) ⇒ (4). 

See Theorem 2.10. 

 

Section three is focused on the relationships of the P-polyform modules with quasi-invertibility 

monoform modules, as the following shows:  
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• Let M be a multiplication and prime module. If M is P-polyform then M is quasi-invertibility 

monoform, see Proposition 3.2. 

• Let M be a multiplication and prime R-module. Consider the following: 

1. M is a P-polyform module. 

2. M is a polyform module. 

3. M is a quasi-invertibility monoform module. 

Then (1) ⇒ (2) ⇔ (3), and if R is a regular ring then (3) ⇒ (1). 

See Theorem 3.5.   

• Let M be a quasi-injective module with J(EndR(M))=(0), consider the following:   

1. M is a P-polyform module. 

2. M is a polyform module. 

3. M is a quasi-invertibility monoform module. 

Then (1) ⇒ (2) ⇔ (3). 

See Proposition 3.6.  

• Let R be a quasi-Dedekind ring. Consider the following:  

1. R is a P-polyform ring. 

2. R is a polyform ring. 

3. R is a quasi-invertibility monoform ring. 

4. R is a monoform ring. 

Then (1) ⇒ (2) ⇒ (3) ⇒ (4). 

See Proposition 3.7. 

• Let R be an essentially quasi-Dedekind ring. Consider the following: 

1. M is a P-polyform ring. 

2. M is a quasi-invertibility monoform ring. 

3. M is a polyform ring. 

Then (1) ⇒ (2) ⇒ (3). 

See Proposition 3.9. 

 

        Section four is studied the relationships between the P-polyform modules and other related 

modules such as in the following results:   

• Let M be a uniform module over a regular ring. Then M is P-polyform if and only if M is a 

monoform module, see Proposition 4.3. 

• Every P-polyform module is essentially quasi-Dedekind, see Proposition 4.4. 

• Every P-polyform module is ESQD, see Proposition 4.9. 

• Let M be a uniform and essentially quasi-Dedekind module. Consider the following 

statements:  

1. M is a Purely St-polyform module. 

2. M is a P-polyform module. 

3. M is a monoform module. 

4. M is a quasi-invertibility monoform module. 

5. M is a polyform module. 

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5). 

See Theorem 4.13. 

 

       It is noteworthy that all rings R in this paper are commutative with identity, and all modules 

are unitary left R-modules.   

 

2. P-Polyform Modules 

        This section is devoted to investigating the main properties of P-polyform modules. 

 



Baher and Ahmed                                    Iraqi Journal of Science, 2024, Vol. 65, No. 4, pp: 2160-2173 
 

2163 

Definition 2.1: An R-module M is called P-polyform if every essential submodule of M is P-

rational in M. Equivalently, HomR(
M

N
, E(M))=0 for every essential submodule N of M, which 

must be pure in M, where E(M) is the injective hull of M. A ring R is called P-polyform if R is 

P-polyform R-module. 

 

Examples and Remarks 2.2 

1. Every P-polyform module is a polyform module. This is followed by the direct implication 

from P-rational to rational submodules, [6]. 

2. The converse of (1) is not true in general, for example, the module of rational numbers ℚ is 

a polyform module, but not P-polyform, as it will be verified in (4) below. 

3. Each simple module is a P-polyform, since the only essential submodule in a simple module 

is itself which is a P-rational submodule, that is HomR(
M

M
, E(M))  HomR(0, E(M))=0. Thus, 

M is P-polyform. 

 

    Remember that an R-module M is said to be nonsingular if ℤ(M)=0, where ℤ(M)={xM:      

annR(x)≤eR}, [2, P.31]. 

 

4. It is known that every nonsingular module is polyform. This property is not held in the class 

of P-polyform modules, for example, the ℤ-module of rational numbers ℚ is nonsingular, 

but not a P-polyform module, since ℤ ≤𝑒 ℚ, but ℤ is not P-rational in ℚ, [6, Remark 2.2 

(2)]. 

