Zone and Mehdi

Iraqi Journal of Science, 2024, Vol. 65, No.5, pp: 2649-2658 DOI: 10.24996/ijs.2024.65.5.24

ISSN: 0067-2904

On A Generalization of Small-Injective Modules

Zahraa Abbas Zone, Akeel Ramadan Mehdi^{*}

Mathematical Department, Education College, University of Al-Qadisiyah, Al-Diwaniya City, Iraq.

Received: 9/2/2023 Accepted: 12/5/2023 Published: 30/5/2024

Abstract

Let *R* be a ring. JS-injective right *R*-modules are introduced and studied in this paper as a generalization of small-injective right *R*-modules. Let *N* and *M* be right R-modules. A module *M* is said to be JS-*N*-injective if every *R*-homomorphism from a submodule of $J(N)J(R_R)$ into *M* extends to *N*. If a module *M* is JS-*R*-injective, then *M* is called JS-injective. Many characterizations and properties of JS-injective right *R*-modules are obtained. Rings over which every right module is JS-injective are characterized. We study quotients of JS-injective right modules. Then we give conditions under which the class of JS-injective right modules is closed under direct sums.

Keywords: JS-injective module; small-injective module; Noetherian module; projective module.

حول تعميم المقاسات الاغمارية الصغيرة

زهراء عباس زون، عقيل رمضان مهدي ً

قسم الرياضيات، كلية التربية، جامعة القادسية، محافظة الديوانية، العراق

الخلاصة

لتكن R حلقة. المقاسات الاغمارية من النمط- US اليمنى على الحلقة R قد قدمت ودرست في هذا البحث كتعميم للمقاسات الاغمارية الصغيرة. ليكن N و M مقاسان ايمنان على الحلقة R. المقاس M يدعى بالمقاس الاغماري بالنسبة الى N من النمط-US اذا كان كل تماثل مقاسي على الحلقة R من مقاس جزئي من (R)J(N)J[إلى M يتوسع إلى N. إذا كان المقاس M هو مقاس اغماري بالنسبة الى R من النمط-US، فان M يسمى مقاس اغماري من النمط-US. تم الحصول على العديد من تشخيصات وخصائص المقاسات الاغماري من النمط-US. تم تشخيص الحلقات التي تكون جميع المقاسات المعرفة عليها هي مقاسات الاغماري من النمط-US. تم دراسة مقاسات القسمة للمقاسات الاغماري من النمط-US. بعد ذلك تم المقاسات العماري من النمط-US. تم دراسة مقاسات القسمة للمقاسات الاغماري من النمط-US. بعد ذلك تم مقاسات اغماري من النمط-US. تم دراسة مقاسات القسمة للمقاسات الاغماري من النمط-US.

1. Introduction

Let R be a ring with identity 1. Throughout this paper, all modules are unitary and by a module (resp. homomorphism) we mean a right R-module (resp. right R-homomorphism), if not otherwise specified. The class of right R-modules is denoted by Mod-R. We write J(M) and soc(M) for the Jacobson radical and the socle of a right R-module M, respectively. We write Z_r for the right singular ideal of a ring R. We denote to $J(M)J(R_R)$ by JS(M) for any

*Email: akeel.mehdi@qu.edu.iq

right *R*-module *M*. For any $a \in M$, we use r(a) to denote the right annihilator of *a* in *R*. Throughout this paper, *R* is an associative ring. We refer the reader to [1-6], for general background materials.

Injective modules play an important role in module theory, and extensively many authors are studied their generalizations (see, for example, [7-12]). A right *R*-module *M* is called small injective if every *R*-homomorphism from a small right ideal of *R* into *M* can be extended to R_R [7, p.2160]. A right *R*-module *M* is called soc-injective if any homomorphism $f: \operatorname{soc}(R_R) \to M$ can be extended to R_R [10].

In this article we introduce the concept of JS-injective modules. Let N and M be modules. We say that M is a JS-N-injective if every homomorphism $f: K \to M$ extends to N, where K is a submodule of $J(N)J(R_R)$. If M is a JS-R-injective, then M is called a JS-injective. First, we give an example to clarify that the notions JS-injectivity and small-injectivity are deferent. Some properties of JS-injective modules are obtained. We prove that this class of modules is closed under isomorphic copies, direct products, summands and finite direct sums. Some characterizations of JS-injective modules are given, for example we prove that a module M is JS-injective if and only if $\text{Ext}^1(R/K, M) = 0$, for any submodule K of $\text{JS}(R_R)$, where $Ext^{1}(A, B)$ is defined as the first right derived functor of $Hom_{R}(A, B)$, for any two right Rmodules A, B (see [5, Ch. III] for more details). We characterize rings over which all modules are JS-injective. We prove the equivalence of the following statements: (1) $JS(R_R) = 0$; (2) All modules are JS-injective; (3) All submodules of $JS(R_R)$ are JS-injective; (4) All submodules of $JS(R_R)$ are direct summand of R_R . We study quotients of JS-injective modules. For instance, we prove that the equivalence of the following: (1) The class of JSinjective right R-modules (ISI_R) is closed under quotient; (2) Sums of any two JS-injective submodules of any right R-module is JS-injective; (3) All submodules of $JS(R_R)$ are projective. Finally, we give conditions such that the class ISI_R is closed under direct sums. For instance, we prove that $JS(R_R)$ is Noetherian if and only if any direct sum of JS-injective right *R*-modules is JS-injective.

