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Abstract

In this article, the effects of physical flow parameters on squeezed fluid between
parallel plates are explored through the Darcy porous channel when fluid is moving
as a result of the upper plate being squeezed towards the stretchable lower plate,
such as velocity slip, thermal slip, solutal slip, thermal stratification parameter,
solutal stratification parameter, squeezing number, Darcy number, Prandtl number,
and Schmidt number. The governing equations are transformed into a nonlinear
ordinary differential equation using the appropriate similarity transformations. The
resulting equations are solved by using the perturbation iteration method (PIT) to
produce a convergent analytical solution with high accuracy. The phenomena of the
squeezing fluid as the plates are moving apart and when they are coming together
are illustrated using the resulting analytical solutions. Plots are used to discuss the
significant effects of physical parameters on velocity, temperature, and fluid
concentration profiles. The skin friction coefficient and Nusselt Sherwood values
have graphical interpretations that are listed. For strong velocity slip parameters, the
results demonstrate the existence of a minimum velocity profile close to the plate
and a growing velocity profile distant from the plate. Additionally, as the slip effects
rise, the fluid temperature and concentration both considerably drop. The results of
the fourth-order Runge-Kutta method (RK4M) and the presented analytical solutions
provided are in excellent agreement.

Keywords: Squeezing flow, Slips conditions, Ordinary differential equation,
Perturbation iteration algorithm.
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1. Introduction

The significance of slip effects among parallel plates in several fluid dynamic systems has
attracted the attention of numerous researchers. In the literature, it was noticed that the
majority of analyses were conducted assuming no slip circumstances existed on the surfaces.
It is important to swap out the non-slip conditions with slip conditions in various physical
situations where these conditions are no longer appropriate. Chemically treated or lubricated
hydrophobic surfaces, shear skin, wire nettings, perforated plates, porous or rough surfaces,
hysteresis and spurts effects, and the super-hydrophobic nano-surfaces have all demonstrated
the importance of slip conditions. The fluid flow on many interfaces, polishing of mechanical
heart valves, and issues with rarefied fluid are some other instances of industrial thermal
issues that arise when slip occurs. Navier [1] and Maxwell [2] carried out earlier research on
linear slip flow. The fluid flow under the influence of slip was presented by Rao and
Rajagopal [3]. The impact of slip circumstances on the flow of the Casson fluid through a
thermally stratified channel was covered by Hayat et al. [4]. Jasim [5] studied the exploration
of no-slip and slip of unsteady squeezing flow fluid through a derivatives series algorithm.
With slip circumstances and varying magnetic fields, Rana et al [6] illustrated nanofluid flow
and heat transfer over a non-linear permeable sheet. Ullah and Zaman [7] talked about the Lie
group analysis of tangent hyperbolic fluid flow in a stretching sheet under slip conditions. An
unsteady squeezing flow of the Casson fluid having magnetohydrodynamic effect and passing
through a porous medium channel with slip at the boundaries was modeled and analyzed by
Mubashir et al. in [8]. Jasim [9] studied the effect of magnetohydrodynamics on squeezing
flow in a porous medium of the Casson nanofluid between parallel plates using a new scheme
technique. The effects of slip on fluid flow in porous media were presented by Moghaddam
and Jamiolahmady [10]. Through temperature differences in the concentration of fluids with
different densities, the phenomenon of double stratification is accomplished in many
industrial and natural processes. The double-strategy method has Numerous scientific
applications that may be made, as seen in Figure.1.
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Figure.1l: The application of the double stratification process.

The stratification procedure could be applied to energy storage and solar engineering.
Additionally, the biological activities that occur in reservoirs result in anoxic bottom water.
The existence of thermal radiation with copper-water nanofluid and the effect of heat transfer
in unsteady magnetohydrodynamics squeezing and suction injection on the flow between
parallel plates in a porous medium was discussed by Jasim [11]. The dual stratified UCM
flow across a melting surface in the presence of double stratification and cross-diffusion
effects was presented by Babu and Sandeep [12]. The mixed convection effects on double
stratification over a vertical sheet inserted in a non-darcy Porous Media were presented by
Srinivasachary and Surender [13]. According to the aforementioned publications, no attempt
was made to exploit double stratification and the compound effects of slip (velocity,
temperature, and solutal conditions) in squeezing flow analysis. In [14], the first attempt was
made in 2018 to investigate the mass, heat, and Newtonian fluid of fluid flow through a
porous medium with double stratification and slip conditions. The homotopy analysis method
was used to discuss the slip analysis of squeezing flow using doubly stratified fluid. Also, Al-
Khafajy and Al-Delfi [15] investigated the impact of an elastic wall on the peristaltic flow of
fluid between two concentric cylinders with various parameters such as Reynolds number.
We aim to use the perturbation iteration method and provide new initial conditions to extract
a new approximate analytical solution through a porous medium with double stratification and
slip conditions for the Newtonian fluid flow, continuity, momentum, and energy
conservations. It is clear that from this work, the perturbation iteration technique is used for
both the slip analysis of the squeezed flow between parallel plates as well as to find an
analytical-approximate solution. Additionally, the effects of flow factors including the Eckert
number, Schmidt number, solutal stratification parameter, thermal stratification parameter,
and squeezing number are examined. The fourth-order Runge-Kutta method is used to
compare the outcomes of the analytical solutions and the numerical method. The structure of
this paper is as follows: In Section 2, the governing equations are derived. Section 3 of the
paper describes how PIT applies incompressible and viscous fluid inside infinite parallel
disks. Sections 4, 5, 6, and 7 provide discussions and findings. Section 8 contains the
convergence analysis. Finally, section 9 provides the conclusions.

