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Abstract  

     In this article, the effects of physical flow parameters on squeezed fluid between 

parallel plates are explored through the Darcy porous channel when fluid is moving 

as a result of the upper plate being squeezed towards the stretchable lower plate, 

such as velocity slip, thermal slip, solutal slip, thermal stratification parameter, 

solutal stratification parameter, squeezing number, Darcy number, Prandtl number, 

and Schmidt number. The governing equations are transformed into a nonlinear 

ordinary differential equation using the appropriate similarity transformations. The 

resulting equations are solved by using the perturbation iteration method (PIT) to 

produce a convergent analytical solution with high accuracy. The phenomena of the 

squeezing fluid as the plates are moving apart and when they are coming together 

are illustrated using the resulting analytical solutions. Plots are used to discuss the 

significant effects of physical parameters on velocity, temperature, and fluid 

concentration profiles. The skin friction coefficient and Nusselt Sherwood values 

have graphical interpretations that are listed. For strong velocity slip parameters, the 

results demonstrate the existence of a minimum velocity profile close to the plate 

and a growing velocity profile distant from the plate. Additionally, as the slip effects 

rise, the fluid temperature and concentration both considerably drop. The results of 

the fourth-order Runge-Kutta method (RK4M)  and the presented analytical solutions 

provided are in excellent agreement. 

 

Keywords: Squeezing flow, Slips conditions, Ordinary differential equation, 

Perturbation iteration algorithm. 
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حل المعادلة الناتجة باستخدام طريقة    و به مناسبة  ا معدلة تفاضلية اعتيادية غير خطية باستخدام تحويلات تش
 للحصول   (PIT) تكرار الاضطراب  

تتباعد   حين  الصفائح  تحرك  اثناء  الضغط  سائل  ظاهرة  توضيح  يتم  متزايدة.  بدقة  متقارب  تحليلي  حل  على 
باستخدام الحلول التحليلية المكتسبة. استخدمت الاشكال البيانية لمناقشة التاثيرات الهامة للمعلمات   وتلتقي معا  

الفيزيائية على السرعة، درجة الحرارة، تركيز السوائل، معامل احتكاك الجلد وقيم نسلت شيرود حيث يكون لها  
متنامي   اللوحة ومجال سرعة  من  قريب  متدني  مجال سرعة  تبين وجود  النتائج  تم توضيحها.  بيانية  تفسيرات 
بعيد عن اللوحة. بالاضافة الى ذلك عند ارتفاع تاثيرات الانزلاق تنخفض درجة حرارة السائل والتركيز بشكل  

ول التحليلية متفقة مع نتائج تم الحصول عليها باستخدام طرق رانج كوتا من  لنتائج الح  كبير. كانت استنتاجات
 . M(RK4(الرتبة الرابعة 

 
1. Introduction 

     The significance of slip effects among parallel plates in several fluid dynamic systems has 

attracted the attention of numerous researchers. In the literature, it was noticed that the 

majority of analyses were conducted assuming no slip circumstances existed on the surfaces. 

It is important to swap out the non-slip conditions with slip conditions in various physical 

situations where these conditions are no longer appropriate. Chemically treated or lubricated 

hydrophobic surfaces, shear skin, wire nettings, perforated plates, porous or rough surfaces, 

hysteresis and spurts effects, and the super-hydrophobic nano-surfaces have all demonstrated 

the importance of slip conditions. The fluid flow on many interfaces, polishing of mechanical 

heart valves, and issues with rarefied fluid are some other instances of industrial thermal 

issues that arise when slip occurs. Navier [1] and Maxwell [2] carried out earlier research on 

linear slip flow. The fluid flow under the influence of slip was presented by Rao and 

Rajagopal [3]. The impact of slip circumstances on the flow of the Casson fluid through a 

thermally stratified channel was covered by Hayat et al. [4]. Jasim [5] studied the exploration 

of no-slip and slip of unsteady squeezing flow fluid through a derivatives series algorithm. 

With slip circumstances and varying magnetic fields, Rana et al [6] illustrated nanofluid flow 

and heat transfer over a non-linear permeable sheet. Ullah and Zaman [7] talked about the Lie 

group analysis of tangent hyperbolic fluid flow in a stretching sheet under slip conditions. An 

unsteady squeezing flow of the Casson fluid having magnetohydrodynamic effect and passing 

through a porous medium channel with slip at the boundaries was modeled and analyzed by 

Mubashir et al. in [8]. Jasim [9] studied the effect of magnetohydrodynamics on squeezing 

flow in a porous medium of the Casson nanofluid between parallel plates using a new scheme 

technique. The effects of slip on fluid flow in porous media were presented by Moghaddam 

and Jamiolahmady [10]. Through temperature differences in the concentration of fluids with 

different densities, the phenomenon of double stratification is accomplished in many 

industrial and natural processes. The double-strategy method has Numerous scientific 

applications that may be made, as seen in Figure.1. 
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Fiqure.1:  The application of the double stratification process. 

 

     The stratification procedure could be applied to energy storage and solar engineering. 

Additionally, the biological activities that occur in reservoirs result in anoxic bottom water. 

The existence of thermal radiation with copper-water nanofluid and the effect of heat transfer 

in unsteady magnetohydrodynamics squeezing and suction injection on the flow between 

parallel plates in a porous medium was discussed by Jasim [11]. The dual stratified UCM 

flow across a melting surface in the presence of double stratification and cross-diffusion 

effects was presented by Babu and Sandeep [12]. The mixed convection effects on double 

stratification over a vertical sheet inserted in a non-darcy Porous Media were presented by 

Srinivasachary and Surender [13]. According to the aforementioned publications, no attempt 

was made to exploit double stratification and the compound effects of slip (velocity, 

temperature, and solutal conditions) in squeezing flow analysis. In [14], the first attempt was 

made in 2018 to investigate the mass, heat, and Newtonian fluid of fluid flow through a 

porous medium with double stratification and slip conditions. The homotopy analysis method 

was used to discuss the slip analysis of squeezing flow using doubly stratified fluid. Also, Al-

Khafajy and Al-Delfi [15] investigated  the impact of an elastic wall on the peristaltic flow of 

fluid between two concentric cylinders with various parameters such as Reynolds number. 

We aim to use the perturbation iteration method and provide new initial conditions to extract 

a new approximate analytical solution through a porous medium with double stratification and 

slip conditions for the Newtonian fluid flow, continuity, momentum, and energy 

conservations. It is clear that from this work, the perturbation iteration technique is used for 

both the slip analysis of the squeezed flow between parallel plates as well as to find an 

analytical-approximate solution. Additionally, the effects of flow factors including the Eckert 

number, Schmidt number, solutal stratification parameter, thermal stratification parameter, 

and squeezing number are examined. The fourth-order Runge-Kutta method is used to 

compare the outcomes of the analytical solutions and the numerical method. The structure of 

this paper is as follows: In Section 2, the governing equations are derived. Section 3 of the 

paper describes how PIT applies incompressible and viscous fluid inside infinite parallel 

disks. Sections 4, 5, 6, and 7 provide discussions and findings. Section 8 contains the 

convergence analysis. Finally, section 9 provides the conclusions. 