2. JS-Injective Modules

In this section, we introduce and study the concept of JS-injective modules.

Definition 2.1. Let *N* and *M* be modules. A module *M* is said to be JS-*N*-injective, if any homomorphism $f: K \to M$ extends to *N*, where *K* is a submodule of $JS(N)=J(N)J(R_R)$. If *M* is a JS-*R*-injective, then a module *M* is called a JS-injective.

The class of JS-injective right *R*-modules is denoted by JSI_R .

Examples 2.2.

1- Clearly, every small-injective module is a JS-injective, but the converse is not true in general, for example: let \mathbb{Z}_2 be the field of two elements and let $R = \mathbb{Z}_2[x_1, x_2, ...]$ with $x_i^2 = x_j^2 \neq 0$ for all $i, x_i x_j = 0$ for all $i \neq j$ and $x_i^3 = 0$ for all i. If $m = x_i^2$, then $J(R_R) = \text{span}\{m, x_1, x_2, ...\}$, $(J(R_R))^2 = \text{soc}(R_R) = \mathbb{Z}_2 m$ and R_R is a soc-injective module (see [10, Example 5.7]) and hence R_R is a JS-injective module. By [10, Example 5.7], the *R*-homomorphism $\gamma: J(R_R) \to R_R$ which is given by $\gamma(a) = a^2$ for all $a \in J(R_R)$ can not extend to *R*, then *R* is not small injective. Hence JS-injectivity is a proper generalization of small-injectivity.

2- If N is a right R-module with JS(N) = 0 (in particular, if J(N) = 0 or $J(R_R) = 0$), then every module is JS-N-injective.

3- All \mathbb{Z} -modules are JS-*N*-injective, for any module *N*, and hence all \mathbb{Z} -modules are JS-injective.

Proposition 2.3. Let *N*, *M* and *K* be right *R*-modules. Then the following statements hold:

(1) The class of JS-*N*-injective modules is closed under isomorphic copies, direct products, direct summands and finite direct sums.

(2) For any submodule K of N, if M is JS-N-injective module, then M is JS-K-injective.

(3) If M is JS-N-injective module, then M is JS-K-injective, for any module K isomorphic to N.

Proof. Clear. \Box

From Proposition 2.3, we get directly the following result.

Corollary 2.4. The class JSI_R is closed under isomorphic copies, direct products, summands and finite direct sums.

Proposition 2.5. Let $\{N_i : i \in I\}$ be a family of modules. If $JS(\bigoplus_{i \in I} N_i)$ is a multiplication module, then a module M is $JS-\bigoplus_{i \in I} N_i$ -injective if and only if it is a $JS-N_i$ -injective, for each $i \in I$.

Proof. (\Rightarrow) By Theorem 2.3 ((2) and (3)).

(\Leftarrow) Suppose that *M* is JS- N_i -injective, for each $i \in I$. Let *K* be a submodule of JS($\bigoplus_{i \in I} N_i$). By [3, Corollaries 9.1.5(c), p.215] J($\bigoplus_{i \in I} N_i$)= $\bigoplus_{i \in I} J(N_i)$ and hence JS($\bigoplus_{i \in I} N_i$)=J($\bigoplus_{i \in I} N_i$)J(R_R) = $\bigoplus_{i \in I} (J(N_i)J(R_R) = \bigoplus_{i \in I} JS(N_i)$. Since JS($\bigoplus_{i \in I} N_i$) is a multiplication module (by hypothesis) and *K* a submodule of JS($\bigoplus_{i \in I} N_i$), we have from [13, Theorem 2.2, p. 3844] that $K = \bigoplus_{i \in I} K_i$ with K_i is a submodule of JS(N_i). For each $i \in I$, consider the following diagram:

where i_{K_i} , i_{N_i} are injection homomorphisms and i_1 , i_2 are inclusion homomorphisms. Since M is a JS- N_i -injective, there exists a homomorphism $h_i : N_i \to M$ such that $h_i i_2 = f i_{K_i}$. By [3, Theorem 4.1.6 (2), p.83], there exists one homomorphism $h: \bigoplus_{i \in I} N_i \to M$ satisfying $h_i = h i_{N_i}$. Thus $f i_{K_i} = h_i i_2 = h i_{N_i} i_2 = h i_1 i_{K_i}$ for all $i \in I$. Let $(a_i)_{i \in I} \in \bigoplus_{i \in I} K_i$, thus $a_i \in K_i$, for all $i \in I$ and $f((a_i)_{i \in I}) = f(\sum_{i \in I} i_{K_i} ((a_i)_{i \in I})) = (hi_1)((a_i)_{i \in I})$. Thus $f = hi_1$ and this implies that M is a JS- $\bigoplus_{i \in I} N_i$ -injective module. \Box