2- Mathematical formulation
Considering the incompressible and viscous fluid inside the infinite parallel disks, the two

plates are separated by the distance y = f(t)= va-st)

apart, for 6 > 0, the two plates are
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squeezed until they touch at t = % and for & < 0, the two plates are separated. The motion of

the fluid is assumed as unsteady and laminar subjected to a Darcy porous medium. It is
assumed that the fluid's motion is laminar, unstable, and susceptible to a Darcy porous media.
The flow is analyzed using the coordinate system (x, y), where the x-axis is considered to run
along the axis of the bottom plate and the y-axis is directed ordinarily in its direction. As
shown in Figure 2, it is assumed that the top fixed disk is being squeezed vertically with
velocity ¥ ,while the bottom fixed disk is being stretched in a direction with velocity U(x).

- / Upper plate /
y:

OHOOOO QOODOOPDO
egooooy0®®OPO® —> porous medium

f(t)| @ ﬂur- XXX

N X X N oV, 000
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Figure 2: The geometry of the problem.

The governing equations of the unsteady two-dimensional flow of incompressible viscous
fluid can be introduced as follows [16].

%+%:O )

wt 6X+Vg;:_%%+ (5 +5) ~ S @
o+ = =g (G + 55 S &)
Fr _+V6_T “(Z_T+37T) @

Here, U and V are the velocity components in x and y direction, respectively. p is the
density, p is the pressure, v is the kinematics viscosity, ¢* is the porosity of porous medium,

k*is the permeability of the porous medium, T is the temperature, a:,‘%" is thermal
p

diffusivity, K, is thermal conductivity, Cpis the specific heat, C is the fluid concentration and
D is the diffusion coefficient. Appropriate boundary conditions are described as follows [9]:

ﬁ:i‘jw(x)u"’: v=0,7T= T(x)+K1 '(:'—cw()+1<2—. at y =0,
df 1)
i=0, V=V, = - 3 ’a(l St) T= Tf(X) C="Ce(x) aty=f(t),
1 ves .. ex
U () = (1 8t) W(x) (1 8t) W(X) (1 st)’
dix e X
Te(x) = t e Cf(x) + s (6)

U, (x) is the stretching velocny, L is the velocity slip factor, T, (x) is the variable surface
temperature, K1,and K2 are the temperature slip factor and solutal slip factor, respectively.
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C,,(x) is the variable surface concentration, Te(x) is the variable upper plate e temperature,
Ce(x) is the variable upper plate concentration, T, is the reference temperature, C, is the
reference concentration and d, d,, e, e1, a, 6 are dimensional constants. By using the similarity
transformations [17]

= 2 — / _ (- _(E=Ep
&= [ra-5v’ = (1- St)Xh(E) w(€) = Ty’ k(e) = Tty (7

where ¢ is the similarity variable, W is the stream function defined as, Ui = ‘;—; , V= f;:
which identically satisfies Equation (1). The functions h(g), x(€) and k() are dimensionless
stream function, temperature function, and concentration function, respectively. Using
Equation (7), we obtain

dh(s) _

0,00 2, ¥ = — |2 he). (®)

To eliminate pressure terms from the resulting equations, we differentiate Equation (2) for
y and Equation (3) for X ,then we get:

2% 62 aiiol | ..9%10  ovai 1 8%p o3 a3 vd* ol

...... —_—t =t V=t === —- =L [ —]—i— 9)
at oy 6x ay 9y 0x ay2 oy ay p 0Xay 0x2 0y = 0y3 k* ay

%y . 0%V | 0oV 0% | OVov _ 1 9% a3 o3V vop* oV

...... U— V—ox = p 128 vy ] - i— (10)
at 0% 952 | 9% 0% a0y 0% % Oy p 0X0y %3 0y?2 0% k* ay
(9-10) gives

0% %% e 92 .. 0% dligu ouov G L B L 4 avou  ovov
( ............ ) (u i)t (=)t Vo ) =T ) =
at 6y ot ax 0% 6y 6X2 ay 0% 9% 0% ay2 0y 0% 0y 0y 90X dy

vop* ou oV
[(6x2 6y 0x3 ( a2 ax] k* (ay Oy) (11)