 

  2- Mathematical formulation 

Considering the incompressible and viscous fluid inside the infinite parallel disks, the two 

plates are separated by the distance 𝑦 = f( 𝑡)= √
𝑣(1−δt )

a
 apart, for δ > 0, the two plates are 
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squeezed until they touch at 𝑡 =
1

δ
  and for δ < 0, the two plates are separated. The motion of  

the fluid is assumed as unsteady and laminar subjected to a Darcy porous medium. It is 

assumed that the fluid's motion is laminar, unstable, and susceptible to a Darcy porous media. 

The flow is analyzed using the coordinate system (x, y), where the 𝒙-axis is considered to run 

along the axis of the bottom plate and the 𝒚-axis is directed ordinarily in its direction. As 

shown in Figure 2, it is assumed that the top fixed disk is being squeezed vertically with 

velocity v⃛f ,while the bottom fixed disk is being stretched in a direction with velocity U⃛(x). 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  The geometry of the problem. 

 

      The governing equations of the unsteady two-dimensional flow of incompressible viscous 

fluid can be introduced as follows [16].  
∂u⃛

∂x⃛
+

∂v⃛

∂y⃛
= 0                                                                                                  (1) 

∂u⃛

∂t⃛
+ u⃛

∂u⃛

∂x⃛
+ v⃛

∂u⃛

∂y⃛
= −

1

ρ̃

∂p⃛

∂x⃛
+ 𝑣 (

∂2u⃛

∂x⃛2 +
∂2u⃛

∂y⃛2) −
𝑣ϕ∗

k∗ u⃛                                     (2) 

∂v⃛

∂t⃛
+ u⃛

∂v⃛

∂x⃛
+ v⃛

∂v⃛

∂y⃛
= −

1

ρ̃

∂p⃛

∂y⃛
+ 𝑣 (

∂2v⃛

∂x⃛2 +
∂2v⃛

∂y⃛2) −
𝑣ϕ∗

k∗ v⃛                                      (3) 

∂T⃛

∂t⃛
+ u⃛

∂T⃛

∂x⃛
+ v⃛

∂T⃛

∂y⃛
=α(

∂2T⃛

∂x⃛2
+

∂2T⃛

∂y⃛2
)                                                                  (4)                                                                 

∂C⃛

∂t⃛
+ u⃛

∂C⃛

∂x⃛
+ v⃛

∂C⃛

∂y⃛
= D⃛ (

∂2C⃛

∂x⃛2
+

∂2C⃛

∂y⃛2
)                                                                (5) 

 

       Here,  u⃛  and v⃛ are the velocity components in 𝑥 and y direction, respectively. ρ̃ is the 

density, p⃛ is the pressure, 𝑣 is the kinematics viscosity, ϕ∗ is the porosity of porous medium, 

k∗is the permeability of the porous medium, T⃛ is the temperature, α =
K0

ρ̃𝐶𝑝
 is thermal 

diffusivity, K0 is thermal conductivity, Cpis the specific heat, C⃛ is the fluid concentration and 

D⃛ is the diffusion coefficient. Appropriate boundary conditions are described as follows [9]: 

   u⃛ = U⃛𝑤(𝑥) + L
∂u⃛

∂y⃛
 , v⃛ = 0, T⃛ = T⃛𝑤(𝑥) + K1

∂T⃛

∂y⃛
 , C⃛ = C⃛𝑤(𝑥) + K2

∂C⃛

∂y⃛
   at  𝑦 = 0,              

   u⃛ = 0,  v⃛ = v⃛f =
df

dt
= −

𝛿

2
√

𝑣

a(1−δt)
 , T⃛ = T⃛f(x⃛), C⃛ = C⃛f(𝑥)   at y⃛ = f(t ),                           

  U⃛𝑤(x⃛) =
a𝑥

(1−δt)
, T⃛𝑤(𝑥) = T⃛0 +

d x

(1−δt)
, C⃛𝑤(x) = C⃛0 +

e x

(1−δt)
,                                                

   T⃛f(𝑥) = T⃛0 +
d1 𝑥

(1−δt)
 , C⃛f(𝑥) = C⃛0 +

e1 x

(1−δt)
,                                                                            (6)      

U⃛𝑤(𝑥) is the stretching velocity, L is the velocity slip factor, T⃛𝑤(x) is the variable surface 

temperature, K1, and K2 are the temperature slip factor and solutal slip factor, respectively. 
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C⃛𝑤(x) is the variable surface concentration, T⃛f(𝑥) is the variable upper plate e temperature, 

C⃛f(𝑥) is the variable upper plate concentration, T⃛0 is the reference temperature, C⃛0 is the 

reference concentration and d, d1, e, e1, a, δ are dimensional constants. By using the similarity 

transformations [17] 

ε =  
𝑦

√
𝑣(1−δ t)

a

,   Ψ = √
a𝑣

(1−δt)
x h(ε),    χ(ε) =

(T⃛−T⃛f)

T⃛w−T⃛0
 ,   κ(ε) =

(C⃛−C⃛f)

C⃛w−C⃛0
 ,                                   (7) 

      where ε is the similarity variable, Ψ is the stream function defined as, u⃛ =
∂Ψ

∂y⃛
 , v⃛ = −

∂Ψ

∂x⃛
 

which  identically satisfies Equation (1). The functions h(ε), χ(ε) and κ(ε) are dimensionless 

stream function, temperature function, and concentration function, respectively. Using 

Equation (7), we obtain 

u⃛ = U⃛𝑤(x)
dh(ε)

dε
 , v⃛ =  −√

av

(1−δ 𝑡)
 h(ε) .                                                                                 (8) 

 

      To eliminate pressure terms from the resulting equations, we differentiate Equation (2) for 

y⃛  and Equation (3) for x⃛ ,then we get: 
∂2u⃛

∂ t⃛  ∂y⃛
+ u⃛

∂2u⃛

∂x⃛ ∂y⃛
+

∂u⃛

∂y⃛

∂u⃛

∂x⃛
+ v⃛

∂2u⃛

∂y⃛2 +
∂v⃛

∂y⃛

∂u⃛

∂y⃛
= −

1

ρ̃
 

∂2p⃛

∂x⃛ ∂y⃛
+ 𝑣 [

∂3u⃛

∂x⃛2 ∂y⃛
+

∂3u⃛

∂y⃛3] −
𝑣ϕ∗

k∗

∂u⃛

∂y⃛
                      (9) 

