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Abstract

Let R be a ring. JS-injective right R-modules are introduced and studied in this
paper as a generalization of small-injective right R-modules. Let N and M be right
R-modules. A module M is said to be JS-N-injective if every R-homomorphism
from a submodule of J(N)J(Rg) into M extends to N. If a module M is
JS-R-injective, then M is called JS-injective. Many characterizations and properties
of JS-injective right R-modules are obtained. Rings over which every right module
is JS-injective are characterized. We study quotients of JS-injective right modules.
Then we give conditions under which the class of JS-injective right modules is
closed under direct sums.

Keywords: JS-injective module; small-injective module; Noetherian module;
projective module.
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1. Introduction

Let R be a ring with identity 1. Throughout this paper, all modules are unitary and by a
module (resp. homomorphism) we mean a right R-module (resp. right R-homomorphism), if
not otherwise specified. The class of right R-modules is denoted by Mod-R. We write J(M)
and soc(M) for the Jacobson radical and the socle of a right R-module M, respectively. We
write Z, for the right singular ideal of a ring R. We denote to J(M)J(Rg) by JS(M) for any
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right R-module M. For any a € M, we use r(a) to denote the right annihilator of a in R.
Throughout this paper, R is an associative ring. We refer the reader to [1-6], for general
background materials.

Injective modules play an important role in module theory, and extensively many authors
are studied their generalizations (see, for example, [7-12]). A right R-module M is called
small injective if every R-homomorphism from a small right ideal of R into M can be
extended to Ry [7, p.2160]. A right R-module M is called soc-injective if any homomorphism
f:soc(Rg) = M can be extended to Ry [10].

In this article we introduce the concept of JS-injective modules. Let N and M be modules.
We say that M is a JS-N-injective if every homomorphism f: K - M extends to N, where K
is a submodule of J(N)J(Rg). If M is a JS-R-injective, then M is called a JS-injective. First,
we give an example to clarify that the notions JS-injectivity and small-injectivity are deferent.
Some properties of JS-injective modules are obtained. We prove that this class of modules is
closed under isomorphic copies, direct products, summands and finite direct sums. Some
characterizations of JS-injective modules are given, for example we prove that a module M is
JS-injective if and only if Ext'(R/K,M) =0, for any submodule K of JS(Rg), where
Ext!(4, B) is defined as the first right derived functor of Homg(4, B), for any two right R-
modules A, B (see [5, Ch. 111] for more details). We characterize rings over which all modules
are JS-injective. We prove the equivalence of the following statements: (1) JS(Rg) = 0; (2)
All modules are JS-injective; (3) All submodules of JS(Rg) are JS-injective; (4) All
submodules of JS(Rg) are direct summand of Rp. We study quotients of JS-injective
modules. For instance, we prove that the equivalence of the following: (1) The class of JS-
injective right R-modules ( /SIg) is closed under quotient; (2) Sums of any two JS-injective
submodules of any right R-module is JS-injective; (3) All submodules of JS(Rg) are
projective. Finally, we give conditions such that the class /S is closed under direct sums.
For instance, we prove that JS(Rg) is Noetherian if and only if any direct sum of JS-injective
right R-modules is JS-injective.

2. JS-Injective Modules

In this section, we introduce and study the concept of JS-injective modules.
Definition 2.1. Let N and M be modules. A module M is said to be JS-N-injective, if any
homomorphism f: K — M extends to N, where K is a submodule of JS(N)=J(N)J(Rg). If M
is a JS-R-injective, then a module M is called a JS-injective.
The class of JS-injective right R-modules is denoted by JS1j.

Examples 2.2.