By using the S|m|Iar|ty transformations Equation (7) and Equation (8), then finding the
derivatives to them in Eq. (11), Eq. (4), and Eq. (5) , we get

a* h(s)

d3h(s) dh(e) d?2h(e) 1 d?h(e) d3h(e) 1 dzh(s)
+h(e) Ot Isq (32— e ) -2 =0, (12

i X(s) + Pr (h( )d"(s) x(2) 52 — Prsq (K1 +x(e)) — Pr(5Sq e X2 + k1222) = g,
(13)
de(S) dK(s) dh(e) dK(s) dh(e)
= (h( ) —— — k(¢) T) —ScSq(K2 + x(g)) — Sc( Sqe——+K2 T) =0,
(14)
Sq is the squeezing parameter, Da is a Darcy number, Pr is the Prandtl number, K1 is the

thermal stratification parameter, Sc is the Schmidt number, and K2 is the solutal stratification

parameter. The group of boundary conditions:
dh(O) d2h(0)

dh(1)

h(0) = 0, =148, h(1)=ls g ==2=0, (al5)

x(0) =1 — Kl +5, 29 ¥(1) =0, k(0) =1 - K2+ 5,52, k(1) = 0. (b15)

Here, S,, S, and S5 are velocity slip, thermal slip, and solutal S|Ip parameters, respectively.
_$ —__Ka _2 4 —a _2

Sq—a, Da—v(l_&)(p(g), Pr—a, Kl—d, KZ—e, Sc-d,

a a a
S1= L\’v(l—St) ) S2 = Kl\/v(l—St) 53 = KZ\/vu—St) ’ (16)

The plates are moving apart for Sq > 0 and toward one another for Sq < 0. When K1 =
K2 = 0, stratification effects disappeared. As a result, the flow issue under consideration
becomes a wall temperature issue. Additionally, the no-slip conditions for S; =S, =S; =0
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are recovered. The following information is provided for the skin friction coefficient, Nusselt
number, and Sherwood number [12].

oT e [0C
Cf = Movly=ry T KO(T;)' y=f(0 _ _XD(a_;)l y=r0 o _x Uy ()
CPUWE? T T Ko(tw-Tp "7 D(Cw-Cp) v
R is Reynolds number and from the above equations, yield

Re d*h(1) Nu _ . 1 .dx(®) Sh _ 1 | dk(1)
e Cf = “de2 ’ JRe (1—1(1) de ' VRe (1—1(2) de '

3. The Application of squeezing flow between parallel disks by using PIT.

The PIT (1,1) is implemented to the nonlinear ordinary differential equations (12)-(14)
using the foundations of its method to approximate slip analysis for two dimensional in the
unsteady incompressible viscous fluid between parallel plates. The following is an illustration

of the auxiliary perturbation parameter that can be displayed:
( d2h d3h d*h ) _ d*h ( d*h  dh th) 1 ( d3_h) y d%h

g ae et Y) T q 3@‘ T

de3  dE de?

2

D, de?’

dh  dy d?yx X 1 dx
G, (h D Ot dsz,y) d—+yPr(h£—g ) yPqu(K1+X)—yPr(ESq££+

dh
K13) (18) 2
dh  dx dZx d2k dx dh dx
G3(h, L dsz,y) d—+ySc(h£— ) Y ScSq(K2 + k) — ySc( Sq££+
K23) (19)

The definition of the perturbation expansions with only one correction term becomes

hpyq = hy +y(he)n, (20)
Xn+1 = Xn ¥ YXns (21)
Knt1 = Kp + Y(K)n, (22)

Where n is the nth iteration, h., x. and k. are correction terms in perturbation expansions.
Substituting Equations (20)-(22) into Equations (17)-(19) respectively. Then expanding the
resulting equations in a Taylor series with first-order derivative terms about y = 0.

Ga (B, b, b, 1 1, 0) + [ Gy (M) + Gy (WD + Gy (0 D+ Gy (07 ) +

Gy (0" ) + Gy | = 0 (23)
G (hy, hp, X, X X0, 0) +y [Gzhn (ho)n + Gzh;1 (h'n + szn Xcn + sza (X'c)n +
Gayr(X") + G| = 0, (24)
G (ha, Dy K, K, K, 0) + ¥ | Gay (e + Gayy () + Gy, (ke + G (K e +
Gar (K" D + Ggy] =0, (25)

The calculation of all derivatives is as follows:
Gl(hnl h;v h;IIf h;IHJ h;{”, 0) = h;{”’ Glh =Y h;IHI Glh’ = _yh;‘ll' Glh” = _Yhil - gYSq - Dl
n n n a

Gy = Yhn + 15qa Gy =1, Gy, = (hhy’ —hyhi) — %s (3h! — eh!") — ih;{ ,

Gz (hn, hy, Xns X0 Xn, 0) = Xn' » Gy, = YPrxn, Gopr = —yPrixy — yPrK1, Gy, = —yPrhy —
yPrSq)
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sza =yPrh, — %yPque, szg =1, Gzy = Pr(h,x, — Xohn) — PrSq(K1 + x,) —
Pr(2Sqexy + K1h) |, Ga(hy, hiy o, a7, 0) = Kff, Gy = YSCgh, Gapy = —YSciy —
yScK2, G3,, = —YySchy —yScSq,