∂2v⃛

∂ t⃛  ∂x⃛
+ u⃛

∂2v⃛

∂x⃛2 +
∂u⃛

∂x⃛

∂v⃛

∂x⃛
+ v⃛

∂2v⃛

∂y⃛ ∂x⃛
+

∂v⃛

∂x⃛

∂v⃛

∂y⃛
= −

1

ρ̃
 

∂2p⃛

∂x⃛ ∂y⃛
+ 𝑣 [

∂3v⃛

∂x⃛3 +
∂3v⃛

∂y⃛2 ∂x⃛
] −

𝑣ϕ∗

k∗

∂v⃛

∂y⃛
                      (10) 

(9-10) gives  

(
∂2u⃛

∂ t⃛  ∂y⃛
−

∂2v⃛

∂ t⃛  ∂x⃛
) + (u⃛

∂2u⃛

∂x⃛ ∂y⃛
− u⃛

∂2v⃛

∂x⃛2) + (
∂u⃛

∂y⃛

∂u⃛

∂x⃛
−

∂u⃛

∂x⃛

∂v⃛

∂x⃛
) + (v⃛

∂2u⃛

∂y⃛2 − v⃛
∂2v⃛

∂y⃛ ∂x⃛
) + (

∂v⃛

∂y⃛

∂u⃛

∂y⃛
−

∂v⃛

∂x⃛

∂v⃛

∂y⃛
) =

     𝑣 [(
∂3u⃛

∂x⃛2 ∂y⃛
−

∂3v⃛

∂x⃛3) + (
∂3u⃛

∂y⃛3 −
∂3v⃛

∂y⃛2 ∂x⃛
] −

𝑣ϕ∗

k∗ (
∂u⃛

∂y⃛
−

∂v⃛

∂y⃛
).                                                            (11) 

     By using the similarity transformations Equation (7) and Equation (8), then finding the 

derivatives to them in Eq. (11), Eq. (4), and Eq. (5) , we get 

 
d4h(ε)

dε4 + h(ε)
d3h(ε)

dε3 −
dh(ε)

dℰ

d2h(ε)

dε2 −
1

2
𝑆𝑞 (3

d2h(ε)

dε2 − ε 
d3h(ε)

dε3 ) −
1

Da

d2h(ε)

dε2 = 0,                     (12)                     

d2χ(ε)

dε2 + Pr (h(ε)
dχ(ε)

dℰ
− χ(ε)

dh(ε)

dℰ
) − Pr𝑆𝑞(K1 + χ(ε)) − Pr (

1

2
𝑆𝑞 ε

dχ(ε)

dℰ
+ K1

dh(ε)

dℰ
) = 0,          

(13)      
d2κ(ε)

dε2 + Sc (h(ε)
dκ(ε)

dℰ
− κ(ε)

dh(ε)

dℰ
) − Sc 𝑆𝑞(K2 + κ(ε)) − Sc (

1

2
Sq ε

dκ(ε)

dℰ
+ K2

dh(ε)

dℰ
) = 0,         

(14)  

     Sq is the squeezing parameter, 𝐷𝑎  is a Darcy number, Pr is the Prandtl number, K1 is the 

thermal stratification parameter, Sc is the Schmidt number, and K2 is the solutal stratification 

parameter. The group of boundary conditions: 

h(0) = 0,
dh(0)

dε
= 1 + S1

d2h(0)

dε2 ,    h(1) =
1

2
𝑆𝑞,   

dh(1)

dε
= 0,                                              (a15)                                           

χ(0) = 1 − K1 + S2
dχ(0)

dε
,   χ(1) = 0,  κ(0) = 1 − K2 + S3

dκ(0)

dε
,   κ(1) = 0.                  (b15) 

Here,  S1, S2 and S3 are velocity slip, thermal slip, and solutal slip parameters, respectively.  

Sq =
𝛿

𝑎
 ,   Da =

k∗𝑎

v(1−δt)φ(ε)
,   Pr =

𝑣

𝛼
,   K1 =

𝑑1

𝑑
,    K2 =

𝑒1

𝑒
,   Sc =

𝑣

𝑑
 ,                                                 

S1 = L√
a

𝑣(1−δt)
 ,  S2 = K1√

a

𝑣(1−δt)
  , S3 = K2√

a

𝑣(1−δt)
  ,                                                    (16) 

     

      The plates are moving apart for Sq > 0 and toward one another for Sq < 0. When K1 =
K2 = 0, stratification effects disappeared. As a result, the flow issue under consideration 

becomes a wall temperature issue. Additionally, the no-slip conditions for S1 = S2 = S3 = 0 
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are recovered. The following information is provided for the skin friction coefficient, Nusselt 

number, and Sherwood number [12]. 

Cf =
μ̃τ𝑥𝑦| y=f(t)

ρ̃(U⃛𝑤(x⃛))2  ,  Nu =
−𝑥 K0(

∂T⃛

∂y⃛
)| y=f(t)

K0(T⃛w− T⃛f)
  , Sh =

−x⃛ D(
∂C⃛

∂y⃛
)| y=f(t)

D (C⃛w− C⃛f)
 ,  R=

x U⃛𝑤(𝑥)

𝑣
. 

R is Reynolds number and from the above equations, yield 

√𝑅𝑒 Cf =
d2h(1)

dε2 ,
Nu

√Re
= −(

1

1−K1
)

dχ(1)

dε
,  

Sh

√Re
= −(

1

1−K2
)

dκ(1)

dε
, 

 

3. The Application of squeezing flow between parallel disks by using PIT. 

     The PIT (1,1) is implemented to the nonlinear ordinary differential equations (12)-(14) 

using the foundations of its method to approximate slip analysis for two dimensional in the 

unsteady incompressible viscous fluid between parallel plates. The following is an illustration 

of the auxiliary perturbation parameter that can be displayed: 

G1 (h,
d2h

dε2
,

d3h

dε3
,

d4h

dε4
, γ) =

d4h

dε4
+ γ (h

d3h

dε3
−

dh

dℰ

d2h

dε2
) −

1

2
γ Sq (3

d2h

dε2
− ε

d3h

dε3
) −

γ

D𝑎

d2h

dε2
,                     

(17)                                                                                                                                                  

G2 (h,
dh

dε
, χ,

dχ

dε
,

d2χ

dε2 , γ) =
d2χ

dε2 + γ Pr (h
dχ

dℰ
− g

dh

dε
) − γPr𝑆𝑞(K1 + χ) − γPr (

1

2
Sqε

dχ

dℰ
+

K1
dh

dℰ
),    (18)                                                                                                                           

G3 (h,
dh

dε
, κ,

dκ

dε
,

d2κ

dε2 , γ) =
d2κ

dε2 + γ Sc (h
dκ

dℰ
− κ

dh

dε
) − γ Sc 𝑆𝑞(K2 + κ) − γ Sc (

1

2
Sq ε

dκ

dℰ
+

K2
dh

dℰ
) (19)                                                                                                                                                                                                                                                      

The definition of the perturbation expansions with only one correction term becomes 

                                                                      hn+1 = hn + γ(hc)n,                                                  (20)    

χn+1 = χn + γ(χc)n,                                                                                                               (21) 

κn+1 = κn + γ(κc)n,                                                                                                                           (22) 

 

     Where n is the nth iteration, hc, χc and 𝜅c  are correction terms in perturbation expansions. 