5. Let M be a P-polyform module, then N≤𝑒M if and only if N≤𝑝𝑟M. 

     Proof: It follows directly from the definition of a P-polyform module. 

 

    Recall that an R-module M is called semisimple if every submodule of M is a direct summand 

of M, [1, P.107]. 

 

6. Every semisimple module is P-polyform because the only essential submodule of a 

semisimple module M is itself which is P-rational, see [6, Remark 2.3 (8)].  

7. ℤ4 is not P-polyform ℤ-module, since < 2̅ >≤𝑒 ℤ4 but not P-rational in ℤ4, [6, Example 

2.3 (4)]. 

 

       Remember that a non-zero module M is called pure simple if the only pure submodules of 

M are (0) and M itself, [7]. 

 

8. The ℤ-module ℤ𝑃∞ is not P-polyform, in fact, ℤ𝑃∞ is a pure simple module, and by, [6, 

Remark 2.3 (9)],  the only P-rational submodule of ℤ𝑃∞ is ℤ𝑃∞. On the other hand, <
1

𝑝
+

ℤ >≤𝑒 ℤ𝑃∞, but  <
1

𝑝
+ ℤ >≰𝑝𝑟 ℤ𝑃∞. Hence ℤ𝑃∞ is not P-polyform. 

9.  If  
M

N
 is a P-polyform R-module, then M is not necessarily P-polyform for example, ℤ6 ≅

ℤ

6ℤ
 is a P-polyform ℤ-module, since it is semisimple, while ℤ is not P-polyform ℤ-module 

since 2ℤ ≤𝑒 ℤ but 2ℤ ≰𝑝𝑟 ℤ, [6, Remark 2.3 (3)]. 

 

       A  ring R is said to be regular (in the sense of Von Neumann) if for every aR there is an 

xR such that axa=a, [2, P.10]. 

 

10. If M is a module over a regular ring, then the two classes polyform and P-polyform modules 

coincide.  
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       Proof: It follows directly by [6, Remark 2.3(11)]. 

 

        Recall that an R-module M is called a scalar if for each fEndR(M), there exists rR such 

that f(x)=rx for all xM, [8], where EndR(M) is the endomorphism ring of M.  

 

        The following proposition deals with the connection between P-polyform rings and the 

endomorphism ring of R-modules. 

 

Proposition 2.3: Let M be a faithful scalar R-module. Then R is P-polyform if and only if 

EndR(M) is a P-polyform ring.  

Proof: Since M is a faithful scalar R-module, then EndR(M)≅R, [9], so if R is a P-polyform 

ring, then EndR(M) is a P-polyform ring, and vice versa. 

 

        An R-module M is called multiplication, if every submodule of M is of the form IM, for 

some ideal I of R, [10]. Since every finitely generated multiplication module is scalar, [8, 

Corollary 1.1.11, P.12], then we obtain the following. 

 

Corollary 2.4: Let M be a finitely generated faithful multiplication module then R is P-

polyform if and only if EndR(M) is a P-polyform ring. 

 

        Remember that an R-module M is called prime if annR(M)=annR(N), for every non-zero 

submodule N of M, [11]. 

 

Proposition 2.5: Let M be a prime R-module, and N be a non-zero pure and essential 

submodule of M such that annR (
M

N
)⊈annR(M), then M is P-polyform.  

Proof: Let N be an essential submodule of M, and 0≠xM. Since M is prime then 

annR(M)=annR(x) xM. But annR (
M

N
)⊈annR(M), therefore annR (

M

N
)⊈annR(x). Now, 

N≤𝑒M, and since N is pure in M, then by, [6, Proposition 2.21], N≤𝑝𝑟M. Thus, M is a P-

polyform module. 

 

Proposition 2.6: If M is a P-polyform and N≤𝑒M, then N is a P-polyform module. 

 

Proof: Assume that K≤𝑒N and f: 
N

K
 →E(N) is a homomorphism where K≤N. To prove f=0.  

