

ISSN: 0067-2904 GIF: 0.851

Synthesis and Characterization of Trihydro mono and Dihydrobis(indole-3acetic acid)Borate Ligands and Some of Their Metal Complexes

Asmaa Mohammed Noori Khaleel*

Department of Chemistry, University of Baghdad, College of Science, Baghdad, Iraq

Abstract

Two new ligands Na₂[H₃B (BDIA)].0.05H₂O (L₁)(BDIA = 1-Boranyl-2,3-Dihydro-1H-Indol-3-yl)]Acetic Acid and Na₃[H₂B(BDIA)₂].0.3H₂O.0.3CH₃Ph (L₂) were synthesized by reaction of NaBH₄ with indole -3- acetic acid (IAA) . The coordination properties of ligands were studied with Co(II) , Ni(II) , Cu(II) and Pt(IV) ions. Characterization and structural aspects of the prepared compounds were elucidated by ¹HNMR, FTIR electronic spectra, magnetic susceptibility, elemental and metal analysis, thermal analysis (TG & DTG) and conductivity measurements.

The obtained data for metal complexes suggested square planar geometry for copper complexes, octahedral geometry for nickel and platinium complexes and tetrahedral geometry for cobalt complex. The analytical data confirmed that the ligands were coordinated to the metals via oxygen atom of carboxylate groups and by agostic hydrogen of borate (B-H-----M agostic interaction).

Keywords: Borate ligands, Indole-3-acetic acid

تحضير وتشخيص ليكاندات بورات ثلاثي هيدرو احادي و ثنائي هيدرو ثنائي (اندول – 3 – حامض الخليك) وبعض معقداتها الفلزية

اسماء محمد نوري خليل *

قسم الكيمياء ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق

الخلاصة

^{*} Email: asmaa_mnk@yahoo.com

1. Introduction

Boron attached to nitrogen of heterocyclic compounds yields ligands of B-N bond that have a unique place in organoborate chemistry. Such ligands containing B-N bonds have been extensively exploited in coordination chemistry [1]. Interactions of KBH₄ with pyrazole, indazole, imidazole and indole have been shown to yield a variety of ligands which have exploited mainly in the synthesis of transition metal complexes [2]. The pyrazol borate ligands have found wide applications in coordination, organometalic and bioinorganic chemistry [2]. These ligands have become particularly important in the development of biomimetic coordination chemistry of metalloproteins[3]. Substitution on the pyrazole ring controls the steric environment of the binding site . Thus, a relationship between structure and reactivity in metal complexes is exhibited [1]. The chemistry of (pyrazolyl)borate complexes may critically depend on the pattern of the ring substitution[1]. The synthesis of mono and bis (pyrazolyl)borate ligands and their complexes have been reported earlier [4-7]. Only a few borate ligands other than pyrazole and their complexes have been reported, like trihydro(mercaptoazolyl)borate and their Tc .Re complexes [8]. Dihydrobis(mercaptobenzimidazolyl)borate and Dihydrobis(mercapto-thiazolyl)borate and their sodium and bismuth complexes [9]. dihydrobis(thioxotriazolinyl)borato sodium salt and its zinc(II), bismuth(III) and Nickel(II) have been synthesized and characterized by X-ray crystallography [10]. Some literature research articles have provided some informations about the bonding of boron with oxygen atoms, potassium bis(phthalate)borate and its organo tin complexes which can be considered as a module system for metal ligand interaction in biological system [2]. Also O,O'Bis(Salicyldene)2,2'-Aminobenzothiazolyl borate and its Copper and zinc complexes were synthesized and their interaction with guanine, adenine and calf thymus DNA was studied [11].