Substituting Equations (20)-(22) into Equations (17)-(19) respectively. Then expanding the 

resulting equations in a Taylor series with first-order derivative terms about γ = 0. 

G1(hn, hn
′ , hn

′′, hn
′′′, hn

′′′′, 0) + γ [G1hn
(hc)n + G1hn

′ (h′
c)n + G1hn

′′(h′′
c)n + G1hn

′′′(h′′′
c)n +

G1hn
′′′′(h′′′′

c)n + G1γ
] = 0                                                                                                     (23) 

G2(hn, hn
′ , χn, χn

′ , χn
′′, 0) + γ [G2hn

(hc)n + G2hn
′ (h′

c)n + G2χn
(χc)n + G2χn

′ (χ′
c)

n
+

G2χn
′′(χ′′

c)
n

+ G2γ
] = 0,  (24)                                                                                                                                     

G3(hn, hn
′ , κn, κn

′ , κn
′′, 0) + γ [G3hn

(hc)n + G3hn
′ (h′

c)n + G3κn
(κc)n + G3κn

′ (κ′
c)n +

G3κn
′′(κ′′

c)n + G3γ
] = 0,                                                                                                        (25)  

The calculation of all derivatives is as follows:  

G1(hn, hn
′ , hn

′′, hn
′′′, hn

′′′′, 0) = hn
′′′′,   G1hn

= γ hn
′′′, G1hn

′ = −γhn
′′, G1hn

′′ = −γhn
′ −

3

2
γSq −  

γ

D𝑎
  

,                     

G1hn
′′′ = γhn +

1

2
𝑆𝑞ε, G1hn

′′′′ = 1,   G1γ
= (h hn

′′′ − hn
′ hn

′′) −
1

2
Sq(3hn

′′ − εhn
′′′) −

1

D𝑎
hn

′′  ,                             

G2(hn, hn
′ , χn, χn

′ , χn
′′, 0) = χn

′′ , G2hn
= γPrχn

′ , G2hn
′ = −γ Pr χn − γPrK1, G2χn

= −γPrhn
′ −

γ Pr Sq) 
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G2χn
′ = γPr hn −

1

2
γPrSqε,  G2χn

′′ = 1,  G2γ
= Pr(hnχn

′ − χnhn
′ ) − PrSq(K1 + χn) −

Pr (
1

2
Sqεχn

′ + 𝐾1hn
′ ) , G3(hn, hn

′ , κn, κn
′ , κn

′′, 0) = κn
′′,  G3hn

= γSc gn
′ , G3hn

′ = −γ Sc κn −

γScK2, G3κn
= −γSchn

′ − γ Sc Sq, 

G3κn
′ = γSc hn −

1

2
γScSqε, G3κn

′′ = 1, G3γ
= Sc(hnκn

′ − κnhn
′ ) − ScSq(K2 + κn) −

Sc (
1

2
Sqεκn

′ + K2hn
′ )                                                                                                                                                 

(26) 

Substituting Eq. (26) into Eq (23), Eq. (24), and Eq (25) in the derivatives that contain it, we 

get  

             (hc
′′′′)n = −

1

γ
 hn

′′′′ + hhn
′′′ − hn

′ hn
′′ −

1

2
Sq(3hn

′′ − ε hn
′′′) −

1

Da
hn

′′                           (27) 

     (χc
′′)n = −

1

γ
 χn

′′ +  Pr(hnχn
′ − χnhn

′ ) − PrSq(K1 + χn) − Pr (
1

2
Sqεχn

′ + K1hn
′ ),         (28) 

     (κc
′′)n = −

1

γ
 κn

′′ +  Sc(hnκn
′ − κnhn

′ ) − ScSq(K2 + κn) − Sc (
1

2
Sqεκn

′ + K2hn
′ ),         (29)                             

assume that the following initial condition 

                                                  hο(ε) = ∆1ο + ∆11ε +
∆12

2!
ε2 +

∆13

3!
ε3,                                (30) 

                                                  χο(ε) = ∆20 + ∆21ε                                                             (31) 

                                                  κο(ε) = ∆30 + ∆31ε                                                              (32)                                                                                                   

where          

ℎ(0) = ∆1ο, 
dh(0)

dε
= ∆11,  

d2h(0)

dε2 = ∆12, 
d3h(0)

dε3 = Δ13, χ(0) = ∆20, 
dχ(0)

dε
= Δ21, κ(0) =

∆30,
dκ(0)

dε
= Δ31. 

 From the boundary conditions of Equation (15), 

 hο(ε) = ε + (εS1 +
ε2

2
)Δ12 +

ε3

6
Δ13,  𝜒ο(ε) = 1 − ε + (S2 + ε)Δ21, κο(ε) = 1 − ε + (S3 +

ε)Δ31                                                                                                                                       (33) 

The prerequisite condition for solving the problem using Δ11, ∆12, ∆21 and Δ31 are unknown. 

The analytical approximate solutions of Equations (12)-(14) at (ε = 1) may be used to derive 

the values of Δ11, ∆12, ∆21 and Δ31. The iteration approach is used to produce the analytical 

approximations of the following equations: 

h1 = (1 + Δ12S1)ε + 0.5Δ12ε2  + 0.1666666667Δ12ε3 + (0.041666666668 (S1 Δ12
2 +

Δ12) +         0.0625 Δ12𝑆𝑞 +
0.041666666668

Da
Δ12) ε4    +(0.008333333334Δ12

2 +

0.01666666667Sq Δ13 + 

       
0.008333333334Δ13

Da
)ε5 + 0.002777777778 Δ12Δ13ε6  +  0.0003968253968 Δ13

2  ε7.     

𝜒1 = 1 − 𝐾1 + 𝑆2Δ21 + Δ21 𝜀 + (0.5 Δ12Δ21𝑆1𝑆2 𝑃𝑟+0.5 Δ21 𝑆2𝑃𝑟+0.5Δ12 𝑆1
𝑃𝑟 + 0.5 𝑃𝑟 + 

         0.5𝑆2Δ21  𝑆𝑞 Pr +0.5 𝑆𝑞 Pr ) ε2 + (0.1666666666Δ12Δ21𝑆2 𝑃𝑟 +
0.1666666666 Δ12 𝑃𝑟 + 

          0.25 Δ21 𝑆𝑞𝑃𝑟)ε3 + (0.04166666665(Δ12Δ21 𝑃𝑟 + Δ13Δ21𝑆2 𝑃𝑟 + Δ13 Pr)
+ 2.5 × 10−11 

         𝐾1𝑃𝑟Δ13)ε4 + 0.01666666667𝑃𝑟Δ13Δ21ε5. 
𝜅1 = 1 − 𝐾2 + 𝑆3Δ31 + Δ31 𝜀 + (0.5(𝑆3Δ31 − 𝐾2 + 1)(𝑆1Δ12 + 1)𝑆𝑐 + 0.5(Δ31𝑆3