1- Clearly, every small-injective module is a JS-injective, but the converse is not true in
general, for example: let Z, be the field of two elements and let R = Z,[xq, x5, ... ] with
xf =x7 =0 forall i, x;x; = 0 for all i # j and x{ = 0 for all i. If m = x7, then J(Rg) =
span{m, x;,%,, ...}, (J(Rg))? =soc(Rg) = Z,m and Ry is a soc-injective module (see
[10, Example 5.7]) and hence Ry is a JS-injective module. By [10, Example 5.7], the
R-homomorphism y:J(Rg) — Ry which is given by y(a) = a? for all a € J(RR) can not
extend to R, then R is not small injective. Hence JS-injectivity is a proper generalization of
small-injectivity.

2- If N is a right R-module with JS(N) = 0 (in particular, if J(N) = 0 or J(Rg) = 0),
then every module is JS-N-injective.
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3- All Z-modules are JS-N-injective, for any module N, and hence all Z-modules are
JS-injective.

Proposition 2.3. Let N, M and K be right R-modules. Then the following statements hold:

(1) The class of JS-N-injective modules is closed under isomorphic copies, direct
products, direct summands and finite direct sums.

(2) Forany submodule K of N, if M is JS-N-injective module, then M is JS-K-injective.
(3) If M is JS-N-injective module, then M is  JS-K-injective, for any module K
isomorphic to N.

Proof. Clear. O

From Proposition 2.3, we get directly the following result.
Corollary 2.4. The class JSI is closed under isomorphic copies, direct products, summands
and finite direct sums.

Proposition 2.5. Let {N;:i € I} be a family of modules. If JS(®;¢;N;) is a multiplication
module, then a module M is JS-@;¢; N;-injective if and only if it is a JS-N;-injective, for
each i € 1.

Proof. (=) By Theorem 2.3 ((2) and (3)).

(<) Suppose that M is JS-N;-injective, for each i € l. Let K be a submodule of
JS(®,¢N;). By [3, Corollaries 9.1.5(c), p.215] J(@;e;N;)= D J(N;) and hence
IS(@ie/N;) =I(@ierNi)I(RR) = @ie; J(N)J(Rr) = @i/ IS(N;). Since IS(@ieN;) Is a
multiplication module (by hypothesis) and K a submodule of JS(;¢;N;), we have from [13,
Theorem 2.2, p. 3844] that K=@®,¢;K; with K; is a submodule of JS(N;). For each i € I,
consider the following diagram:

KL' élz Ni

where iy, iy, are injection homomorphisms and iy, i, are inclusion homomorphisms. Since
M is a JS-N;-injective, there exists a homomorphism h; : N; — M such that h;i, = fig,. By
[3, Theorem 4.1.6 (2), p.83], there exists one homomorphism h: @;¢;N; — M satisfying
h; = hiy,. Thus fig, = hji; = hiy;i; = hijix, for all i € 1. Let (a;)ie; € @K, thus
a; €K;, forall i €I and f((a)iep) = f Qier ik, ((a)ien) = (hip)((ay)ier)- Thus f = hiy
and this implies that M is a JS-@;¢; N;-injective module. o

If each right ideals of a ring R is an ideal, then R is called right invariant [13, p.3839].

Corollary 2.6. Let R be a right invariant ring with JS(Rg) be a cyclic ideal in R and let
1=r,+r,+--+mn IinR, where the r; are orthogonal idempotents. Then a right R-module
M is JS-injective if and only if M is JS-r;R-injective for every i = 1,2, -+ n.
Proof. By [1, Corollary 7.3, p.96], we have R = @].,r;R. Since R is a right invariant ring
and JS(Rg) is a cyclic ideal in R, we get from [13, Proposition 3.1, p. 3855], that JS(RR) is a
right multiplication module and hence from Proposition 2.5 implies that M is a JS-injective if
and only if M is a JS-r;R-injective. o
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In the next result, we give some characterizations of JS-injective modules.
Proposition 2.7. The following statements are equivalent for a right R-module M:
(1) M is JS-injective;
(2) Ext'(R/K,M) = 0, for any submodule of JS(Ry);
(3) For each submodule K of JS(RR) and for each R-homomorphism f: K — M, there is
m € M with f(r) = mr forany r € K.
Proof. (1)=(2) Since i -