If each right ideals of a ring *R* is an ideal, then *R* is called right invariant [13, p.3839]. **Corollary 2.6.** Let *R* be a right invariant ring with $JS(R_R)$ be a cyclic ideal in *R* and let $1 = r_1 + r_2 + \cdots + r_n$ in *R*, where the r_i are orthogonal idempotents. Then a right *R*-module *M* is JS-injective if and only if *M* is JS- r_iR -injective for every $i = 1, 2, \cdots, n$. **Proof.** By [1, Corollary 7.3, p.96], we have $R = \bigoplus_{i=1}^n r_i R$. Since *R* is a right invariant ring and JS(R_R) is a cyclic ideal in R, we get from [13, Proposition 3.1, p. 3855], that JS(R_R) is a right multiplication module and hence from Proposition 2.5 implies that *M* is a JS-injective if and only if *M* is a JS- r_iR -injective. \Box In the next result, we give some characterizations of JS-injective modules.

Proposition 2.7. The following statements are equivalent for a right R-module M:

- (1) M is JS-injective;
- (2) $\operatorname{Ext}^{1}(R/K, M) = 0$, for any submodule of $\operatorname{JS}(R_R)$;

(3) For each submodule K of $JS(R_R)$ and for each R-homomorphism $f: K \to M$, there is $m \in M$ with f(r) = mr for any $r \in K$.

Proof. (1)
$$\Rightarrow$$
(2) Since

$$0 \longrightarrow K \xrightarrow{i} R \xrightarrow{\pi} R/K \longrightarrow 0$$

is an exact sequence, where i and π are the inclusion and canonical homomorphisms, respectively, it follows from [14, Theorem 4.4(3), p.491] that there exists an exact sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(R/K, M) \xrightarrow{\pi^{*}} \operatorname{Hom}_{R}(R, M) \xrightarrow{i^{*}} \operatorname{Hom}_{R}(K, M)$$

$$\longrightarrow \operatorname{Ext}^{1}(R/K,M) \longrightarrow \operatorname{Ext}^{1}(R,M) \longrightarrow \operatorname{Ext}^{1}(K,M) \longrightarrow \dots \dots \dots$$

Since R_R is projective, it follows from [14, Theorem 4.4(1), p. 491] that $\operatorname{Ext}^1(R, M) = 0$ and hence the sequence $0 \to \operatorname{Hom}_R(R/K, M) \xrightarrow{\pi^*} \operatorname{Hom}_R(R, M) \xrightarrow{i^*} \operatorname{Hom}_R(K, M) \to \operatorname{Ext}^1(R/K, M) \to 0$ is exact. By hypothesis, the sequence $0 \to \operatorname{Hom}_R(R/K, M) \xrightarrow{\pi^*} \operatorname{Hom}_R(R, M) \xrightarrow{i^*} \operatorname{Hom}_R(K, M) \to 0$ is exact and hence $\operatorname{Ext}^1(R/K, M) = 0$.

(2) \Rightarrow (1) Let *K* be a submodule of JS(R_R). As the proof of (1) \Rightarrow (2) we have that the sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(R/K, M) \xrightarrow{\pi^{*}} \operatorname{Hom}_{R}(R, M) \xrightarrow{i^{*}} \operatorname{Hom}_{R}(K, M) \longrightarrow \operatorname{Ext}^{1}(R/K, M) \longrightarrow 0$$

is exact. By hypothesis, $Ext^{1}(R/K, M) = 0$ and hence the sequence

 $0 \longrightarrow \operatorname{Hom}_{R}(R/K, M) \xrightarrow{\pi^{*}} \operatorname{Hom}_{R}(R, M) \xrightarrow{i^{*}} \operatorname{Hom}_{R}(K, M) \longrightarrow 0 \text{ is exact.}$

(1) \Leftrightarrow (3) It is clear. \Box

Proposition 2.8. For a module *M*, the following conditions are equivalent:

(1) Every module is JS-*M*-injective;

(2) All submodules of JS(N) are JS-M-injective, where N is any right R-module;

(3) All submodules of JS(*M*) are JS-*M*-injective;

(4) All submodules of JS(M) are summand of M;

(5) JS(M) = 0.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ and $(5) \Rightarrow (1)$ are clear.

 $(3) \Rightarrow (4)$ Let *K* be a submodule of JS(*M*). Let $i: K \to M$ and $I_K: K \to K$ be the inclusion and the identity homomorphisms, respectively. By hypothesis, *K* is JS-*M*-injective and so there is a homomorphism $g: M \to K$ with $gi = I_K$. Then a monomorphism *i* is split and this implies that *K* is a summand of *M*.