Indole-3- acetic acid (IAA) is the most abundant naturally occurring plant hormone of the auxin class, which is well known for its regulating function in plant growth and development [12] and has been the subject of extensive studies by plant physiologists [12 -16]. Clinical significance of indol-3- acetic acid in gastric cancer patients is also well established [17]. In industrial applications, IAA has been used in the synthesis of polyindole [18]. Furthermore as chelating agent has hetero atoms N, O and can be used as potential corrosion inhibitors [19]. The coordination behaviour of Indole-3- acetic acid with transition and inner transition elements have also been reported [17, 20-22].

ligands H₃B(BDIA)].0.05H₂O In the present work. two new Na₂[(L_1) and Na₃[H₂B(BDIA)₂].0.3H₂O.0.3CH₃Ph(L₂) (Figure-1) were synthesized from NaBH₄ and indole-3acetic acid and their coordination behavior with Co(II), Cu(II), Ni(II) and Pt(IV) has been studied. The structures of the prepared compounds were elucidated depending on elemental analyses, UV-Vis, NMR, and FTIR spectra as well as, thermal analyses, atomic absorption, conductivity measurements and their magnetic susceptibility of metal complexes.

Na2 [H3B(BDIA)]0.05 H2O

Na₃ [H₂B(BDIA)₂] 0.3 H₂O . 0.3 CH₃Ph

Figure 1- The structure of $L_1 = Na_2 [H_3B(BDIA)] 0.05H_2O$ and $L_2 = Na_3[H_2B(BDIA)_2] 0.3H_2O. 0.3CH_3Ph$

2. Experimental

Synthesis of Na₂[H₃B(BDIA)].0.05H₂O (L₁)

Indol-3-acetic acid (0.4632g, 2.644 mmol) was mixed with a suspension of NaBH₄ (0.1 g, 2.644 mmol) in toluene (15mL) and refluxed for 15 h under dry conditions. The evolved hydrogen gas was collected over water. The reaction mixture with a white precipitate was left to stand overnight to allow

for complete precipitation. The product was filtered, washed with hot toluene and toluene: acetone 1:1 then vacuum dried [1].

Synthesis of Na₃[H₂B(BDIA)₂].0.3H₂O.0.3CH₃Ph (L₂)

This ligand was prepared by the same procedure as that described above by reacting Indol-3-acetic acid (0.9264 g, 5.288mmol) and NaBH₄ (0.1 g, 2.644 mmol) in 2:1 mole ratio. Evolved hydrogen gas was collected over water. A gray precipitate was formed. The resulting gray solid was washed with hot toluene and toluene: acetone 1:1 then vacuum dried [1].

Synthesis of metal complexes: $Na_2[(H_3B(BDIA))_2Cu]$.EtOH(C₁) and $[(H_3B(BDIA))_2Co_2]$.2H₂O (C₂)

Metal complexes of L_1 with Cu(II) and Co(II) ions produced C_1 and C_2 respectively by mixing (0.2g, 0.807 mmol) of L_1 with (0.403mmol) (0.0542 and 0.0958 g) of the metal salts CuCl₂ and CoCl₂.6H₂O respectively dissolved in (13 ml) ethanol. Each mixture was heated under reflux with stirring for four hours. The color was changed from green to brown in C_1 and from violet to brown in C_2 . The products C_1 and C_2 were filtered, washed with hot ethanol then vacuum dried [1].

Synthesis of metal complexes: $[(H_2B)_2(BDIA)_4Cu_4Cl_2]$.5H₂O(C₃), $[(H_2B)_2(BDIA)_4Pt_2Cl_2]$ 1.5EtOH (C₄) and $[(H_2B)_2(BDIA)_4Ni_4Cl_2(H_2O)_4$ (C₅)

Metal complexes of L_2 with Cu(II), Pt(IV) and Ni(II) metal ions produced C_3 , C_4 and C_5 respectively by mixing (0.205 mmol, 0.1g) of L_2 with (0.103 mmol) (0.0139, 0.0501 and 0.0245 g) of the metal salts CuCl₂, K_2 PtCl₆ and NiCl₂.6H₂O respectively dissolved in (7ml ethanol) for C_3 , C_5 and 20 ml (ethanol: water 1:3) for C_4 . The resulting mixtures were heated under reflux with stirring for four hours. The product of C_3 was filtered off, washed several times with ethanol and dried giving mustard product. The two complexes C_4 and C_5 were separated when a large part of the solvent was evaporated by gentle heating. The remaining solution was cooled to room temperature. Precipitation of the two products was achieved by adding the petroleum ether (40-60°). The products were filtered off, washed several times with petroleum ether and dried giving black product for C_4 and light brown product for C_5 [1].