+ 1)𝑆𝑞 𝑆𝑐) 

         +0.5𝑆𝑐𝐾1(𝑆1Δ12 + 1)ε2 + (0.16666666666Δ12𝑆𝑐(𝑆3Δ31 − 𝐾2 + 1) +
0.1666666666Δ31 

         𝑆𝑐𝑆𝑞 + 0.1666666666 𝑆𝑐(0.5Δ31𝑆𝑞 + 𝐾2Δ12))ε3 + (−0.08333333332(𝑆𝑐 −
0.5Δ12Δ31) 



Shool et al.                                                 Iraqi Journal of Science, 2024, Vol. 65, No.3, pp: 1591-1611 
 

1598 

        −0.5Δ13(𝑆3Δ31 − 𝐾2 + 1) + 0.04166666668Δ13 𝐾2𝑆𝑐)ε4 +
0.01666666667Δ13Δ31𝑆𝑐ε5. 
⋮ 

4. The Results of the Tabular  

     In this section, we examine in the influences of the flow parameter like squeezing 

parameter 𝑆𝑞, Darcy number 𝐷𝑎, thermal stratification parameter 𝐾1, velocity slip parameter 

𝑆1, thermal slip parameter 𝑆2, solutal slip parameter 𝑆3, solutal stratification parameter 𝐾2, 
Schmidt number 𝑆𝑐, solutal stratification parameter, and Prandtl number 𝑃𝑟 and Schmidt 

number  𝑆𝑐 on the axial velocity  ℎ(𝜀),  and the radial velocity ℎ′(𝜀), temperature distribution 

𝜒(𝜀) and concentration distribution 𝜅(𝜀). Tables (1) - (4) present calculations of the 

convergence of values Δ11, Δ12, Δ13, Δ20, Δ21, Δ30 and  Δ31 for different values of the 

emerging parameters. Tables (5)-(7) indicate the comparison of the obtained results PIT and 

the numerical results RK4M. These tables show outline that the results are a good match to the 

numerical solution produced by RK4M. 

 

Table.1: The computed values of ∆11, ∆12, ∆13, ∆20,∆21,∆30 and ∆31when 𝑆1=𝑆2=𝑆3=0.1, 

Sq= -0.001, Da = 0.9, Pr = 0.2, Sc=0.1, K1=K2=0.1. 
Approximation     𝚫𝟏𝟏            𝚫𝟏𝟐                 𝚫𝟏𝟑                   𝚫𝟐𝟎                     𝚫𝟐𝟏                    𝚫𝟑𝟎                     𝚫𝟑𝟏 

Order1            0.70486738     -2.9513261     5.42109262     0.8162498614    -0.837501385     0.817217976     -

0.827820234 

Order2            0.70377638     -2.9622361     5.47506207     0.8165550956    -0.834449044     0.817367134     -

0.826328658 

Order3            0.70376113     -2.9623886     5.47568864     0.8165568436    -0.834431563     0.817368239     -

0.826317603 

Order4            0.70376107     -2.9623892     5.47569084     0.8165568455    -0.834431544     0.817368240     -

0.826317593 

Order5            0.70376107     -2.9623892     5.47569084     0.8165568455    -0.834431544     0.817368240     -

0.826317593 

 

Table.2: The computed values of  ∆11, ∆12, ∆13, ∆20,∆21,∆30 and ∆31when 𝑆1=𝑆2=𝑆3=0, Sq = 

0.01, Da = 0.7,   Pr = 0.6, Sc=0.5, K1=K2=0. 
Approximation    𝚫𝟏𝟏               𝚫𝟏𝟐                     𝚫𝟏𝟑                𝚫𝟐𝟎                  𝚫𝟐𝟏                    𝚫𝟑𝟎                 𝚫𝟑𝟏  

Order1         1.0000000     -2.928246031      5.368620778   1.0000000     -0.8379589547     1.0000000    -0.8280488461 

Order2     1.0000000     -2.939088184      5.422261919   1.0000000     -0.8349160042     1.0000000    -0.8265625753 

Order3         1.0000000     -2.939233676      5.422858038   1.0000000     -0.8348991588     1.0000000    -0.8265517414 

Order4     1.0000000     -2.939234148      5.422859821   1.0000000     -0.8348991466     1.0000000    -0.8265517350 

Order5     1.0000000     -2.939234148      5.422859821   1.0000000     -0.8348991466     1.0000000    -0.8265517350 

 

Table.3: The computed values of ∆11, ∆12, ∆13, ∆20, ∆21, ∆30 and ∆31when 𝑆1=𝑆2=𝑆3=1, Sq= 

0.05,        Da=1, Pr = 0.7, Sc=0.5, K1=K2=1. 
Approximation      𝚫𝟏𝟏                 𝚫𝟏𝟐                   𝚫𝟏𝟑                𝚫𝟐𝟎                     𝚫𝟐𝟏                    𝚫𝟑𝟎                     𝚫𝟑𝟏  

Order1        -1.970199599   -2.970199599   5.463948286   -0.837126940   -0.8371269397   -0.827633164   -0.8276331643 

Order2        -1.981163731   -2.981163731   5.518180448   -0.834066955   -0.8340669549   -0.826126052   -0.8261372878 

Order3        -1.981322115   -2.981322115   5.518832089   -0.834048954   -0.8340489541   -0.826126052   -0.8261260521 

Order4        -1.981322784   -2.981322784   5.518834651   -0.834048929   -0.8340489293   -0.826126039   -0.8261260393 

Order5        -1.981322784   -2.981322784   5.518834651   -0.834048929   -0.8340489293   -0.826126039   -0.8261260393 

 

Table.4: The computed values of  ∆11, ∆12, ∆13, ∆20, ∆21, ∆30 and ∆31when 

𝑆1=0.1, 𝑆2=0.2, 𝑆3=0.3, Sq = 0.05, Da =1,2, Pr = 0.3, Sc=0.1, K1=0.1, K2=0.2.  
Approximation  𝚫𝟏𝟏                    𝚫𝟏𝟐                   𝚫𝟏𝟑                  𝚫𝟐𝟎                𝚫𝟐𝟏                      𝚫𝟑𝟎                   𝚫𝟑𝟏  

Order1        0.715579961     -2.84420038      5.17695241      0.73207559     -0.8396220352     0.5513360371    -0.82887987 

Order2        0.714521775     -2.85478224      5.22933403      0.73267726     -0.8366136908     0.5517759893    -0.82741336 

Order3        0.714509746      -2.85490253     5.22982149      0.73268017     -0.8365991445     0.5517789985    -0.82740333  

Order4        0.714509731     -2.85490268      5.22982200      0.73268016     -0.8365991549     0.5517789969    -0.82740334 