(4)⇒ (5) Let $x \in JS(M)$, thus $x \in J(M)J(R_R) \subseteq J(M)$. By [3, Corollary 9.1.3(a), p.214], xR is a small submodule of M. By hypothesis, xR is a summand of M and hence $M = xR \oplus K$ for some submodule K of M. Since xR is a small submodule of M, K = M and hence xR = 0 So, x = 0 and hence JS(M) = 0. □

Corollary 2.9. The following statements are equivalent for a ring *R*:

(1) Every right *R*-module is JS-injective;

(2) Every submodule of JS(N) is JS-injective, where N is any right R-module;

(3) Every submodule of JS(R_R) is JS-injective;
(4) Every submodule of JS(R_R) is a direct summand of R_R;
(5) JS(R_R) = 0.
Proof. By taking M = R_R and applying Proposition 2.8. □

Proposition 2.10. Let M be a right R-module. Then JS(M) is a semisimple direct summand of M if and only if all modules are JS-M-injective.

Proof. (\Rightarrow) Let JS(*M*) be a semisimple direct summand of *M*. Let *K* be submodule of JS(*M*). By hypothesis, $M = JS(M) \oplus W$ for some submodule *W* of *M*. Since JS(*M*) is semisimple, JS(*M*) = $K \oplus H$, for some submodule *H*. We obtain $M = K \oplus H \oplus W$ and hence every submodule of JS(*M*) is a summand of *M*. Thus Proposition 2.8 implies that all modules are JS-*M*-injective.

(⇐) Suppose that every right *R*-module is JS-*M*-injective. By Proposition 2.8, JS(M) = 0 and hence JS(M) is a semisimple summand of *M*. \Box

Definition 2.11. [15] A ring *R* is called zero insertive if for any $a, b \in R$ such that ab = 0, then aRb = 0.

Lemma 2.12. [15, Lemma 2.11] Let *R* be a zero insertive ring, then $RaR + r(a) \subseteq^{ess} R_R$, for every $a \in R$.

Proposition 2.13. If all simple singular right modules over a zero insertive ring *R* are JS-injective, then $JS(R_R) = 0$.

Proof. Assume that $JS(R_R) \neq 0$. Thus there is $0 \neq a \in JS(R_R)$, and hence RaR is a small right ideal in R. If $RaR + r(a) \subseteq R$, then $RaR + r(a) \subseteq K$ for some maximal right ideal K of R. By Lemma 2.12, we have RaR + r(a) is an essential in R_R and hence K is an essential in R_R and so R/K is a simple singular right R-module (by [4, Example 7.6(3) p. 247]). By hypothesis, R/K is a JS-injective module. Consider the mapping $f: aR \to R/K$ defined by f(ar) = r + K for all $r \in R$. Thus f is a well-defined right R-homomorphism. Since aR is a right ideal of R with $aR \subseteq JS(R_R)$, it follows from JS-injectivity of R/K, there is a homomorphism $g: R \to R/K$ with g(x) = f(x) for all $x \in aR$. Thus 1 + K = f(a) = g(a) = g(1)a = (c + K)a = ca + K, for some $c \in R$ and hence $1 - ca \in K$. Since $ca \in RaR \subseteq K$, it follows that $1 \in K$ and hence K = R and this is a contradiction. Thus, RaR + r(a) = R. Since RaR is a small ideal in R_R which implies that r(a) = R and so a = 0 and this is a contradiction. Thus $JS(R_R) = 0$.

Corollary 2.14. If all simple singular right modules over a zero insertive ring *R* (in particular, over a commutative ring *R*) are JS-injective, then Mod- $R = JSI_R$. **Proof.** By Proposition 2.13 and Corollary 2.9. \Box

Theorem 2.15. The following conditions are equivalent for a ring *R*:

- (1) $JS(R_R) = 0;$
- (2) Every right *R*-module is JS-injective;
- (3) All simple modules are JS-injective.

Proof. Clearly, from Corollary 2.9, we have $(1) \Rightarrow (2) \Rightarrow (3)$.

 $(3) \Rightarrow (1)$. Assume that $JS(R_R) \neq 0$. Thus there is $0 \neq a \in JS(R_R)$, and hence aR is a small right ideal in R. If $JS(R_R) + r(a) \subseteq R$, then $JS(R_R) + r(a) \subseteq K$ for some maximal right ideal K of R, by [3, Theorem 2.3.11, p. 28]. Since R/K is a simple module, it follows from hypothesis that R/K is a JS-injective. Consider the mapping $f: aR \to R/K$ defined by f(ar) = r + K for all $r \in R$. Thus f is a well-defined right R-homomorphism. Since aR is a

right ideal of R with $aR \subseteq JS(R_R)$ it follows from JS-injectivity of R/K, there is a right R-homomorphism $g: R \to R/K$ such that g(x) = f(x) for all $x \in aR$. Thus 1 + K = f(a) = g(a) = g(1)a = (c + K)a = ca + K, for some $c \in R$ and hence $1 - ca \in K$. Since $ca \in JS(R_R) \subseteq K$, it follows that $1 \in K$ and hence K = R and this is a contradiction. Therefore, $JS(R_R) + r(a) = R$. Since $JS(R_R)$ is a small ideal in R_R which implies that r(a) = R and so a = 0 and this is a contradiction. Thus $JS(R_R) = 0$. \Box

Proposition 2.16. If all simple singular right *R*-modules are JS-injective, then r(a) is a summand of R_R and aR is projective, for every $a \in JS(R_R)$.