3. Results and Discussion

The reaction of NaBH₄ with indole -3- acetic acid (IAA) in 1:1 and 1:2 mole ratios in toluene yields L_1 and L_2 respectively. The completion of the reaction was ascertained by the release of requisite volume of the hydrogen gas according to the following equations

The metal complexes were prepared by the reaction of ligands with metal ions in 2:1 mole ratio with excess of metals. This excess is desirable to completion reaction and to produce a reasonable yield. The physical properties with metal and elemental analysis results are presented in Table-1.

Symbol	Color	(m.p.) °C	Yield %	CHN A	Metal %		
				C%	H%	N%	(Calc.)
L ₁	White	180	78.23	48.459	5.085	6.206	
		Dec.		(48.477)	(5.292)	(5.655)	-
C_1	Dark brown	> 280	74.33	46.853	5.482	5.981	12.35
				(47.409)	(5.746)	(5.028)	(11.41)
C ₂	Brown	> 280	46.76	43.857	5.733	6.219	20.83
				(43.230)	(5.403)	(5.043)	(21.23)
L ₂	Light gray	147	73.43	54.629	4.937	6.102	
				(54.293)	(5.118)	(5.732)	-
C ₃	Mustard	192	55.18	39.517	4.629	4.577	20.22
		Dec.		(40.397)	(4.544)	(4.713)	(21.40)
C_4	Black	122	27.17	40.618	3.781	4.002	29.01
		Dec.		(39.589)	(4.066).	(4.296)	(29.95)
C ₅	Light brown	138	66.09	42.351	4.724	5.886	20.98
		Dec. 00.08	(41.714)	(4.519)	(4.866)	(20.40)	

Table 1- Analytical and physical data of the two ligands and their metal complexes

Dec.: decompose

3.1- Infrared Spectra

The important vibrational modes of IR spectra for the free ligands and their metal complexes are described in Table 2. The spectra of the free ligands , cobalt complex (C_2) and copper complex (C_3) (Figure 2) displayed strong to moderate absorption bands in the wave number region 3280-3520 cm⁻¹ which were assigned to stretching vibrational modes of lattice $H_2O[23, 24]$ while the spectrum of the nickel complex (C₅) (Figure 2) showed bands at 3390, 790, 744 cm⁻¹ which were attributed to coordinated $H_2O[21,24]$. Bands related to lattice ethanol were observed at 3471 and 3606 cm⁻¹ in the spectra of copper (C_1) and platinum (C_4) complexes respectively [23]. The weak bands related to B-H vibration appeared at 2200-2460 cm⁻¹ [2, 3, 8, 9, 25]. The strong intense band at 1701cm⁻¹ present in the ligands was assigned to the vibrational modes due to v C = O [21]. In all complexes, this band appeared at lower frequencies which refers to coordination of carbonyl oxygen with metal ions [1,21, 26]. Bands appeared at 1413-1461 cm⁻¹ and 1456-1512 cm⁻¹ were attributed to vB-N and vC-N respectively [1]. The absorption bands observed at 1388 and 1406 cm⁻¹ for L_1 and L_2 respectively vB-O .This band was observed at lower frequencies in metal complexes may be assigned to indicating coordination of oxygen atom with metal ions [2,11]. The bands appeared at lower frequencies in the spectra of metal complexes were referred to M-O vibrational modes [24].

compounds	v H ₂ O lattice(coord)	vB-H	vC=O	vC-N	vB-N	vB-O	vM-O
L_1	3280-3520	2225,2280,2360	1701	1489	1454	1388	
C_1	_	2310,2385	1612	1460	1420	1340	457
C_2	3500	2365, 2410	1614	1461	1421	1344	430
L_2	3440	2200, 2320	1701	1487	1456	1406	-
C_3	3440	2340, 2320	1612	1493	1461	1340	450
C_4	—	2320,2420,2460	1616	1512	1460	1321	435
C_5	(3390,790,744)	2327, 2370	1699	1456	1413	1340	448