0 > K > R > R/K > 0

is an exact sequence, where i and m are the inclusion and canonical homomorphisms,
respectively, it follows from [14, Theorem 4.4(3), p.491] that there exists an exact sequence

0 — Homgp(R/K,M) —Z— Homg(R,M) — 5 Homg(K, M)
—> Ext’(R/K,M) — Ext'(R,M) —> Ext}(K,M) —..........
Since Ry, is projective, it follows from [14, Theorem 4.4(1), p. 491] that Ext!(R, M) = 0 and

hence the sequence 0 — Homgz(R/K,M) 5 Homg (R, M) 5 Homg (K, M) —
Ext'(R/K ,M) -0 is exact. By hypothesis, the sequence

0—Homg(R/K , M) > Homg(R, M) - Homg(K,M) > 0 is exact and  hence
Ext'(R/K,M) = 0.
(2)=(1) Let K be a submodule of JS(R). As the proof of (1) =(2) we have that the sequence

0 —> Homg(R/K,M) =—» Hompg(R,M) —» Homg(K, M) —> Ext'(R/K,M) —> 0

is exact. By hypothesis, Ext'(R/K,M) =0 and hence the sequence

* LR

T .
0 __, Homg(R/K,M) ——s Homg(R,M) _' _, Homg(K,M) — Oisexact.

(1)e=(3) Itisclear. o

Proposition 2.8. For a module M, the following conditions are equivalent:

(1) Every module is JS-M-injective;

(2) All submodules of JS(N) are JS-M-injective, where N is any right R-module;

(3) All submodules of JS(M) are JS-M-injective;

(4) All submodules of JS(M) are summand of M,

(5)JS(M) = 0.

Proof. (1)=(2)=(3) and (5)=(1) are clear.

(3)=(4) Let K be a submodule of JS(M). Let i: K — M and Ix: K — K be the inclusion and
the identity homomorphisms, respectively. By hypothesis, K is JS-M-injective and so there is
a homomorphism g:M — K with gi = Ix. Then a monomorphism i is split and this
implies that K is a summand of M.

(4)= (5) Let x € JIS(M), thus x € J(M)J(Rg) < J(M). By [3, Corollary 9.1.3(a), p.214], xR is
a small submodule of M. By hypothesis, xR is a summand of M and hence M = xR®K for
some submodule K of M. Since xR is a small submodule of M, K = M and hence xR = 0 So,
x = 0 and hence JS(M) = 0. o

Corollary 2.9. The following statements are equivalent for a ring R:

(1) Every right R-module is JS-injective;
(2) Every submodule of JS(N) is JS-injective, where N is any right R-module;
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(3) Every submodule of JS(Rg) is JS-injective;

(4) Every submodule of JS(Rg) is a direct summand of R;
(5) JS(RR) = 0.

Proof. By taking M = Ry and applying Proposition 2.8. o

Proposition 2.10. Let M be a right R-module. Then JS(M) is a semisimple direct summand
of M if and only if all modules are JS-M-injective.

Proof. (=) Let JS(M) be a semisimple direct summand of M. Let K be submodule of
JS(M). By hypothesis, M =JS(M) @ W for some submodule W of M. Since JS(M) is
semisimple, JS(M) = K@H, for some submodule H. We obtain M = KGH®W and hence
every submodule of JS(M) is a summand of M. Thus Proposition 2.8 implies that all modules
are JS-M-injective.

(<) Suppose that every right R-module is JS-M-injective. By Proposition 2.8, JS(M) = 0
and hence JS(M) is a semisimple summand of M. o

Definition 2.11. [15] A ring R is called zero insertive if for any a, b € R such that ab = 0,
then aRb = 0.

Lemma 2.12. [15, Lemma 2.11] Let R be a zero insertive ring, then RaR + r(a) S°° Ry, for
every a € R.