Gsr =YSchy —>¥ScSqe,  Gar =1,  Gg, = Sc(hakf — Kyhf) — ScSq(K2 + 1) —
Sc G Sqexy + KZh}l)

(26)

Substituting Eq. (26) into Eq (23), Eq. (24), and Eq (25) in the derivatives that contain it, we
get

nrr 1 nrr nr ! n 1 n nr 1 n
(h¢ )nz—;hn + hhy —hnhn—gsq(3hn—€hn)—D—ahn (27)
n 1 124 ! ! 1 !/ !/
(Xc )n = _; Xn + Pr(han - thn) - PFSQ(K]. + Xn) —Pr (E Sq“:Xn + K]-hn)a (28)
(k) = —% Ky + Sc(hyk, — kphy) — ScSq(K2 + k,) — Sc G Sqexy + K2h§1), (29)
assume that the following initial condition

ho(e) = Ay + Mg+ %282 + %383, (30)
Xo(8) = Ay + Aps€ (31)
Ko(€) = Azp + Agq€ (32)

where

dh(o d?h(o) d3h(0) dx(o
h(0) = A4, % = Ay, Tdez P12 Tgm T A13,%(0) = Ay, % =Ny, k(0) =
dk(0
A30»% = Azq.

From the boundary conditions of Equation (15),

2 3
hy(e) = e+ (eS; + %)A12 + %AB, Xo(&) =1—e+ (S, +8)Ay, ko(8)=1—¢€+(S3+
€)A3y (33)
The prerequisite condition for solving the problem using A;4, A4,, A,; and Az, are unknown.
The analytical approximate solutions of Equations (12)-(14) at (¢ = 1) may be used to derive
the values of A;1,A;5,A,; and Ag;. The iteration approach is used to produce the analytical
approximations of the following equations:
hl = (1 +A,S;)e + 0.5A,,62 + 0.1666666667A;,&3 + (0.041666666668 (S, A, +

Ay,) + 0.0625 A;,Sq + =220 A ) gt +(0.008333333334A2, +
0.016666666675q A5 +

0.00833333333483)¢5 1 0002777777778 AyyAy5e® + 0.0003968253968 A2, £7.
Da 13

X1 =1—K1+ 5051 + Apq €+ (0.5A134215:S; Pr+0.5 Ayy S,Pr+0.5A1, 5 Pr + 0.5 Pr +
0.55,A,; SqPr+0.5Sq Pr) e + (0.1666666666A,,A,,S, Pr +
0.1666666666 A, Pr +
0.25 Ay, SgPT)e3 + (0.04166666665(A1,A5; Pr + Ay3Ay,S, Pr + Ay Pr)
+25x 10711
K1PrA;3)e* + 0.01666666667PrA 37,5
Ki =1—K2+ 8303, + Azq €+ (0.5(S343; — K2 + 1)(51A1, + 1)Sc + 0.5(A3,5;
+ 1)Sq Sc)
+0.55cK1(S;A1, + 1)€? + (0.16666666666A,,Sc(S3A3; — K2 + 1) +
0.1666666666A5,
ScSq + 0.1666666666 Sc(0.5A5,5Sq + K2A;,))€® + (—0.08333333332(Sc —
0.5A1,A31)
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—0.5A,5(S3A3; — K2 + 1) + 0.041666666684,5 K25c)e* +
0.01666666667A,3A3,SceS.

4. The Results of the Tabular

In this section, we examine in the influences of the flow parameter like squeezing
parameter Sq, Darcy number Da, thermal stratification parameter K1, velocity slip parameter
S1, thermal slip parameter S,, solutal slip parameter S5, solutal stratification parameter K2,
Schmidt number Sc, solutal stratification parameter, and Prandtl number Pr and Schmidt
number Sc on the axial velocity h(e), and the radial velocity h'(e), temperature distribution
x(&) and concentration distribution x(e). Tables (1) - (4) present calculations of the
convergence of values Ay, A5, A13,020,451 Azp and Az, for different values of the
emerging parameters. Tables (5)-(7) indicate the comparison of the obtained results PIT and
the numerical results RK4M. These tables show outline that the results are a good match to the
numerical solution produced by RK4M,

Table.1: The computed values of A;q, Ay, Agz Azg,Az1,A30 and Az;when §;=5,=53=0.1,
Sq=-0.001, Da=0.9, Pr=10.2, Sc=0.1, K1=K2=0.1.

Approximation Aqq Aqo Aqz Ay Ay Az Asq
Orderl 0.70486738 -2.9513261 5.42109262 0.8162498614 -0.837501385 0.817217976 -
0.827820234
Order2 0.70377638 -2.9622361 5.47506207 0.8165550956 -0.834449044 0.817367134 -
0.826328658
Order3 0.70376113 -2.9623886 5.47568864 0.8165568436 -0.834431563 0.817368239 -
0.826317603
Order4 0.70376107 -2.9623892 5.47569084 0.8165568455 -0.834431544 0.817368240 -
0.826317593
Order5 0.70376107 -2.9623892 5.47569084 0.8165568455 -0.834431544 0.817368240 -
0.826317593

Table.2: The computed values of A;q, Ajp, Ajs Azg,Azq,A30 and Az;when S;=5,=53=0, Sq =

0.01, Da=0.7, Pr=0.6,Sc=0.5, K1=K2=0.