Table 2 - FTIR spectral data (cm⁻¹) for the ligands and their metal complexes

Figure 2- FTIR Spectra of C₃ and C₅ Complexes

3.2-¹H NMR Spectra

The ¹H NMR spectra of the two ligands L₁ and L₂ Figure-3 were recorded in DMSO .The chemical shifts and peak assignments are given in Table-3. The two spectra exhibited multiplet signals of aromatic protons which were observed in the chemical shift range (δ = 7.004-7.538 and 7.032 - 7.534 ppm respectively) [2, 23]. Another signal appeared at (δ 6.352- 6.549 ppm) which was due to proton of (HCN ring)[9]. The spectra showed a peak at δ 4.5 ppm attributed to lattice H₂O [23]. Chemical shifts of B-H protons were observed at δ = 3.467 and 3.562 ppm. For the two ligand respectively [2,9, 20, 21]. The signals appeared at δ 3.258 and 3.353 ppm respectively were due to chemical shift of CH₂ protons [20]. The peak at δ 2.5 ppm was attributed to DMSO [23].

L ₁		L ₂			
Chemical shift δ (ppm)	Assignments	Chemical shifts δ (ppm)	Assignments		
(7.004-7.538, 4H, m)	aromatic protons	(7.032-7.534, 10.4H,	aromatic protons		
		m)			
(6.488-6.549, 1H, b)	HCN proton	(6.352-6.546,2H, b)	HCN proton		
(4.500, 0.1H, s)	protons of 0.05H ₂ O	(4.500, 0.6H,s)	proton of 0.3H ₂ O		
(3.467, 6H, s)	protons of B-H	(3.562, 8H,s)	protons of B-H		
(3.052-3.258, 2H, b)	proton of CH ₂	3.353-3.472 , 4H,b)	proton of CH ₂		
(2.5, 6H, s)	protons of DMSO	(2.5, 6H, s)	protons of DMSO		

Table 3-¹H NMR data of the ligands in DMSO

Figure 3- ¹HNMR spectra of L_1 and L_2

3.3 - Thermal Analysis

Thermo gravimetric (TG) and differential thermo gravimetric (DTG) analysis for the two ligands L₁ and L₂ were performed under helium atmosphere as inert gas in heating rate of 20 ml / min in the temperature range 30 - 900°C at 20°C /min . Thermo grams of the ligands are given in Figure-4 and the decomposition temperature and the weight losses are described in Table-4 .The TG curves of L₁ showed four distinct weight losses. The first weight loss of L₁ occurring in the temperature range 30 - 156 °C and at peak temperature 98.72 °C was due to loss of lattice water . Then the degradation of L₁ took place in the temperature range 157 - 900 °C leaving 46.060 % residue . Thermo gram of L₂ exhibited two steps refer to the weight losses attributed to the loss of lattice water and toluene in the temperature range 30 - 137 °C and 138-274 °C respectively at peak temperature ranges 275 -407 and 408 - 826 °C respectively at peak temperature 382.59 and 732.91 °C respectively. The remaining residue was 19.815 % .These results show that the thermal stability of L₁ is higher than L₂. The results obtained from TG and DTG gave a supportive evidence to the suggested structures of ligands L₁ and L₂[2,27].

Ligands	Temp.range °C (TG)	Temp.℃ (DTG)	Weight lost %			Residue %
			Found	Calculated	Moiety lost	Found (Calculated)
Lı	30-156 157-241 242-374 375-645	98.72 230.74 353.57 622.19	0.372 3.348 26.511 23.721	0.363 2.423 27.324 23.430	$0.05 H_2O$ 6H 2Na + 2B $C_2H_2O_2$	46.060 (46.457) C ₈ H ₅ N
L ₂	30-137 138-274 275-407 408-826	110.63 238.54 382.59 732.91	0.930 7.255 50.511 21.488	1.105 7.288 50.083 20.640	0.3 H ₂ O [0.3 toluene +8H] [3Na+C ₇ H ₆ O ₄ B ₂] C ₆ H ₄ NB	19.815 (20.882) C ₇ H ₄ N