Proposition 2.13. If all simple singular right modules over a zero insertive ring R are
JS-injective, then JS(Rg) = 0.

Proof. Assume that JS(Rg) # 0. Thus there is 0 # a € JS(Rg), and hence RaR is a small
right ideal in R. If RaR + r(a) & R, then RaR + r(a) < K for some maximal right ideal K
of R. By Lemma 2.12, we have RaR + r(a) is an essential in Rz and hence K is an essential
in Rz and so R/K is a simple singular right R-module (by [4, Example 7.6(3) p. 247]). By
hypothesis, R/K is a JS-injective module. Consider the mapping f:aR — R/K defined by
f(ar) =r+ K forall r € R. Thus f is a well-defined right R-homomorphism. Since aR is a
right ideal of R with aR S JS(Rg), it follows from JS-injectivity of R/K, there is a
homomorphism g:R — R/K with g(x) = f(x) for all x €aR. Thus 1+ K = f(a) =
g(a) =g(1)a=(c+K)a=ca+K, for some c € R and hence 1 —ca € K. Since ca €
RaR € K, it follows that 1 € K and hence K = R and this is a contradiction. Thus, RaR +
r(a) = R. Since RaR is asmall ideal in R which implies that r(a) = R and so a = 0 and
this is a contradiction. Thus JS(Rg) = 0. O

Corollary 2.14. If all simple singular right modules over a zero insertive ring R (in
particular, over a commutative ring R) are JS-injective, then Mod-R = JSIj.
Proof. By Proposition 2.13 and Corollary 2.9. o

Theorem 2.15. The following conditions are equivalent for a ring R:

(1) JIS(Rg) = 0;

(2) Every right R-module is JS-injective;

(3) All simple modules are JS-injective.

Proof. Clearly, from Corollary 2.9, we have (1)=(2)=(3).

(3)=(1). Assume that JS(R;) # 0. Thus there is 0 # a € JS(Rg), and hence aR is a small
right ideal in R. If JS(RR) + r(a) & R, then JS(RR) + r(a) € K for some maximal right
ideal K of R, by [3, Theorem 2.3.11, p. 28]. Since R/K is a simple module, it follows from
hypothesis that R/K is a JS-injective. Consider the mapping f:aR — R/K defined by
f(ar) =r+ K forall r € R. Thus f is a well-defined right R-homomorphism. Since aR is a
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right ideal of R with aR < JS(RR) it follows from JS-injectivity of R/K, there is a right R-
homomorphism g: R — R/K such that g(x) = f(x) for all x € aR. Thus 1 + K = f(a) =
g(a) =g()a=(c+K)a=ca+K,for some c €RR and hence 1 —ca € K. Since ca €
JS(RR) € K, it follows that 1 € K and hence K = R and this is a contradiction. Therefore,
JS(RR) + r(a) = R. Since JS(Rg) is a small ideal in R which implies that r(a) = R and so
a = 0 and this is a contradiction. Thus JS(R;g) = 0. O

Proposition 2.16. If all simple singular right R-modules are JS-injective, then r(a) is a
summand of R and aR is projective, for every a € JS(RR).