Order5        0.714509731     -2.85490268      5.22982200      0.73268016     -0.8365991549     0.5517789969    -0.82740334 
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Table5: The Outcome values of  ℎ(𝜀), 𝜒(𝜀), 𝜅(𝜀) for  PIT and RK4M when 𝑆1=𝑆2=𝑆3=0.1, 

Sq= -0.001, Da = 0.9, Pr = 0.2, Sc=0.1,  K1=K2=0.1.  
𝜺 h(𝛆) RK4M Percentage        

error 

𝝌 (𝛆) RK4M Percentage        

error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.0000000000 

0.0564577770 

0.0884892187 

0.1009257250 

0.0982946707 

0.0849029714 

0.0649042172 

0.0423543099 

0.0212601520 

0.0056257364 

-0.000500000 

0.00000000000 

0.05645658648 

0.08848709969 

0.10092286140 

0.09829119226 

0.08489897838 

0.06489978828 

0.04234941597 

0.02125427589 

0.00561676299 

0.00050000000 

0.00000000 

2.1 × 10−5 

2.3 × 10−5 

2.8 × 10−5 

3.5 × 10−5 

4.6 × 10−5 

6.7 × 10−5 

1.1 × 10−4 

2.6 × 10−4 

2.1 × 10−5  

0.00000000 

0.8165550956 

0.7336698147 

0.6516100696 

0.5700247852 

0.4886656458 

0.4073685471 

0.3260370995 

0.2446276765 

0.1631355495 

0.0815817150 

0.0000000000 

0.8165550956 

0.7338845500 

0.6519606823 

0.5704529894 

0.4891301995 

0.4082263699 

0.3265034736 

0.2450789408 

0.1633814744 

0.0816931969 

0.0000000000 

0.00000000 

2.9 × 10−4 

5.4 × 10−4 

7.5 × 10−4 

9.5 × 10−4    
1.1 × 10−3 

1.4 × 10−3 

1.8 × 10−3    
1.5 × 10−3 

1.3 × 10−3 

0.00000000 

 

Table 6: The Outcome values of h(ε), χ(ε) for PIT and RK4M when 𝑆1=𝑆2=𝑆3=0.1, Sq= 

0.001, Da = 0.9, Pr = 0.2, Sc=0.1, K1=K2=0.1. 
𝜺 h(𝛆) RK4M Percentage      

error 

𝛘(𝛆)       RK4M Percentage        

error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.00000000000 

0.05651818545 

0.08864302264 

0.10119741460 

0.09869987362 

0.08544810007 

0.06558615691 

0.04316016796 

0.02216706943 

0.00660076029 

0.00050000000 

0.00000000000 

0.05651699571 

0.08864090511  

0.10119455310 

0.09869639785 

0.08544410973 

0.06558172942 

0.04315526801 

0.02216116169 

0.00659168104 

0.00050000000 

  0.0000000 

2.1 × 10−5 

2.3 × 10−5 

2.8 × 10−5 

3.5 × 10−5 

4.6 × 10−5 

6.7 × 10−5 

1.1 × 10−4 

2.6 × 10−4 

1.3 × 10−3 

0.00000000 

0.8165373717 

0.7336366004 

0.6515659100 

0.5699742032 

0.4886129727 

0.4073177755 

0.3259917636 

0.2445907585 

0.1631094206 

0.0815681050 

0.0000000000 

0.8165373717 

0.7338520689 

0.6519180179 

0.5704046618 

0.4890805081 

0.4077950118 

0.3264623721 

0.2450467331 

0.1633710756 

0.0819905105 

0.0000000000 

  

0.00000000 

2.9 × 10−4 

5.4 × 10−4 

7.5 × 10−4 

9.5 × 10−4    
1.1 × 10−3 

1.4 × 10−3    

1.8 × 10−3    
1.0 × 10−3 

5.1 × 10−3 

0.00000000 

 

Table 7: The Outcome values of 𝜅(𝜀) for PIT and RK4M when 𝑆1=𝑆2=𝑆3=0.1, Da = 0.9, Pr = 

0.2, Sc=0.1, K1=K2=0.1. 
                                           Sq= 0.001                                                                 Sq= -0.001 

𝜺 𝜿(𝛆) RK4M Percentage      

error 

𝛋(𝛆) RK4M Percentage        

error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.8173582569 

0.7349977002 

0.6530526135 

0.5713473607 

0.4897576122 

0.4082010802 

0.3266293016 

0.2450201834 

0.1633710756 

0.0816921656 

0.0000000000 

0.8173582569 

0.7349977193 

0.6530526378 

0.5713473769 

0.4897575964 

0.4082009637 

0.3266288984 

0.2450190614 

0.1633683621 

0.0819905105 

0.0000000000 

  0.0000000 

2.5 × 10−8 

3.7 × 10−8 

2.8 × 10−8 

3.2 × 10−8 

2.8 × 10−7 

1.2 × 10−6 

4.5 × 10−6 

1.5 × 10−5 

3.6 × 10−4 

0.00000000 

0.8173671342 

0.7350143338 

0.6530747240 

0.5713726810 

0.4897839733 

0.4082264843 

0.3266519814 

0.2450386490 

0.1633841425 

0.0816989706 

0.0000000000 

0.8173671342 

0.7350143530 

0.6530747481 

0.5713726970 

0.4897839578 

0.4082263699 

0.3266515858 

0.2450375460 

0.1633814744 

0.0816931969 

0.000000000 

0.0000000000 

2.8 × 10−8 

3.6 × 10−8 

2.8 × 10−8 

3.1 × 10−8    
2.8 × 10−7 

1.2 × 10−6    

4.5 × 10−6    
1.6× 10−5 

7.0 × 10−5 

0.00000000 

 

5. Graph discussion of the plates moving each other ( 𝑺𝒒 < 𝟎). 

     After obtaining the approximate analytical solutions for Equations (12) and (14) about the 

initial and boundary conditions of Equations (15) using Maple software, the basic purpose of 

this article is to demonstrate the behavior of important parameters relevant to the state 

mathematics problem when the plates move each other. The effects of these parameters 

completely have different attributes such as axial velocity ℎ(𝜀),  radial velocity 
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ℎ′(𝜀),  temperature 𝜒(𝜀) and concentration 𝜅(𝜀). Figure  (3) illustrates the squeezing 

parameter 𝑆𝑞 influences the velocity components, temperature, and concentration. It can be 

seen from this figure an enlargement in velocity profiles (axial, redial) and the reduction of 

the temperature and concentration with increasing squeezing parameters. The physical 

explanation for this is the width of the gap between the plates will compress with an increase 

in the squeezing coefficient, therefore, greater compressive strength provides more fluid 

deformation. Hence, the velocity components are enhanced. Figure (4) explains the effect of 

increasing K1 and K2  on the temperature and concentration profiles, respectively. This figure 

shows that these distributions behave similarly and the curves are decreasing. Figure (5) 

discusses the influence of the 𝑆1 on the axial and radial velocity. This figure plots the axial 

velocity become decreasing. While the radial is divided into two cases from 0 < 𝜀 ≤ 3.5  is 

decreasing and 3.5 < 𝜀 < 1 is increasing. Figure (6) demonstrates the increase of 𝑆2 and 𝑆3 

on the temperature and concentration profiles, respectively. From this figure, it can be seen 

that these profiles are decreasing. Figure (7) explains the effect of increasing 𝑃𝑟 and 𝑆𝑐 on the 

temperature and concentration profiles, respectively. This figure shows that these distributions 

behave similarly and the curves are increasing. Figures (8) and (9) indicate the counter of the 

stream function. These figures show that the stream function is in form of curves that are not 

intersecting with increasing the dimensional constant 𝑎  and kinematics viscosity 𝑣. In fluid 

mechanics, the stream function can be defined by the path of imaginary particles suspended in 

and carried with a fluid. In steady flow, the streamlines are stationary but the fluid is in 

motion. Physically, the fluid velocity is relatively high, the streamline is combined. While 

they are opened when the fluid is relatively still.  