Approximation Aj4q Ay, Aq3 Ayg Ayq Az Asq

Orderl 1.0000000 -2.928246031 5.368620778 1.0000000 -0.8379589547 1.0000000 -0.8280488461
Order2 1.0000000 -2.939088184  5.422261919 1.0000000 -0.8349160042 1.0000000 -0.8265625753
Order3 1.0000000 -2.939233676  5.422858038 1.0000000 -0.8348991588 1.0000000 -0.8265517414
Order4 1.0000000 -2.939234148  5.422859821 1.0000000 -0.8348991466 1.0000000 -0.8265517350
Order5 1.0000000 -2.939234148  5.422859821 1.0000000 -0.8348991466 1.0000000 -0.8265517350

Table.3: The computed values of Ay, Ajp, Az Ayg, Apq, Azg and Az;when S;=5,=55=1, Sq=

0.05, Da=1, Pr=10.7, Sc=0.5, K1=K2=1.

Approximation  Aqq Aqs Aq3 Ayg Ayq Az Agq
Orderl  -1.970199599 -2.970199599 5.463948286 -0.837126940 -0.8371269397 -0.827633164 -0.8276331643
Order2  -1.981163731 -2.981163731 5.518180448 -0.834066955 -0.8340669549 -0.826126052 -0.8261372878
Order3  -1.981322115 -2.981322115 5518832089 -0.834048954 -0.8340489541 -0.826126052 -0.8261260521
Order4  -1.981322784 -2.981322784 5518834651 -0.834048929 -0.8340489293 -0.826126039 -0.8261260393
Order5  -1.981322784 -2.981322784 5518834651 -0.834048929 -0.8340489293 -0.826126039 -0.8261260393
Table.4: The computed values of  Ajy, Agp, Agz Ay, Azq,Azp and  Az;when

5,=0.1,5,=0.2,5,=0.3, Sq = 0.05, Da =1,2, Pr = 0.3, Sc=0.1, K1=0.1, K2=0.2.

Approximation Ajq Ay, Aq3 Ay Ayq Az Azq

Orderl 0.715579961 -2.84420038 5.17695241  0.73207559 -0.8396220352 0.5513360371 -0.82887987
Order2 0.714521775 -2.85478224  5.22933403 0.73267726 -0.8366136908 0.5517759893 -0.82741336
Order3 0.714509746  -2.85490253 5.22982149  0.73268017 -0.8365991445 0.5517789985 -0.82740333
Order4 0.714509731 -2.85490268  5.22982200 0.73268016 -0.8365991549 0.5517789969 -0.82740334
Order5 0.714509731  -2.85490268  5.22982200  0.73268016 -0.8365991549 0.5517789969 -0.82740334
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Table5: The Outcome values of h(e), x(¢), k(e) for PIT and RK4M when §,=5,=55=0.1,
Sq=-0.001, Da=0.9, Pr=10.2, Sc=0.1, K1=K2=0.1.

£ | h(g) RK4M Percentage | yx (g) RK4M Percentage
error error

0.0 | 0.0000000000 | 0.00000000000 0.00000000 | 0.8165550956 | 0.8165550956 | 0.00000000
0.1 | 0.0564577770 | 0.05645658648 2.1 x 107> | 0.7336698147 | 0.7338845500 2.9 x107*
0.2 | 0.0884892187 | 0.08848709969 2.3 x 1075 | 0.6516100696 | 0.6519606823 5.4 x107*
0.3 | 0.1009257250 | 0.10092286140 2.8 x 1075 | 0.5700247852 | 0.5704529894 7.5x 107
0.4 | 0.0982946707 | 0.09829119226 3.5 x 10~5 | 0.4886656458 | 0.4891301995 | 9.5x 10~*
0.5 | 0.0849029714 | 0.08489897838 4.6 x 10-5 | 0.4073685471 | 0.4082263699 1.1x 1073
0.6 | 0.0649042172 | 0.06489978828 6.7 x 105 | 0.3260370995 | 0.3265034736 1.4 x1073
0.7 | 0.0423543099 | 0.04234941597 | 11 x 10-* | 0.2446276765 | 0.2450789408 | 1.8 x 10~3
0.8 | 0.0212601520 | 0.02125427589 | 5 ¢ x 10-+ | 0.1631355495 | 0.1633814744 | 15 x 103
0.9 | 0.0056257364 | 0.00561676299 | 51 x 105 | 0.0815817150 | 0.0816931969 1.3x 1073
1.0 | -0.000500000 | 0.00050000000 | ¢'00000000 | 0-0000000000 | 0.0000000000 | (.00000000

Table 6: The Outcome values of h(g), x(¢) for PIT and RK4M when $;=5,=5;=0.1, Sq=
0.001, Da=0.9, Pr=0.2, Sc=0.1, K1=K2=0.1.