For every $a \in JS(R_R)$, let L = RaR + r(a). There exists $K \leq R_R$ such that **Proof.** $L \oplus K \subseteq e^{ss} R_R$. Assume that $L \oplus K \neq R$, then $L \oplus K \subseteq I$ for some maximal right ideal I of R and so $I \subseteq e^{ss} R_R$. Therefor R/I is simple singular and by hypothesis, R/I is JS-injective. We define $f: aR \to R/I$ by f(ar) = r + I for all $r \in R$. Then f is a well-defined *R*-homomorphism. Since a*R* is a right ideal of *R* with $aR \subseteq JS(R_R)$, it follows from JS-injectivity of R/K, there is a homomorphism $g: R \to R/I$ with g(x) = f(x) for all $x \in aR$. Thus 1 + I = f(a) = g(a) = g(1)a = (c + I)a = ca + I, for some $c \in R$ and hence $1 - ca \in I$. Since $ca \in RaR \subseteq I$ it follows that $1 \in I$ and hence I = R and this is a contradiction. Thus $L \oplus K = R$ or $RaR + (r(a) \oplus K) = R$ which implies that $r(a) \oplus K =$ R (since $RaR \ll R_R$). Now, we will prove that aR is a projective module. Since r(a) is a summand of R_R , it follows that there exists an idempotent element, say e in R with r(a) =(1-e)R (by [6, 2.3(3), p.8]) with $R = eR \oplus (1-e)R$. Define $\lambda: eR \to aeR$ by $\lambda(er) =$ *aer*, for all $r \in R$. It is clear that λ is an epimorphism. Let $x \in ker(\lambda)$, thus $\lambda(x) = 0$ and so x = er for some $r \in R$ and aer = 0. Hence $er \in r(a)$ and $er \in eR$, and this implies that $x \in eR \cap r(a)$ and so ker $(\lambda) \subseteq eR \cap r(a)$. Let $y \in R \cap r(a)$, thus y = er and ay = 0. So aer = 0 and hence $\lambda(y) = 0$. Thus $y \in ker(\lambda)$ and so $eR \cap r(a) \subseteq ker(\lambda)$. Thus $ker(\lambda) = 0$ $eR \cap r(a)$. Since $R = eR \oplus (1-e)R$, we have $eR \cap (1-e)R = 0$. Since r(a) = (1-e)Re R, we have $e R \cap r(a) = 0$. Since ker $(\lambda) = e R \cap r(a)$, we have ker $(\lambda) = 0$. Thus $\lambda: e R \to 0$. *aeR* is an isomorphism. Clearly aR = aeR, since $aeR \subseteq aR$ and if $x \in aR$, then x = ar for some $r \in R$. So, x = ar = aer + a(1 - e)r. Since r(a) = (1 - e)R, we have a(1 - e)r = aer + a(1 - e)r. 0 and so $x = aer \in aeR$. Thus $aR \subseteq aeR$ and hence aR = aeR. Since $R = eR \oplus (1 - e)R$, we have eR is projective. Since $eR \cong aeR$, we have aeR is projective. Since aR = aeR, we have *aR* is a projective module.

Corollary 2.17. If all simple singular right *R*-modules are JS-injective, then $Z_r \cap JS(R_R) = 0$.

Proof. Assume that $Z_r \cap JS(R_R) \neq 0$, then there exists $0 \neq a \in Z_r \cap JS(R_R)$. Since $a \in Z_r$, we have $r(a) \subseteq^{ess} R_R$. By Proposition 2.16, $r(a) \subseteq^{\oplus} R_R$ and so $r(a) \cap K = 0$ and r(a) + K = R, for some $K \leq R_R$. Since $r(a) \subseteq^{ess} R_R$, which implies that K = 0 and so r(a) = R and hence a = 0 but this a contradiction. Thus $Z_r \cap JS(R_R) = 0$. \Box

If *M* is a projective right *R*-module, then it is not necessary that all submodules of JS(M) are projective, for example $M = \mathbb{Z}_8$ as \mathbb{Z}_8 -module, then $JS(M) = JS(\mathbb{Z}_8) = \langle \bar{4} \rangle = \{\bar{0}, \bar{4}\}$ is not projective \mathbb{Z}_8 -module. Assume that $\langle \bar{4} \rangle$ is a projective \mathbb{Z}_8 -module. Since $\langle \bar{4} \rangle$ is a local \mathbb{Z}_8 -module, we get from [1, Corollary 26.7, p.300] that a finitely generated \mathbb{Z}_8 -module $\langle \bar{4} \rangle$ is a free \mathbb{Z}_8 -module and hence $\langle \bar{4} \rangle = \{\bar{0}, \bar{4}\}$ is isomorphic to $(\mathbb{Z}_8)^n$ for some positive integer *n* and this is a contradiction. Thus $JS(\mathbb{Z}_8) = \langle \bar{4} \rangle$ is not projective.