                                                                                                                                                                       

 

 

 

 

Figure.3: The behavior of ℎ(𝜀),  ℎ′(𝜀), 𝜒(𝜀) and 𝜅(𝜀) with various 𝑆𝑞 for  𝑆1=0.1, 𝑆2=0.2, 

Da = 0.1,                  Pr = Sc=1.2,  K1=0.1, K2=0.2.  
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Figure 4: The behavior of  𝜒(𝜀) and 𝜅(𝜀)  with various K1 and  K2  respectively, for  

𝑆1=0.1, 𝑆2=0.2, Da = 0.1, Pr = Sc=1.2. 

 

 
Figure 5: The behavior of ℎ(𝜀) and  ℎ′(𝜀) with various 𝑆1 for  𝑆2=𝑆3=0.2, Sq= -0.2, Da = 0.1, 

Pr = Sc=1.2,  K1=0.1, K2=0.2.  

 

 
Figure 6: The behavior of 𝜒(𝜀) and 𝜅(𝜀)  with various 𝑆2  and 𝑆3  for  𝑆1=0.1, Sq= -0.2, Da = 

0.1, Pr = Sc=1.2,  K1=0.1, K2=0.2. 
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Figure.7: The behavior of 𝜒(𝜀) and 𝜅(𝜀)  with various 𝑃𝑟 and 𝑆𝑐 respectively, for  

𝑆1=0.1, 𝑆2 = 𝑆3=0.2, Da = 0.1, K1=0.1, K2=0.2.  

 

 
 

Figure.8: The behavior of the stream function for  𝑆1= 𝑆2=𝑆3 =0.1, Sq=-0.2, Pr = 0.2, 

Sc=K1=0.1, K2=0.1. 
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Figure.9. The behavior of the stream function for  𝑆1= 𝑆2=𝑆3 =0.1, Sq=-0.2, Pr = 0.2, 

Sc=K1=0.1, K2=0.1. 

 

6. Discussion of the graphic of the plates moving away ( 𝑺𝒒 > 𝟎). 

     The analytical solutions of the slip analysis to squeeze fluid flow when the plates move 

apart are simulated using the results graphs presented in Figures (10)-(17)  under the aid of 

Maple software. The effect of 𝑆1, 𝑆2,𝑆3, Sq, K1, and K2 have the same behavior the plates 

moving each other whereas the effect of Pr and Sc are opposite for the behavior of the plates 

moving each other. The effect of  𝐷𝑎 on axial and radial velocity is shown in Figure (11). This 

figure gives the axial velocity that is increment and the radial velocity is increasing for 0 <
𝜀 < 0.5 with decreasing for 0.5 ≤ 𝜀 < 1. In Figures (16)-(17), the counters of stream 

function with increasing the dimensional constant 𝑎 and kinematics viscosity 𝑣 are 

investigated. These figures show that the lines are parallel and  the intersection does not exist  

and the curves are more tortuosity when increasing 𝑎. However, the opposite can be noticed 

when the tortuosity decreases. 
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Figure 10: The behavior of ℎ(𝜀),  ℎ′(𝜀), 𝜒(𝜀) and 𝜅(𝜀)  with various 𝑆𝑞 for  𝑆1=0.1, 𝑆2=0.2, 

Da = 0.1, Pr = Sc=1.2,  K1=0.1, K2=0.2.  

 
Figure. 11: The behavior of ℎ(𝜀) and  ℎ′(𝜀)  with various 𝐷𝑎 for  𝑆1=0.4, 𝑆2=0.2, Sq= Pr = 

Sc=1.2,  K1=0.1, K2=0.2. 



Shool et al.                                                 Iraqi Journal of Science, 2024, Vol. 65, No.3, pp: 1591-1611 
 

1605 

 
Figure 12: The behavior of   𝜒(𝜀) and 𝜅(𝜀) with various K1 and K2,  respectively for  

𝑆1=0.4, 𝑆2=0.2,  Sq= Pr =  Sc=1.2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: The behavior of ℎ(𝜀) and  ℎ′(𝜀)   with various   𝑆1 for  𝑆2 = 0.2    Sq= Pr = 

Sc=1.2, K1=0.1, K2=0.2. 

 
Figure 14: The behavior of   𝜒(𝜀) and 𝜅(𝜀)  with various 𝑆2  and  𝑆3  respectively for  𝑆1= 

0.4, Sq= Pr = Sc=1.2,  K1=0.1, K2=0.2. 
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Figure 15: The behavior of 𝜒(𝜀) and 𝜅(𝜀)  with various 𝑃𝑟  and  𝑆𝑐 respectively for  

𝑆1=0.4, 𝑆2 = 0.2, 𝑆3 = 0.2,  K1=0.1, K2=0.2. 

 

 
                                                   𝑎 = 0.5                                          𝑎 = 1.0 

 
                                                     𝑎 = 1.5                                        𝑎 = 2.0 

Figure 16: The behavior of the stream function for  𝑆1= 𝑆2=𝑆3 =0.1, Sq= Pr = 0.2, Sc= 

K1=0.1, K2=0.1. 
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                                           𝜈 =  0.5                                            𝜈 = 1.0 

 
𝜈 = 2.0                                                 𝜈 = 3.0 

Figure 17: The behavior of the stream function for  𝑆1= 𝑆2=𝑆3 =0.1, Sq= Pr = 0.2, Sc= 

K1=0.1, K2=0.1. 

 

7. Graphic discussions of physical quantities 

     In Figures (18)-(23), we depict interpretations of the impacts of factors on physical 

variables including coefficient of skin friction, Nusselt number, and Sherwood number. Skin 

friction coefficient, Nusselt number, and Sherwood number are depicted for various values of 

the velocity parameter slip 𝑆1, thermal parameter slips 𝑆2, and singular slip parameter 𝑆3 in 

Figure (18). Every quantity is shown to decrease in this figure. 