Proof. For every a € JS(Rg), let L = RaR +r(a). There exists K < Ry such that
L @ K <% Rg. Assume that LK # R, then L @ K < I for some maximal right ideal I of R
and so I <% Ry. Therefor R/I is simple singular and by hypothesis, R/I is JS-injective. We
define f:aR — R/I by f(ar)=r+1 for all re€R. Then f is a well-defined
R-homomorphism. Since aR is a right ideal of R with aR € JS(Rg), it follows from
JS-injectivity of R/K, there is a homomorphism g:R — R/I with g(x) = f(x) for all
x€aR. Thus 1+1=f(a)=g(a)=g(1)a=(c+1a=ca+1,for some c€R and
hence 1 —ca € 1. Since ca € RaR <1 it follows that 1 € I and hence I = R and this is a
contradiction. Thus L @ K = R or RaR + (r(a) @ K) = R which implies that r(a) @ K =
R (since RaR < Rg). Now, we will prove that aR is a projective module. Since r(a) is a
summand of Ry, it follows that there exists an idempotent element, say e in R with r(a) =
(1 —e)R (by [6, 2.3(3), p.8]) with R = eR®(1 — e)R. Define 1:eR — aeR by A(er) =
aer, for all r € R. It is clear that A is an epimorphism. Let x € ker(4), thus A1(x) = 0 and so
x = er for some r € R and aer = 0. Hence er € r(a) and er € eR, and this implies that
x €eRNr(a) and so ker(A) S eRNr(a). Let y e RNnr(a), thus y =er and ay = 0. So
aer = 0 and hence A(y) = 0. Thus y € ker(4) and so eR N r(a) < ker(1). Thus ker(1) =
eRNr(a). Since R =eR®(1—e)R, we have eRN(1—-e)R=0. Since r(a)=(1-
e)R, we have eR N r(a) = 0. Since ker(1) = eR N r(a), we have ker(1) = 0. Thus A: eR —
aeR is an isomorphism. Clearly aR = aeR, since aeR S aR and if x € aR, then x = ar for
some r € R. So, x = ar = aer + a(1 —e)r. Since r(a) = (1 —e)R, we have a(l —e)r =
0 and so x = aer € aeR. Thus aR S aeR and hence aR = aeR. Since R = eRB(1 — e)R,
we have eR is projective. Since eR = aeR, we have aeR is projective. Since aR = aeR,we
have aR is a projective module. O

Corollary 2.17. If all simple singular right R-modules are JS-injective, then
Z,. N JS(Rg) = 0.

Proof. Assume that Z, n JS(Rg) # 0, then there exists 0 # a € Z,.NJS(Rg). Since a € Z,,
we have r(a) €% Rg. By Proposition 2.16, r(a) €® Rz and so r(a) NK =0 and
r(a) + K = R, for some K < Ry. Since r(a) €% Rg, which implies that K =0 and so
r(a) = R and hence a = 0 but this a contradiction. Thus Z,, N JS(R;) = 0. O

If M is a projective right R-module, then it is not necessary that all submodules of JS(M)
are projective, for example M = Zg as Zg-module, then JS(M) =JS(Zg) =< 4 >= {0, 4} is
not projective Zg-module. Assume that < 4 > is a projective Zg-module. Since < 4 > is a
local Zg-module, we get from [1, Corollary 26.7, p.300] that a finitely generated Zg-module
< 4 > is a free Zg-module and hence < 4 >= {0, 4} is isomorphic to (Zg)™ for some positive
integer n and this is a contradiction. Thus JS(Zg) =< 4 > is not projective.

Theorem 2.18. The following statements are equivalent for a projective module M:
(1) The class of JS-M-injective modules is closed under quotient;
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(2) All quotients of an injective module are JS-M-injective;

(3) The sum of any two JS-M-injective submodules of any module is a JS-M-injective;
(4) The sum of any two injective submodules of any module is a JS-M-injective;

(5) All submodules of JS(M) are projective.

Proof. Clearly, we have (1)=(2) and (3)=(4).

(2)=>(5) Let D and N be modules and consider the following diagram

N f;D >0

h

0 > U i>M

where U is a submodule of JS(M), f epimorphism, h is a homomorphism, and i is the
inclusion homomorphism. By Proposition 5.2.10 in [2, p. 148], we can take N to be an
injective R-module. By JS-M-injectivity of D, we have ai = h for some homomorphism
a:M — D. By projectivity of M, we get that @ can be lifted to an R-homomorphism
@M — N with f& =a. Let h:U — N be the restriction of @ over U. It is clear that
fh = h and hence U is projective.