 

Consider the following diagram: 

 

 

 

 

 

 

 
N

K
  

M

K
  

             f     

           E(N)        h 

                        

              E(M) 

i2 

i1 
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Since E(M) is injective, then there exists h: 
M

K
 →E(M) such that: 

 

i2∘f = h∘i1, ……….. (i) 

Now, K≤𝑒N and N≤𝑒M, then K≤𝑒M [2, Proposition 1.1, P.16]. Since M is P-polyform then 

K≤𝑝𝑟M, this means HomR (
M

K
, E(M))=0. Beside that K is pure in M, so that K is pure in N, [5, 

Remark 2.8 (6), P.16]. Now, from (i), we get f=0, that is K≤𝑝𝑟N. Thus, N is P-polyform.  

 

Another proof: 

         Suppose that K≤𝑒N. Since N≤𝑒M, then K≤𝑒M, [2, Proposition 1.1, P.16]. But M is P-

polyform, then K≤𝑝𝑟M, therefore N is a P-polyform module. 

 

 Corollary 2.7: If the injective hull of any R-module M is P-polyform, then M is P-polyform. 

Proof: Since M≤𝑒E(M), and E(M) is P-polyform then the result followed by Proposition 2.6. 

 

         The following theorem gives another characterization of the definition of the P-polyform 

module. 

 

Theorem 2.8: Let M be an R-module. Then M is a P-polyform module if and only if 

HomR(
K

N
, M)= 0, for each essential submodule N of M, which is pure in M, and a submodule K 

of M, with NKM. 

Proof:  

⟹) Assume that N is an essential and pure submodule of M, and let K≤M with NKM. 

Suppose there exists a non-zero homomorphism f: 
K

N
 →M. Consider the following diagram: 

       

 

 

 

 

 

 

 

 

where i and j are the inclusion homomorphism. By injectivity of E(M), we obtain g∘i=j∘f. If 

f≠0, then g∘i≠0, so that g≠0. This causes a contradiction since M is P-polyform, thus f=0, hence 

HomR(
K

N
, M)=0. 

⟸)  Let N be an essential submodule of M, and f: 
M

N
 → E(M) be a non-zero homomorphism. 

Now, f(
M

N
)= 

K

N
 where K is a submodule of M such that NKM. Define : 

K

N
 → E(M) by 

(t+N)=f(t+N) for each (t+N) 
K

N
. It can be easily shown that  is well-defined and 

homomorphism. In addition, since f≠0, then ≠0, which is a contradiction, therefore M is P-

polyform. 

  

       Remember that a submodule N of an R-module M is called closed (simply N≤𝑐M) if N has 

no proper essential extension in M, [2, P.18]. A module M is called F-regular if every 

submodule of M is pure, [12].  

 

 

0 
K

N
  

M

N
  

             f    g 

             M  E(M) 
j 

i 
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Lemma 2.9: Let M be an R-module. Consider the following statements:    

1. For any submodule N of M and each non-zero homomorphism f: N→M, implies that 

kerf is closed in N.  

2. For any non-zero pure submodule N of M and each non-zero homomorphism f: N→M, 

implies that kerf is not essential in N. 

Then (1) ⇒ (2), and if M is an F-regular module, then (2) ⇒ (1). 

Proof:  

(1) ⇒ (2): Suppose there exists a non-zero pure submodule N of M and a non-zero 

homomorphism f: N→M such that kerf≤𝑒N. By assumption kerf≤𝑐N, hence kerf=N, that is 

f=0. But this is a contradiction, thus kerf≰𝑒N. 

(2) ⇒ (1): Assume that M is an F-regular module, and let N be a submodule of M, f: N→M be 

a non-zero homomorphism. Suppose that kerf≰𝑐N, so there exists a submodule K of N 

containing kerf such that kerf is essential in K. Now, consider the following sequences of 

homomorphism: 

K
i

→ N 
f

→ M 

where i is the inclusion homomorphism. Since f≠0 then f∘i≠0. In addition, kerf  K, then kerf 

= ker(f∘i) ≤𝑒 K. On the other hand, M is F-regular, therefore K is pure in M. When K=0, and 

because kerf is contained in K, then kerf=(0)≤𝑐N, which is a contradiction with our assumption, 

thus K≠0. So, we obtain a non-zero pure submodule K of M and a non-zero homomorphism 

(f∘i): K→M such that ker(f∘i)≤𝑒K. But this contradicts with (2), therefore kerf must be closed 

in N. 