Theorem 2.18. The following statements are equivalent for a projective module *M*: (1) The class of JS-*M*-injective modules is closed under quotient;

(2) All quotients of an injective module are JS-*M*-injective;

(3) The sum of any two JS-*M*-injective submodules of any module is a JS-*M*-injective;

(4) The sum of any two injective submodules of any module is a JS-M-injective;

(5) All submodules of JS(*M*) are projective.

Proof. Clearly, we have $(1) \Rightarrow (2)$ and $(3) \Rightarrow (4)$.

(2) \Rightarrow (5) Let *D* and *N* be modules and consider the following diagram

where U is a submodule of JS(M), f epimorphism, h is a homomorphism, and i is the inclusion homomorphism. By Proposition 5.2.10 in [2, p. 148], we can take N to be an injective R-module. By JS-M-injectivity of D, we have $\alpha i = h$ for some homomorphism $\alpha: M \to D$. By projectivity of M, we get that α can be lifted to an R-homomorphism $\tilde{\alpha}: M \to N$ with $f\tilde{\alpha} = \alpha$. Let $\tilde{h}: U \to N$ be the restriction of $\tilde{\alpha}$ over U. It is clear that $f\tilde{h} = h$ and hence U is projective.

 $(5) \Rightarrow (1)$ Let A and B be modules with A is JS-M-injective and let $h: A \rightarrow B$ be an epimorphism. Consider the following diagram:

$$0 \longrightarrow K \xrightarrow{i} M$$

$$f \downarrow$$

$$A \longrightarrow B \longrightarrow 0$$

where K is a submodule of JS(M), *i* is the inclusion map and $f: K \to B$ is a homomorphism. By (5), K is projective and hence there exists a homomorphism $g: K \to A$ with hg = f. Since A is JS-M-injective, there exists a homomorphism $\tilde{g}: M \to A$ with $\tilde{g}i = g$. Put $\alpha = h\tilde{g}: M \to B$. Thus $\alpha i = h\tilde{g}i = hg = f$ and hence B is JS-M-injective.

(1) \Rightarrow (3) Let *K* be a module and K_1 and K_2 be JS-*M*-injective submodules of it. Clearly, there is an epimorphism form $K_1 + K_2$ onto $K_1 \oplus K_2$. Since $K_1 \oplus K_2$ is JS-*M*-injective (by Corollary 2.4), it follows from hypothesis that $K_1 + K_2$ is JS-*M*-injective.

(4)⇒(2) Let *N* be a submodule of an injective module *E*. Let $Q = E \oplus E$, $K = \{(n, n) | n \in N\}$, $\overline{Q} = Q/K$, $H_1 = \{y + K \in \overline{Q} | y \in E \oplus 0\}$ and $H_2 = \{y + K \in \overline{Q} | y \in 0 \oplus E\}$. Then $\overline{Q} = H_1 + H_2$. Since $(E \oplus 0) \cap K = 0$ and $(0 \oplus E) \cap K = 0$, it follows that $E \cong H_i$, i = 1, 2. Clearly, $H_1 \cap H_2 \cong N$ under $y \mapsto y + K$ for all $y \in N \oplus 0$. By hypothesis, \overline{Q} is JS-*M*-injective. Since H_1 is injective, it follows that $\overline{Q} = H_1 \oplus A$ for some submodule *A* of \overline{Q} and hence $A \cong (H_1 + H_2)/H_1 \cong H_2/(H_1 \cap H_2) \cong E/N$. By Theorem 2.3 ((4),(5)), E/N is JS-*M*-injective. □

Corollary 2.19. For a ring *R*, the following conditions are equivalent:

- (1) The class JSI_R is closed under quotient;
- (2) All quotients of small-injective modules are JS-injective;
- (3) All quotients of injective modules are JS-injective;
- (4) The sum of any two JS-injective submodules of any module is a JS- injective;
- (5) The sum of any two small-injective submodules of any module is a JS-injective;
- (6) The sum of any two injective submodules of any module is a JS-injective.

(7) All submodules of $JS(R_R)$ are projective.

Proof. The equivalence of (1),(3),(4),(6) and (7) are clear, by taking $M = R_R$ and applying Theorem 2.18. Also, (1) \Rightarrow (2) \Rightarrow (3) and (4) \Rightarrow (5) \Rightarrow (6) are clear. \Box

Let N be a right R-module. A right R-module M is called a rad-N-injective, if for any submodule K of J(N), any right R-homomorphism $f: K \to M$ extends to N [16, p.412].