£ | h(g) RK4M Percentage x(€) RK4M Percentage
error error
0.0 | 0.00000000000 | 0.00000000000 0.0000000 | 0.8165373717 | 0.8165373717
0.1 | 0.05651818545 | 0.05651699571 2.1 x 1075 | 0.7336366004 | 0.7338520689 | 0.00000000
0.2 | 0.08864302264 | 0.08864090511 2.3 x 1075 | 0.6515659100 | 0.6519180179 2.9 x10™*
0.3 | 0.10119741460 | 0.10119455310 2.8 x 1075 | 0.5699742032 | 0.5704046618 5.4 x 107*
0.4 | 0.09869987362 | 0.09869639785 3.5 x 1075 | 0.4886129727 | 0.4890805081 7.5 x 107%
0.5 | 0.08544810007 | 0.08544410973 4.6 x 10-5 | 0.4073177755 | 0.4077950118 | 9.5x 10~*
0.6 | 0.06558615691 | 0.06558172942 6.7 x 10~5 | 0.3259917636 | 0.3264623721 1.1x 1073
0.7 | 0.04316016796 | 0.04315526801 1.1 x 10~* | 0.2445907585 | 0.2450467331 | 1.4 x 1073
0.8 | 0.02216706943 | 0.02216116169 2.6 x 10~4 | 0.1631094206 | 0.1633710756 | 1.8 x 1073
0.9 | 0.00660076029 | 0.00659168104 1.3 x 103 | 0.0815681050 | 0.0819905105 1.0x 1073
1.0 | 0.00050000000 | 0.00050000000 | ¢ 00000000 | 0-0000000000 | 0.0000000000 | 5.1 x 10-3
0.00000000

Table 7: The Outcome values of k(¢) for PIT and RK4™ when S,=5,=5;=0.1, Da=0.9, Pr =
0.2, Sc=0.1, K1=K2=0.1.

Sg=0.001 Sg=-0.001

£ k() RK4M Percentage k() RK4M Percentage

error error

0.0 | 0.8173582569 | 0.8173582569 0.0000000 | 0.8173671342 | 0.8173671342 | 0.0000000000
0.1 | 0.7349977002 | 0.7349977193 2.5 x 1078 | 0.7350143338 | 0.7350143530 2.8 x1078
0.2 | 0.6530526135 | 0.6530526378 3.7 x 1078 | 0.6530747240 | 0.6530747481 3.6 x 1078
0.3 | 0.5713473607 | 0.5713473769 2.8 x 1078 | 0.5713726810 | 0.5713726970 2.8x 1078
0.4 | 0.4897576122 | 0.4897575964 3.2 x 1078 | 0.4897839733 | 0.4897839578 | 3.1 x 1078
0.5 | 0.4082010802 | 0.4082009637 2.8 x 1077 | 0.4082264843 | 0.4082263699 2.8%x 1077
0.6 | 0.3266293016 | 0.3266288984 1.2 x 107 | 0.3266519814 | 0.3266515858 | 1.2 x 10°6
0.7 | 0.2450201834 | 0.2450190614 45 x 10~¢ | 0.2450386490 | 0.2450375460 | 4.5 x 10¢
0.8 | 0.1633710756 | 0.1633683621 1.5 x 1075 | 0.1633841425 | 0.1633814744 | 1.6x 10~°
0.9 | 0.0816921656 | 0.0819905105 | 3¢ x 10-¢ | 0.0816989706 | 0.0816931969 70 % 10-5
1.0 | 0.0000000000 | 0.0000000000 | 0.00000000 | 0-0000000000 | 0.000000000 | 9 00000000

5. Graph discussion of the plates moving each other ( Sq < 0).

After obtaining the approximate analytical solutions for Equations (12) and (14) about the
initial and boundary conditions of Equations (15) using Maple software, the basic purpose of
this article is to demonstrate the behavior of important parameters relevant to the state
mathematics problem when the plates move each other. The effects of these parameters

completely have different attributes such as axial
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h'(e), temperature y(¢) and concentration k(e). Figure (3) illustrates the squeezing
parameter Sq influences the velocity components, temperature, and concentration. It can be
seen from this figure an enlargement in velocity profiles (axial, redial) and the reduction of
the temperature and concentration with increasing squeezing parameters. The physical
explanation for this is the width of the gap between the plates will compress with an increase
in the squeezing coefficient, therefore, greater compressive strength provides more fluid
deformation. Hence, the velocity components are enhanced. Figure (4) explains the effect of
increasing K1 and K2 on the temperature and concentration profiles, respectively. This figure
shows that these distributions behave similarly and the curves are decreasing. Figure (5)
discusses the influence of the S; on the axial and radial velocity. This figure plots the axial
velocity become decreasing. While the radial is divided into two cases from 0 < &€ < 3.5 is
decreasing and 3.5 < € < 1 is increasing. Figure (6) demonstrates the increase of S, and S5
on the temperature and concentration profiles, respectively. From this figure, it can be seen
that these profiles are decreasing. Figure (7) explains the effect of increasing Pr and Sc on the
temperature and concentration profiles, respectively. This figure shows that these distributions
behave similarly and the curves are increasing. Figures (8) and (9) indicate the counter of the
stream function. These figures show that the stream function is in form of curves that are not
intersecting with increasing the dimensional constant a and kinematics viscosity v. In fluid
mechanics, the stream function can be defined by the path of imaginary particles suspended in
and carried with a fluid. In steady flow, the streamlines are stationary but the fluid is in
motion. Physically, the fluid velocity is relatively high, the streamline is combined. While
they are opened when the fluid is relatively still.