 

Theorem 2.10: For any R-module M, consider the following statements: 

1. M is a P-polyform module. 

2. M is a polyform module. 

3. For any submodule N of M, and each non-zero homomorphism f: N→M, implies kerf 

is closed in N. 

4. For any non-zero pure submodule N of M, and any non-zero homomorphism f: N→M, 

implies kerf≰𝑒N. 

Then (1) ⇒ (2) ⇒ (3) ⇒ (4). 

Proof: 

(1) ⇒ (2): It is obvious.                                                                                                                                                           

(2) ⇒ (3): [13, Proposition 4.9, P.34].             .                                                                                                                                        

(3) ⇒ (2): Let N be an essential submodule of M, and 0 ≠ f HomR(
M

N
, E(M)). Suppose that 

f≠0, so there is m+N 
M

N
 such that f(m+N)=𝑚1where 𝑚1 E(M). But M ≤𝑒 E(M), so  rR 

with 0≠ r𝑚1 M. Put r𝑚1=t. Define g: N+Rm→Rt by g(n+rm)=rt for each nN, rR. To 

prove g is well-defined, suppose that 𝑛1 + 𝑟1m=𝑛2 + 𝑟2m, where 𝑛1, 𝑛2N, 𝑟1,𝑟2R, that is 

𝑛1- 𝑛2= (𝑟1-𝑟2) mN. But: 

 

                                  f [(𝑟1-𝑟2)(m+N)] = f [(𝑟1-𝑟2)m+N] = 0,                 ………………(1) 

Also, 

f (𝑟1-𝑟2)(m+N) = (𝑟1-𝑟2) f (m+N) = ( 𝑟1-𝑟2)𝑚1,                     ……………(2) 

 

    from (1) and (2) we get ( 𝑟1-𝑟2)𝑚1=0. This implies 𝑟1𝑚1-𝑟2𝑚2, therefore 𝑟1𝑟𝑚1- 𝑟2𝑟𝑚2, 

hence 𝑟1t=𝑟2t. thus g( 𝑛1 + 𝑟1m)=𝑟1t = g(𝑛2 + 𝑟2m)= 𝑟2t. That is g is well-defined. Besides that, 

g is a non-zero homomorphism. Also, N  kerg since nN, n=n+0m, so that g(n)=0t=0. Now, 

N kerg  M, and N≤𝑒M, then kerg ≤𝑒 M, [2, Proposition 1.1, P.16]. Moreover, we have kerg 
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 N+Rm M, therefore N+Rm ≤𝑒 M, [2, Proposition 1.1, P.16]. By the assumption kerg is 

closed in N+Rm, thus kerg=N+Rm. This implies that g=0 which is a contradiction, thus f=0. 

That is M is a polyform module. 

(3) ⇒ (4): It is just Lemma 2.9.   

 

3. P-Polyform Modules and Quasi-invertibility Monoform Modules 

        We explore an interesting relationship between P-polyform and quasi-invertibility 

monoform modules which is introduced by M.A. Ahmed, [14]. For that reason, this section is 

dedicated to investigating several important results about this connection. 

        Remember that a submodule N of an R-module M is called a quasi-invertible submodule 

of M (simply we used the symbol N≤𝑞𝑢M)  if HomR(
M

N
, M)=0, [15, P.6].  

        An R-module M is called Quasi-invertibility monoform (simply, QI-monoform), if every 

non-zero quasi-invertible submodule of an R-module M is rational in M, [14]. In the category 

of rings, we have the following. 

 

Proposition 3.1: Every P-polyform ring is a QI-monoform ring. 

Proof: Assume that R is a P-polyform ring, and N is a non-zero quasi-invertible ideal of R. 