Theorem 2.20. The following conditions are equivalent for a finitely generated module M: (1) JS(M) is a Noetherian *R*-module;

(2) The class of JS-*M*-injective modules is closed under a direct sums;

(3) All direct sums of rad-*M*-injective modules are JS-*M*-injective;

(4) All direct sums of small-*M*-injective modules are JS-*M*-injective;

(5) All direct sums of injective modules are JS-*M*-injective;

(6) $K^{(L)}$ is JS-*M*-injective, for any injective module K and for any index set L;

(7) $K^{(\mathbb{N})}$ is JS-*M*-injective, for any injective right *R*-module *K*.

Proof. $(2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7)$ are clear.

(1) \Rightarrow (2) Let $E = \bigoplus_{i \in I} M_i$, where M_i are JS-*M*-injective modules. Let *K* be a submodule of JS(*M*) and $f: K \to E$ be a homomorphism. Since JS(*M*) is a Noetherian module (by hypothesis), *K* is finitely generated and hence $f(K) \subseteq \bigoplus_{j \in J} M_j$, for some finite subset *J* of *I*. Since a finite direct sum of JS-*M*-injective modules is a JS-*M*-injective (by Corollary 2.4), we have $\bigoplus_{j \in J} M_j$ is JS-*M*-injective. Define $\alpha: K \to \bigoplus_{j \in J} M_j$ by $\alpha(x) = f(x)$, for every $x \in K$. It is clear that α is a right *R*-homomorphism. By JS-*M*-injectivity of $\bigoplus_{j \in J} M_j$, we have $gi_K = \alpha$ for some homomorphism $g: M \to \bigoplus_{j \in J} M_j$, where $i_K: K \to M$ is the inclusion map. Let $\tau: \bigoplus_{j \in J} M_j \to \bigoplus_{i \in I} M_i$ be the inclusion homomorphism. Define $h: M \to E = \bigoplus_{i \in I} M_i$ by $h(x) = (\tau \circ g)(x)$ for every $x \in M$. Since τ and g are right *R*-homomorphisms, we have that h is a right *R*-homomorphism. Thus, for all $a \in K$, we have that $(hi_K)(a) = ((\tau g)i_K)(a) = (gi_K)(a) = \alpha(a) = f(a)$ and hence *E* is JS-*M*-injective.

(7) \Rightarrow (1) Let $K_1 \subseteq K_2$... be a chain of submodules of JS(*M*). For each $i \ge 1$, let $E_i = E(M/K_i)$ and $E = \bigoplus_{i=1}^{\infty} E_i$. For every $i \ge 1$, we put $M_i = \prod_{j=1}^{\infty} E_j = E_i \bigoplus \left(\prod_{\substack{i \ne j \\ i \ne j}}^{\infty} E_j \right)$,

then M_i is injective. By hypothesis, $\bigoplus_{i=1}^{\infty} M_i = (\bigoplus_{i=1}^{\infty} E_i) \bigoplus \left(\bigoplus_{i=1}^{\infty} \prod_{\substack{j=1\\i\neq j}}^{\infty} E_j \right)$ is JS-*M*-injective.

By using Theorem 2.3(5), we obtain that *E* is JS-*M*-injective. Define $f: H = \bigcup_{i=1}^{\infty} K_i \to E$ by $f(x) = (x + K_i)_i$. Obviously, *f* is a well-defined right *R*-homomorphism. Since K_i are submodules of JS(*M*), so $\bigcup_{i=1}^{\infty} K_i$ is a submodule of JS(*M*). By JS-*M*-injectivity of *E*, there exists a right *R*-homomorphism $g: M \to E = \bigoplus_{i=1}^{\infty} E_i$ such that $g \circ i_H = f$, where $i_H: H \to M$ is the inclusion homomorphism. Since *M* is finitely generated, $g(M) \subseteq \bigoplus_{i=1}^{n} E(M/K_i)$ for some *n* and hence $f(H) \subseteq \bigoplus_{i=1}^{n} E(M/K_i)$. Let $\pi_i: \bigoplus_{j=1}^{\infty} E(M/K_j) \to E(M/K_i)$ be the projection homomorphism. Thus $\pi_i f(x) = \pi_i((x + K_j)_{j\geq 1}) = x + K_i$ for all $x \in H$ and $i \geq 1$ and hence $\pi_i f(H) = H/K_i$ for all $i \geq n + 1$. So $H = K_i$ for all $i \geq n + 1$ and hence the chain $K_1 \subseteq K_2 \subseteq \cdots$ stops at K_{n+1} and so JS(*M*) is Noetherian.

Corollary 2.21. If N is a finitely generated module, then the following statements are equivalent:

(1) JS(*N*) is a Noetherian module;

(2) For any index set L, $M^{(L)}$ is a JS-N-injective, for each rad-N-injective module M;

(3) For any index set L, $M^{(L)}$ is a JS-N-injective, for each small-N-injective module M;

(4) For any index set L, $M^{(L)}$ is a JS-N-injective, for each JS-N-injective module M;

(5) $M^{(\mathbb{N})}$ is a JS-*N*-injective, for each rad-*N*-injective module *M*;

(6) $M^{(\mathbb{N})}$ is a JS-*N*-injective, for each small-*N*-injective module *M*;

(7) $M^{(\mathbb{N})}$ is a JS-*N*-injective, for each JS-*N*-injective module *M*.