Sa= -0} T Yy J—
59 04 39 | 5 [ I

—— = ]

Figure.3: The behavior of h(e), h'(e), x(¢) and k(&) with various Sq for $;=0.1,5,=0.2,
Da=0.1, Pr=Sc=1.2, K1=0.1,K2=0.2.
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Figure 4: The behavior of y(¢) and k(e) with various K1 and K2 respectively, for
$,=0.1,5,=0.2, Da=0.1, Pr=Sc=1.2.
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Figure 5: The behavior of h(e) and h'(e) with various S, for §,=5;=0.2, Sq=-0.2, Da =0.1,
Pr=Sc=1.2, K1=0.1,K2=0.2.
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Figure 6: The behavior of y(¢) and k(&) with various S, and S; for §;=0.1, Sq=-0.2, Da =
0.1, Pr=S5c=1.2, K1=0.1,K2=0.2.
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Figure.7: The behavior of y(¢) and x(e) with various Pr and Sc respectively, for
$,=0.1,S, = $,=0.2, Da = 0.1, K1=0.1,K2=0.2.
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Figure.8: The behavior of the stream function for S;= §,=S; =0.1, Sg=-0.2, Pr = 0.2,
Sc=K1=0.1, K2=0.1.

1602



Shool et al. Iragi Journal of Science, 2024, Vol. 65, No.3, pp: 1591-1611

Figure.9. The behavior of the stream function for S;= S,=S5; =0.1, Sq=-0.2, Pr = 0.2,
Sc=K1=0.1, K2=0.1.

6. Discussion of the graphic of the plates moving away ( Sq > 0).

The analytical solutions of the slip analysis to squeeze fluid flow when the plates move
apart are simulated using the results graphs presented in Figures (10)-(17) under the aid of
Maple software. The effect of S;, S,,S3, Sq, K1, and K2 have the same behavior the plates
moving each other whereas the effect of Pr and Sc are opposite for the behavior of the plates
moving each other. The effect of D, on axial and radial velocity is shown in Figure (11). This
figure gives the axial velocity that is increment and the radial velocity is increasing for 0 <
€ < 0.5 with decreasing for 0.5 <& < 1.In Figures (16)-(17), the counters of stream
function with increasing the dimensional constant a and kinematics viscosity v are
investigated. These figures show that the lines are parallel and the intersection does not exist
and the curves are more tortuosity when increasing a. However, the opposite can be noticed
when the tortuosity decreases.
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Figure 10: The behavior of h(e), h'(¢), x(¢) and k(e) with various Sq for $;=0.1, 5,=0.2,
Da=0.1, Pr=Sc=1.2, K1=0.1,K2=0.2.
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Figure. 11: The behavior of h(e) and h'(e) with various Da for S;=0.4,5,=0.2, Sq= Pr =
Sc=1.2, K1=0.1,K2=0.2.
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Figure 12: The behavior of  y(&) and k(e) with various K1 and K2, respectively for
$:=0.4,5,=0.2, Sg=Pr= Sc=1.2.
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Figure 13: The behavior of h(e) and h'(e) with various S; for S, =0.2 Sg=Pr =
Sc=1.2, K1=0.1,K2=0.2.
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Figure 14: The behavior of y(¢) and k(&) with various S, and S5 respectively for S;=
0.4, Sq=Pr =Sc=1.2, K1=0.1,K2=0.2.
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Figure 15: The behavior of y(e) and x(e) with various Pr and Sc respectively for
$,=0.4,S, = 0.2,S; = 0.2, K1=0.1,K2=0.2.
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Figure 16: The behavior of the stream function for S;= S,=S; =0.1, Sg= Pr = 0.2, Sc=
K1=0.1,K2=0.1.
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Figure 17: The behavior of the stream function for S;= S,=S; =0.1, Sg= Pr = 0.2, Sc=
K1=0.1,K2=0.1.

7. Graphic discussions of physical quantities

In Figures (18)-(23), we depict interpretations of the impacts of factors on physical
variables including coefficient of skin friction, Nusselt number, and Sherwood number. Skin
friction coefficient, Nusselt number, and Sherwood number are depicted for various values of
the velocity parameter slip S, thermal parameter slips S,, and singular slip parameter S5 in
Figure (18). Every quantity is shown to decrease in this figure.

m Skin friction
coefficient

“ ® Nusselt number
J ra

Sherwood number

Figure 18. The behavior of the Skin friction coefficient, Nusselt number, and Sherwood
number for various S, S, and Ss.
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Figure (19) shows how the Nusselt number and Sherwood number are affected by various val

ues of the thermal stratification parameter K1 and the solutal stratification parameter K2, resp
ectively. This figure demonstrates Nusselt number is reduced for an increase K1, the behavior
of the Sherwood number is similar for the Nusselt number with an increase K2.