Since every quasi-invertible ideal is essential, [15, Corollary 2.3, P.12], and  since R is P-

polyform, then every essential is P-rational ideal of R, hence N≤𝑟R, [6, Remark 2.2]. So that 

R is QI-monoform.  

 

        The converse of Proposition 3.1 is not true in general, for example: ℤ4 is QI-monoform 

but not P-polyform see Example 2.2 (7).  

        In the category of modules, there is no direct implication between P-polyform and QI-

monoform, but under certain conditions, we get some results as the following Proposition. 

 

Proposition 3.2: Let M be a multiplication and prime module. If M is P-polyform then M is 

QI-monoform.  

Proof: Suppose that M is a P-polyform module, and N is a non-zero quasi-invertible submodule 

of M. Since M is multiplication and prime, then N≤𝑒M, [15, Corollary 3.12, P.19]. By 

assumption N≤𝑝𝑟M, and consequently, N≤𝑟M, [6, Remark 2.2]. Thus, M is QI-monoform. 

  

        Also, by the same argument of the poof of  Proposition 3.2, and with replacing [15, 

Corollary 3.12, P.19], instead of [15, Theorem 3.11, P.18], we can prove the following.  

 

Proposition 3.3: Let M be a multiplication module with a prime annihilator. If M is P-polyform 

then M is QI- monoform.  

 

        Furthermore, we can use [15, Theorem 3.8, P.17] instead of [15, Theorem 3.11, P.18], to 

prove the following. 

 

Proposition 3.4: Let M be a quasi-injective R-module with J(EndR(M))=(0), if M is P- 

polyform, then M is QI-monoform. 

Proof: Assume that M is a P-polyform module and N≤𝑞𝑢M. Since M is quasi-injective and 

J(EndR(M))=(0), then N≤𝑒M, [15, Theorem 3.8, P.17]. On the other hand, M is P-polyform, so 

N≤𝑝𝑟M, hence N≤𝑟M, [6, Remark 2.2]. Thus, the proof is complete. 
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Theorem 3.5: Let M be a multiplication and prime R-module. Consider the following: 

1. M is a P-polyform module. 

2. M is a polyform module. 

3. M is a QI-monoform module. 

Then (1) ⇒ (2) ⇔ (3), and if R is a regular ring, then (3) ⇒ (1).  

Proof: 

(1) ⇒ (2): It is obvious. 

(2) ⇔ (3): Since M is multiplication and prime, then the result follows by [14, Proposition 4.4]. 

(3) ⇒ (1): Assume that M is QI-monoform, and let N≤𝑒M. Since M is multiplication and prime, 

then N≤𝑞𝑢M, [15, Corollary 3.12, P.19]. But M is QI-monoform then N≤𝑟M, [14]. In contrast, 

R is a regular ring then M is F-regular, [5, P.29], this implies that N≤𝑝𝑟M, [6, Remark 2.3 (10)]. 

Thus, M is P-polyform.  

     

Proposition 3.6: Let M be a quasi-injective module with J(EndR(M))=(0), consider the 

following:   

1. M is a P-polyform module. 

2. M is a polyform module. 

3. M is a QI-monoform module. 

Then (1) ⇒ (2) ⇔ (3).  

Proof: 

(1) ⇒ (2): It is clear. 

(2)⇔(3): Since M is a quasi-injective module with J(EndR(M))=(0), then according to [14, 

Proposition 4.5], the equivalence between polyform and QI-monoform is achieved. 

 

Proposition 3.7: Let R be a quasi-Dedekind ring. Consider the following:  

1. R is a P-polyform ring. 

2. R is a polyform ring. 

3. R is a QI-monoform ring. 

4. R is a monoform ring. 

Then (1) ⇒ (2) ⇒ (3) ⇒ (4). 

Proof: 

(1) ⇒ (2): It is straightforward. 

(2) ⇒ (3) ⇒ (4): Since R is a quasi-Dedekind ring, then by [14, Theorem 4.13], the required 

result will be achieved. 

  

         As a consequence of Proposition 3.7, we have the following. 