Proof. By Theorem 2.20. □

Corollary 2.22. The following statements are equivalent for a ring *R*:

(1) $JS(R_R)$ is a Noetherian module;

(2) The class JSI_R is closed under direct sums;

(3) The direct sums of a small-injective modules are JS-injective;

(4) The direct sums of an injective modules are JS-injective;

(5) For any index set L, $M^{(L)}$ is a JS-injective, for any injective module M;

(6) For any index set L, $M^{(L)}$ is a JS-injective, for any small-injective module M;

(7) For any index set L, $M^{(L)}$ is a JS-injective, for any JS-injective module M;

(8) $M^{(\mathbb{N})}$ is a JS-injective, for any injective module *M*;

(9) $M^{(\mathbb{N})}$ is a JS-injective, for any small-injective module *M*;

(10) $M^{(\mathbb{N})}$ is a JS-injective, for any JS-injective module M;

Proof. By using Theorem 2.20 and Corollary 2.21. □

3. Conclusions

A JS-injective right R-module is an introduced and studied in this paper as a generalization of small-injective right R-module. We say that a right *R*-module M is a JS-injective if every right *R*-homomorphism f: $K \rightarrow M$ extends to *R*, where K is a submodule of $J(R_R)J(R_R)$. We prove that the class JS-injective modules is closed under isomorphic copies, direct products, summands and finite direct sums. Some characterizations of JS-injective modules are given. We characterize rings over which all modules are JS-injective, for example we prove that $JS(R_R) = 0$ if and only if all modules are JS-injective if and only if all submodules of a $JS(R_R)$ are direct summand of R_R . We study quotients and direct sums of JS-injective modules. We prove that the class of a JS-injective right *R*-modules is closed under quotients if and only if all submodules of $JS(R_R)$ are projective. Also, we prove that the class of JSinjective right *R*-modules is closed under direct sums if and only if *JS*(R_R) is a Noetherian module.

References

- [1] F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules. Berlin-New York:* Springer-Verlag, 1992.
- [2] P. E. Bland, *Rings and Their Modules. Berlin: Walter de Gruyter & Co.*, 2011.
- [3] F. Kasch, Modules and Rings. New York: Academic Press, 1982.
- [4] T.Y. Lam, Lectures on Modules and Rings. New York: Springer-Verlag, 1999.
- [5] S. Maclance, Homology. Berlin, Heidelberg: Springer-Verlage, 1963.
- [6] R. Wisbauer, Foundations of Module and Ring Theory. Philadelphia: Gordon and Breach, 1991.
- [7] L. Shen and J. Chen, "New characterizations of quasi-Frobenius rings," *Comm. Algebra*, vol. 34, pp. 2157-2165, 2006 [Online]. Available: https://doi.org/10.1080/00927870600549667
- [8] A. R. Mehdi, "On L-injective modules," Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, vol. 28, no. 2, pp. 176-192, 2018.

- [9] E. A. Naim and A. R. Mehdi, "On gs-pseudo-injective modules," Journal of Discrete Mathematical Sciences, vol. 25, no. 5, pp. 1535-1545, 2022 [Online]. Available: https:// doi.org/10.1080/09720529.2022.2082724
- [10] I. Amin, M. Yousif and N. Zeyada, "Soc-injective rings and modules," *Comm. Algebra*, vol. 33, pp. 4229-4250, 2005 [Online]. Available: https://doi.org/10.1080/00927870500279001
- [11] S. M.Yaseen and M. M. Tawfeek, "Supplement extending modules," *Iraqi Journal of Science*, vol 56, no.3B, pp. 2341-2345, 2015.
- [12] M. A. Ahmed, M. R. Abbas and N. R. Adeeb, "Almost semi-extending modules," *Iraqi Journal of Science*, vol. 63, no. 7, pp. 3111-3119, 2022 [Online]. Available: <u>https://doi.org/10.24996/ijs.2022.63.7.32</u>
- [13] A. A. Tuganbaev, "Multiplication Modules," *J. Mathematical sciences*, vol. 123, pp. 3839-3905, 2004 [Online]. Available: https://doi.org/10.1023/B:JOTH.0000036653.76231.05
- [14] P. A. Grillet, Abstract Algebra, 2nd edition. New York: Springer, 2007.
- [15] L.V. Thuyet and T. C. Quynh, "On small injective rings and modules," J. Algebra and Its Applications, vol. 8, pp. 379-387, 2009 [Online]. Available: <u>https://doi.org/10.1142</u> /S0219498809003436
- [16] N. Zeyada, S. Hussein and A. Amin, "Rad-injective and almost-injective modules and rings," *Algebra Colloquium*, vol. 18, no. 3, pp. 411-418, 2011 [Online]. Available: <u>https://doi.org</u> /10.1142/S1005386711000290