(5)=>(1) Let A and B be modules with A is JS-M-injective and let h:A — B be an
epimorphism. Consider the following diagram:

0 > K L > M

]

A > B > 0

where K is a submodule of JS(M), i is the inclusion map and f: K — B is a homomorphism.
By (5), K is projective and hence there exists a homomorphism g:K — A with hg = f.
Since A is JS-M-injective, there exists a homomorphism §:M — A with gi = g. Put
a=hg:M — B.Thus ai = hgi = hg = f and hence B is JS-M-injective.

(1)=>(3) Let K be a module and K; and K, be JS-M-injective submodules of it. Clearly,
there is an epimorphism form K; + K, onto K;®K,. Since K;®K, is JS-M-injective (by
Corollary 2.4), it follows from hypothesis that K; + K, is JS-M-injective.

(4)=(2) Let N be a submodule of an injective module E. Let Q = E® E, K = {(n,n)| n €
N}, Q=Q/K,H,={y+K€eQ| yeE®O0} and H,={y+K€ Q| yeE0® E}. Then
Q=H,+H, Since (E®ONK=0and (0D E)NK =0, it follows that E = H;, i =
1,2. Clearly, H,nH, =N under y+— y+K for all y e N @ 0. By hypothesis, Q is
JS-M-injective. Since H, is injective, it follows that Q = H; @ A for some submodule A of Q
and hence A = (H,; + H,)/H; = H,/(H; N H,) = E/N. By Theorem 2.3 ((4),(5)), E/N is
JS-M-injective. O

Corollary 2.19. Foraring R, the following conditions are equivalent:

(1) The class JSIy is closed under quotient;

(2) All quotients of small-injective modules are JS-injective;

(3) All quotients of injective modules are JS-injective;

(4) The sum of any two JS-injective submodules of any module is a JS- injective;
(5) The sum of any two small-injective submodules of any module is a JS-injective;
(6) The sum of any two injective submodules of any module is a JS-injective.
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(7) All submodules of JS(Ry) are projective.
Proof. The equivalence of (1),(3),(4),(6) and (7) are clear, by taking M = Ry and applying
Theorem 2.18. Also, (1)=(2)=(3) and (4)=(5)=(6) are clear. O

Let N be a right R-module. A right R-module M is called a rad-N-injective, if for any
submodule K of J(N), any right R-homomorphism f: K — M extends to N [16, p.412].

Theorem 2.20. The following conditions are equivalent for a finitely generated module M:

(1) JS(M) is a Noetherian R-module;

(2) The class of JS-M-injective modules is closed under a direct sums;

(3) All direct sums of rad-M-injective modules are JS-M-injective;

(4) All direct sums of small-M-injective modules are JS-M-injective;

(5) All direct sums of injective modules are JS-M-injective;

(6) K™ is JS-M-injective, for any injective module K and for any index set L;

(7) K™ is JS-M-injective, for any injective right R-module K.

Proof. (2)=(3)= (4) =(5) =(6)=(7) are clear.

(1)=(2) Let E = @;¢;M;, where M; are JS-M-injective modules. Let K be a submodule of
JS(M) and f:K — E be a homomorphism. Since JS(M) is a Noetherian module (by
hypothesis), K is finitely generated and hence f(K) S @ ;¢;M;, for some finite subset J of 1.
Since a finite direct sum of JS-M-injective modules is a JS-M-injective (by Corollary 2.4), we
have @ ;c;M; is JS-M-injective. Define a: K — @;¢;M; by a(x) = f(x), forevery x € K.
It is clear that «a is a right R-homomorphism. By JS-M-injectivity of & ;c;M;, we have
gix = a for some homomorphism g: M — @ ;¢;M;, where ix: K — M is the inclusion map.
Let 7: @ je;M; — @;¢/M; be the inclusion homomorphism. Define h: M — E = @, M; by
h(x) = (t o g)(x) for every x € M. Since t and g are right R-homomorphisms, we have that
h is a right R-homomorphism. Thus, for all a € K, we have that (hig)(a) = ((tg)ix)(a) =
(gix)(a) = a(a) = f(a) and hence E is JS-M-injective.