 

Corollary 3.8: Let R be an integral domain. Consider the following: 

1. R is a P-polyform ring. 

2. R is a polyform ring. 

3. R is a QI-monoform ring. 

4. R is a monoform ring. 

Then (1) ⇒ (2) ⇒ (3) ⇒ (4). 

Proof: Since every integral domain is quasi-Dedekind, [15, Example 1.4, P.24], then the result 

follows directly by Proposition 3.7. 

 

        Recall that an R-module M is an essentially quasi-Dedekind module, if HomR (
M

N
, M)=0, 

for all N≤𝑒M, [16].  
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Proposition 3.9: Let R be an essentially quasi-Dedekind ring. Consider the following: 

1. R is a P-polyform ring. 

2. R is a QI-monoform ring. 

3. R is a polyform ring. 

Then (1) ⇒ (2) ⇒ (3). 

Proof: 

(1) ⇒ (2): It is just Proposition 3.1. 

(2) ⇒ (3): Since R is an essentially quasi-Dedekind ring, then from [14, Theorem 4.9], R is a 

polyform ring. 

 

4.  P-Polyform Modules and Other Related Concepts 

     In this section, the relationships between a P-polyform module and some related concepts 

are discussed such as monoform, essentially quasi-Dedekind, essentially prime and ESQD. 

Moreover, a purely St-polyform module is introduced and its relationship with a P-polyform 

module is considered.  

     It is known that every monoform module is polyform. This fact is not satisfied for P-

polyform modules. For example, the ℤ-module of rational numbers ℚ is monoform, [17], while 

ℚ  is not P-polyform as shown in Example 2.2 (4).  

 

Proposition 4.1: Any monoform module over a regular ring is P-polyform. 

Proof: Let M be a monoform module over a regular ring and N≤𝑒M. Since R is a regular ring 

then M is F-regular, [5, P.29]. On the other hand, the module M is monoform, then every non-

zero submodule of M is rational. But M is F-regular then N≤𝑝𝑟M. Therefore, M is P-polyform. 

  

Proposition 4.2: Let M be a uniform module. If M is P-polyform then M is monoform. 

Proof: Suppose that M is a P-polyform module, and let N be a non-zero submodule of M. Since 

M is uniform, then N≤𝑒M, but M is P-polyform. So that N≤𝑝𝑟M, hence N≤𝑟M, [6, Remark 

2.2]. Thus, M is a monoform module. 

  

       However, if R is a regular ring, then the converse of Proposition 4.2 is true, as the following 

shows. 

 

Proposition 4.3: Let M be a uniform module over a regular ring. Then M is P-polyform if and 

only if M is a monoform module. 

Proof:  

⟹) It follows directly by Proposition 4.2. 

⟸) Assume that M is a monoform module, and let N be a non-zero submodule of M, then 

N≤𝑟M. Since R is a regular ring, then M is F-regular, [5, P.29]. This implies that N≤𝑝𝑟M, [6, 

Remark 2.3 (10)]. Thus, M is P-polyform. 

 

Proposition 4.4: Every P-polyform module is essentially quasi-Dedekind. 

Proof: Let M be a P-polyform module, and N be an essential submodule of M. Suppose that f: 
M

N
 ⟶ M is a homomorphism. Consider the following sequence of homomorphism: 

 
M

N

f
→ M 

i
→ E(M) 
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where i is the inclusion homomorphism and E(M) is the injective hull of M. Since M is P-

polyform, then HomR(
M

N
, E(M))=0. So that i∘f=0, hence f=0. Thus HomR(

M

N
, M)=0 for each 

N≤𝑒M, that is M essentially quasi-Dedekind. 

 

         An R-module M is essentially prime if annR(M) = annR(N) for each N≤𝑒M, [18, P.47]. 

 

Corollary 4.5: Every P-polyform module is essentially prime. 

Proof: Since every essentially quasi-Dedekind module is essentially prime, [18, Proposition 

2.1.8, P.47], then the result follows from Proposition 4.4. 

 

         Recall that an R-module M is purely quasi-Dedekind if every proper non-zero pure 

submodule of M is quasi-invertible, [19].  