0.92 -
0.9 -
0.88 -
0.86 -
0.84 -
0.82 - Sherwood number
0.8 | | | | |
o O W
% % % % %
S S NE R

® Nusselt number

b

Figure 19: The behavior of the Nusselt number and Sherwood number for various K1 and
K2.

Figure (20) and Figure (21) indicted the effects of the three quantities plotted for sundry
values of squeezing number Sq. These figures show these quantities decrease as the emerging
squeezing parameter increase.
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Figure 20: The behaviorof the Sherwood number and the Nusselt number for different Sq.
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Figure.21: The Skin friction coefficient's behavior for different Sq.
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Figure 22: The behavior of Nusselt number for various Pr.

Figure (22) shows the Nusselt number for various Prandtl number Pr values. The behavior
of the Sherwood number for various values of the Schmidt parameter Sc was described in
Figure (23). These Figures demonstrate that an increase causes the Nusselt number to
decrease, whereas an increase in Sc causes the Sherwood number to grow.
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Figure 23: The Sherwood number's behavior for different Sc.

8. The Discussions of convergence analysis

In this part, the implementation of the theorems in [18], [19] is to analyze the convergence
of the solutions of PIT. If there exists 0 <@y <1 then ||Myqsn| < @k 1Mll k =
1,2,3,i = 0,1,2, ..., is the condition of convergent. which

E1o = hy,
[0 = Xo
30 = Ko,

Mo + 1My = ho + (he)o,
30 + M31= X0 + (Xc)o,
M50 + I31= 1o + (kc)o,
Myo + 131 + 115 = ho + (he)o + (Re)1
y0 + 11 + 1o = X0 + (Xc)o + (X1
30 + 31 + M3, = Ko + (K)o + (ko)1

Myo + Myq + My 4+ iy = ho + (Ao + (he)1 + -+ (Ao,

1609



Shool et al. Iragi Journal of Science, 2024, Vol. 65, No.3, pp: 1591-1611

ﬁzo + §21 + ﬁzz + ot §2n =Xo+ (Xc)o+ ()1 + -+ (Xedn
Mo + M3q + M3z + -+ Mg = ko + (r)o + (k)1 + - + (K,
All solutions are achieved for the condition of convergent in Tables. (8) — (10) as follows:

Table.8: The values of convergence for §;=5,=5;=0.1, Da = 0.9, Pr = 0.2, Sc=0.9,
K1=K2=0.2.
@y, S4=01 Sqg=-01  Sq=001 Sq=-0.01 Sq=005 Sq=-0.05

;o 0.1656029283 0.1371020578 0.1527741499 0.1499240140 0.1584752186 0.1442245977
w;, 0.0211662361 0.0072358045 0.0142977474 0.01277113521 0.0173506533 0.0097175683

Table.9: The values of convergence for §,=5,=5;=0.1, Da = 0.9, Pr = 0.2, Sc=0.9,
K1=K2=0.2.

@iy, S4=01 Sqg=-01  Sq=001 Sq =—0.01 Sq = 0.05 Sq = —0.05

w,, 0.1031884255 0.1216908328 0.1108241111 0.1126633413 0.1073068890 0.1165163177
w@,, 0.0830810792 0.0693073494 0.0773932718 0.0760122189 0.0800299166 0.0731291133

Table.10: The values of convergence for §,=5,=5;=0.1, Da = 0.9, Pr = 0.2, Sc=0.9,
K1=K2=0.2.
@z, Sq=01 Sqg=-01 Sq = 0.01 Sq=-0.01 Sqg=005 Sq=-0.05

w,, 0.4622006152 0.5444755073 0.4950895366 0.5032491413 0.4797348925 0.5206147798
w21 0. 0404236483 0. 0693073494 0. 0376962965 0. 0381217881 0. 0364102767 0. 0385473894

Consequently, the series of approxmate analytical solutlons h(e) x(e) and K(s) obtained
by PIT can that say is convergent.

9. Conclusion
In this article, the designation of the slip analysis for squeezing flow between parallel
plates model is solved to establish the analytical expressions for concentration, temperature,
and velocity by using PIT with the help of similarity transform. It can be seen that PIT is
successfully implemented for slip analysis of squeezing flow among parallel plates to find a
new approximate analytical solution. The obtained results for these distributions are plotted to
see the impact of parameters graphically. As a result, the fluid velocity exhibits the larger
variance of the cross-flow slip velocity parameter in that direction. The function of the
thermal stratification and slip parameters is reduced by the temperature field. For the solutal
stratification parameter and solutal slip parameter, the fluid concentration decreases. Also, the
Nusselt number and the Sherwood number decrease as all proposed parameters increase
except for the Schmidt parameter when it is increased leading to increase physical quantities.
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