 

 
Figure 18. The behavior of the Skin friction coefficient, Nusselt number, and Sherwood 

number for various 𝑆1, 𝑆2 and  𝑆3. 
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Figure (19) shows how the Nusselt number and Sherwood number are affected by various val

ues of the thermal stratification parameter 𝐾1 and the solutal stratification parameter 𝐾2, resp

ectively. This figure demonstrates Nusselt number is reduced for an increase 𝐾1, the behavior 

of the Sherwood number is similar for the Nusselt number with an increase 𝐾2. 
 

 
Figure 19: The behavior of the Nusselt number and Sherwood number for various 𝐾1  and 

𝐾2. 
 

      Figure (20) and Figure (21) indicted the effects of the three quantities plotted for sundry 

values of squeezing number Sq. These figures show these quantities decrease as the emerging 

squeezing parameter increase. 

 
Figure 20: The behaviorof the Sherwood number and the Nusselt number for different 𝑆𝑞. 

 
Figure.21: The Skin friction coefficient's behavior for different 𝑆𝑞. 
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Figure 22: The behavior of Nusselt number for various  𝑃𝑟. 

 

     Figure (22) shows the Nusselt number for various Prandtl number 𝑃𝑟 values. The behavior 

of the Sherwood number for various values of the Schmidt parameter 𝑆𝑐 was described in 

Figure (23). These Figures demonstrate that an increase causes the Nusselt number to 

decrease, whereas an increase in 𝑆𝑐 causes the Sherwood number to grow. 

 

 
Figure 23: The Sherwood number's behavior for different 𝑆𝑐. 

 

8. The Discussions of convergence analysis    

     In this part, the implementation of the theorems in [18], [19] is to analyze the convergence 

of the solutions of PIT. If there exists 0 < ϖ𝑘𝑖 < 1  then ‖Π̅𝑘(𝑖+1)‖ ≤  𝜛𝑘𝑖 ‖Π̅𝑘𝑖‖, 𝑘 =

1,2,3, 𝑖 = 0,1,2, …, is the condition of convergent. which 

Π̅10 = ℎ0, 
Π̅20 = 𝜒0, 
Π̅30 = 𝜅0, 
Π̅10 + Π̅11= ℎ0 + (ℎ𝑐)0, 

Π̅20 + Π̅21= 𝜒0 + (𝜒𝑐)0, 

Π̅30 + Π̅31= 𝜅0 + (𝜅𝑐)0, 

Π̅10 + Π̅11 + Π̅12 = ℎ0 + (ℎ𝑐)0 + (ℎ𝑐)1, 
Π̅20 + Π̅21 + Π̅22 = 𝜒0 + (𝜒𝑐)0 + (𝜒𝑐)1, 
Π̅30 + Π̅31 + Π̅32 = 𝜅0 + (𝜅𝑐)0 + (𝜅𝑐)1 

⋮ 
Π̅10 + Π̅11 + Π̅12 + ⋯ + Π̅1𝑛 = ℎ0 + (ℎ𝑐)0 + (ℎ𝑐)1 + ⋯ + (ℎ𝑐)𝑛, 
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Π̅20 + Π̅21 + Π̅22 + ⋯ + Π̅2𝑛 = 𝜒0 + (𝜒𝑐)0 + (𝜒𝑐)1 + ⋯ + (𝜒𝑐)𝑛, 

Π̅30 + Π̅31 + Π̅32 + ⋯ + Π̅3𝑛 = 𝜅0 + (𝜅𝑐)0 + (𝜅𝑐)1 + ⋯ + (𝜅𝑐)𝑛, 

All solutions are achieved for the condition of convergent in Tables. (8) – (10) as follows: 

 

Table.8: The values of convergence for 𝑆1=𝑆2=𝑆3=0.1, Da = 0.9, Pr = 0.2, Sc=0.9,  

K1=K2=0.2. 
𝜛1𝑖‖.‖∞

   𝑆𝑞 = 0.1       𝑆𝑞 = −0.1         𝑆𝑞 = 0.01          𝑆𝑞 = −0.01       𝑆𝑞 = 0.05        𝑆𝑞 = −0.05 

𝜛10    0.1656029283   0.1371020578   0.1527741499   0.1499240140     0.1584752186   0.1442245977 

𝜛11    0.0211662361   0.0072358045  0.0142977474    0.01277113521   0.0173506533   0.0097175683 

⋮                 ⋮                           ⋮                       ⋮                           ⋮                          ⋮                         ⋮ 

 

Table.9: The values of convergence for 𝑆1=𝑆2=𝑆3=0.1, Da = 0.9, Pr = 0.2, Sc=0.9, 

K1=K2=0.2.  
𝜛2𝑖‖.‖∞

   𝑆𝑞 = 0.1       𝑆𝑞 = −0.1        𝑆𝑞 = 0.01         𝑆𝑞 = −0.01         𝑆𝑞 = 0.05                𝑆𝑞 = −0.05                                       

𝜛20      0.1031884255  0.1216908328   0.1108241111    0.1126633413    0.1073068890          0.1165163177 

𝜛21      0.0830810792  0.0693073494   0.0773932718    0.0760122189    0.0800299166         0.0731291133 

 ⋮                ⋮                         ⋮                         ⋮                           ⋮                         ⋮                         ⋮ 

 

Table.10: The values of convergence for 𝑆1=𝑆2=𝑆3=0.1, Da = 0.9, Pr = 0.2, Sc=0.9, 

K1=K2=0.2. 
𝜛3𝑖‖.‖∞

   𝑆𝑞 = 0.1       𝑆𝑞 = −0.1          𝑆𝑞 = 0.01          𝑆𝑞 = −0.01        𝑆𝑞 = 0.05        𝑆𝑞 = −0.05                                    

𝜛20     0.4622006152  0.5444755073    0.4950895366   0.5032491413    0.4797348925   0.5206147798 

𝜛21     0.0404236483  0.0693073494    0.0376962965   0.0381217881    0.0364102767   0.0385473894 

 ⋮                   ⋮                       ⋮                           ⋮                         ⋮                          ⋮                         ⋮ 

Consequently, the series of approximate- analytical solutions ℎ(𝜀),  𝜒(𝜀)  and 𝜅(𝜀)  obtained 

by PIT can that say is convergent. 

 

9. Conclusion 

     In this article, the designation of the slip analysis for squeezing flow between parallel 

plates model is solved to establish the analytical expressions for concentration, temperature, 

and velocity by using PIT with the help of similarity transform. It can be seen that PIT is 

successfully implemented for slip analysis of squeezing flow among parallel plates to find a 

new approximate analytical solution. The obtained results for these distributions are plotted to 

see the impact of parameters graphically. As a result, the fluid velocity exhibits the larger 

variance of the cross-flow slip velocity parameter in that direction. The function of the 

thermal stratification and slip parameters is reduced by the temperature field.  For the solutal 

stratification parameter and solutal slip parameter, the fluid concentration decreases. Also, the 

Nusselt number and the Sherwood number decrease as all proposed parameters increase 

except for the Schmidt parameter when it is increased leading to increase physical quantities. 
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