  

Remark 4.6: The two concepts P-polyform and purely quasi-Dedekind are independent. For 

example ℤ-module ℤ4 is purely quasi-Dedekind, [19, Remark 2.3 (7)], but it is not P-polyform 

see Example 2.2 (7). In contrast, the ℤ-module ℤ6 is P-polyform, since it is semisimple, but it 

is not purely quasi-Dedekind, [19, Remark 2.3 (2)]. 

 

        Remember that a submodule N of an R-module M is  SQI if for each fHomR (
M

N
, M), 

implies that f (
M

N
) is small in M, and an R-module M is an SQD-module if each non-zero 

submodule N of M is an SQI-submodule, [20]. 

 

Remark 4.7: The two concepts P-polyform and SQD module are independent. For example, 

ℤ4 is SQD module but not P-polyform.   

 

         This leads us to define the following. 

 

Definition 4.8: An R-module M is called ESQD if every essential submodule of M is SQI. 

 

Proposition 4.9: Every P-polyform module is ESQD. 

Proof: Let M be P-polyform, and N is an essential submodule of M. Since M is P-polyform, 

then N≤𝑝𝑟M, so that N≤𝑟M. Since every rational submodule is purely quasi-invertible, 

therefore N is an SQI submodule.      

  

         Following [21], a submodule N of an R-module M is St-closed (simply N≤𝑠𝑡𝑐M), if N 

has no proper semi-essential extensions in M, where a submodule N is said to be semi-essential 

if N∩P≠0 for every non-zero prime submodule P of M. A module M is called St-polyform, if 

for each submodule N of M and all homomorphism f:  N→M, kerf is an St-closed submodule 

of M, [22]. 

 

Remark 4.10: The two concepts P-polyform and St-polyform are independent. For example, 

ℤ2 is P-polyform but not St-polyform, [22]. In contrast, St-polyform is not P-polyform because 

of the purity property.  

 

        This motivates us to define the following. 

 

Definition 4.11: An R-module M is called purely St-polyform if each semi-essential submodule 

of M is P-rational in M. 
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Remark 4.12: Every purely St-polyform is P-polyform. 

Proof: Since every essential submodule is semi-essential, [21], then the result is obtained. 

 

Theorem 4.13: Let M be a uniform and essentially quasi-Dedekind module. Consider the 

following statements:  

1. M is a purely St-polyform module. 

2. M is a P-polyform module. 

3. M is a monoform module. 

4. M is a QI-monoform module. 

5. M is a polyform module. 

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5). 

Proof: 

(1) ⇒ (2): It is just Remark 4.12. 

(2) ⇒ (3): Since M is uniform and a P-polyform module, so by Proposition 4.2, M is monoform. 

(3) ⇒ (4) ⇒ (5): Since R is a uniform and essentially quasi-Dedekind, then the result follows 

by [14, Theorem 4.11]. 

 

          Since every nonsingular module is essentially quasi-Dedekind [14, Remark 4.8 (3)], then 

we deduce the following. 

 

Corollary 4.14: Let M be a uniform and nonsingular module. Consider the following:  

1. M is a purely St-polyform module. 

2. M is a P-polyform module. 

3. M is a monoform module. 

4. M is a QI-monoform module. 

5. M is a polyform module.  

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5). 

 

5.  Conclusions 

         In this work, the class of polyform modules has been restricted to a new class. It is called 

P-polyform modules. The main results of this paper are summarized as follows: 

 

1. Several results were introduced which described the main properties of P-polyform modules.  

2. Sufficient conditions were investigated under which P-polyform and polyform modules are 

identical.  

3. Another characterization and partial characterization of P-polyform modules are given.  

4. Sufficient conditions under which P-polyform and QI-monoform modules are identical are 

discussed.  

5. Many connections between P-polyform and other related concepts were studied and 

established. 

6. Some classes of modules which contain a P-polyform module are examined, such as 

essentially quasi-Dedekind and essentially prime modules.  

 

Finally, all these relationships can be represented in the following diagram: 
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