(7)=(1) Let K; S K,.. be a chain of submodules of JS(M). For each i > 1, let

E;=EM/K;) and E = @;2,E;. For every i > 1, weput M; =[[;L,E; = E;® (]‘[&E-),

i)
then M; is injective. By hypothesis, ®;2,M; = (&;2,E;)® <®§1Hf=15j> is JS-M-injective.
i)
By using Theorem 2.3(5), we obtain that E is JS-M-injective. Define f: H = U;2,K; — E by
f(x) = (x + K;);. Obviously, f is a well-defined right R-homomorphism. Since K; are
submodules of JS(M), so U;2,K; isa submodule of JS(M). By JS-M-injectivity of E, there
exists a right R-homomorphism g:M — E = @;2,E; such that goiy =f, where
iy:H— M is the inclusion homomorphism. Since M is finitely generated,
gM) c ®E(M/K;) for some n and hence f(H)< @, E(M/K;). Let
m;: @2, E(M/K;) — E(M/K;) be the projection homomorphism. Thus m;f (x ) = m;((x +
K)j>1) =x+K; forall x€H andi > 1andhence n;f(H) = H/K; forall i > 1. Since
f(H) € ®-,E(M/K;), we have that H/K; =m;f(H)=0 forall i>n+1.S0 H =K;
for all i >n+1 and hence the chain K; € K, € ---stops at K,,, and so JS(M) is
Noetherian. i

Corollary 2.21. If N is a finitely generated module, then the following statements are

equivalent:
(1) JS(N) is a Noetherian module;
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(2) For any index set L, M™) s a JS-N-injective, for each rad-N-injective module M;
(3) For any index set L, M™ is a JS-N-injective, for each small-N-injective module M;
(4) For any index set L, M™® is a JS-N-injective, for each JS-N-injective module M;
(5) MM s a JS-N-injective, for each rad-N-injective module M;

(6) MM is a JS-N-injective, for each small-N-injective module M;

(7) M®™ is a JS-N-injective, for each JS-N-injective module M.

Proof. By Theorem 2.20. o

Corollary 2.22. The following statements are equivalent for a ring R:

(1) JS(RR) is a Noetherian module;

(2) The class JS1 is closed under direct sums;

(3) The direct sums of a small-injective modules are JS-injective;

(4) The direct sums of an injective modules are JS-injective;

(5) For any index set L, M®) is a JS-injective, for any injective module M;
(6) For any index set L, M™ is a JS-injective, for any small-injective module M;
(7) For any index set L, M® is a JS-injective, for any JS-injective module M;
(8) MM s a JS-injective, for any injective module M;

(9) MM s a JS-injective, for any small-injective module M;

(10) MM s a JS-injective, for any JS-injective module M;

Proof. By using Theorem 2.20 and Corollary 2.21. o

3. Conclusions

A JS-injective right R-module is an introduced and studied in this paper as a generalization
of small-injective right R-module. We say that a right R-module M is a JS-injective if every
right R-homomorphism f: K — M extends to R, where K is a submodule of J(Rg)J(Rg). We
prove that the class JS-injective modules is closed under isomorphic copies, direct products,
summands and finite direct sums. Some characterizations of JS-injective modules are given.
We characterize rings over which all modules are JS-injective, for example we prove that
JS(Rg) = 0 if and only if all modules are JS-injective if and only if all submodules of a
JS(RR) are direct summand of Rg. We study quotients and direct sums of JS-injective
modules. We prove that the class of a JS-injective right R-modules is closed under quotients if
and only if all submodules of JS(Rg) are projective. Also, we prove that the class of JS-
injective right R-modules is closed under direct sums if and only if JS(Ry) is a Noetherian
module.
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