Table 4-Thermal decomposition steps of the two boron ligands $L_1 \mbox{ and } L_2$

Figure 4- TG and DTG Curves of L_1 and L_2

3.4- Electronic spectra, conductivity and magnetic susceptibility measurements

The electronic spectra of L_1 and L_2 in DMSO exhibited high intensity band at 35211 cm⁻¹ which was assigned to $\pi \rightarrow \pi^*$ transition of conjugated system and low intensity bands at 29498 and 28735 cm⁻¹ for L₁ and L₂ respectively which assigned to $n \rightarrow \pi^*$ transition [23]. The spectra of copper complexes (C_1 and C_3) exhibited blue shift of ligand bands and this was attributed to the formation of complexes [22,27]. The charge transfer bands were observed at 24154 and 23923 cm⁻¹ for C_1 and C_3 respectively [28]. The additional bands appeared in the visible region at (15243 and 14858 cm⁻¹) and (12658 and 12936 cm⁻¹) were assigned to (${}^{2}B_{1}g \rightarrow {}^{2}B_{2}g$) and (${}^{2}B_{1}g \rightarrow {}^{2}A_{1}g$) transitions for C₁ and C3 respectively. These bands were attributed to square planar Cu(II) complexes[28,29]. The magnetic moment ($\mu eff = 1.97$ and 1.87 B.M) for C₁ and C₃ respectively were consistent with the value for square planar Cu(II) complexes [1,28,29]. The spectrum of di nuclear cobalt complex (C_2) exhibited change in profile compared with the spectrum of L₁ and this change due to formation of complex [22, 27]. The band appeared at 23923 cm⁻¹ was assigned to charge transfer transition [28]. Two bands appeared in the visible region, the first was multiple band with an average value of 15873 cm⁻¹. This band corresponds to the transition ${}^{4}A_{2} \rightarrow {}^{4}T_{1}$ (P). The second band appeared at 9319 cm⁻¹ was assigned to ${}^{4}A_{2} \rightarrow {}^{4}T_{1}$ (F) transition. The value of third band (5010 cm⁻¹) was calculated from Tanaba-Sugano diagram . The spectral data and the value of magnetic moment ($\mu eff = 4.57 \text{ B.M}$) supported a high spin tetrahedral geometry of Co(II) complex [28,30]. The spectrum of tetra nuclear nickel complex (C_5) showed changes in positions of ligand bands and this was due to formation of complex [22,27] . A charge transfer band was observed at 27397 cm⁻¹ . Three additional bands were observed in visible region at 24213, 14005(average value) and 12135 cm⁻¹ which were attributed to ${}^{3}A_{2}g \rightarrow {}^{3}T_{1}g(P)$, ${}^{3}A_{2}g \rightarrow {}^{3}T_{1}g(F)$ and ${}^{3}A_{2}g \rightarrow {}^{3}T_{2}g$ transitions respectively. The spectral data and the effective magnetic moment of nickel complex (μ eff = 3.84 B.M) was consistent with the value for octahedral Ni(II) complexes [2,28]. In order to obtain further structural information for Co (C₂) and Ni(C₅) complexes, the spectral data (B', Dq / B', 10Dq and nephelauxetic ratio β) were calculated by applying band energies on Tanaba Sugano diagram . For Co complex : $B' = 835 \text{ cm}^{-1}$, Dq / B' =0.625, 10Dq = 5220 cm⁻¹, $\beta = 0.86$ and for Ni complex B' = 810 cm⁻¹, Dq / B' = 1.54, 10Dq = 12474cm⁻¹ and $\beta = 0.78$. The values of nephelauxetic ratio of Co(II) and Ni(II) complexes (0.86 and 0.78 respectively) refer to a covalent bonding in the cobalt and nickel complexes [2,28]. The spectrum of di nuclear platinium (IV) complex (C₄) (diamagnetic complex) exhibited change in profile due to formation of complex. Two absorption bands appeared at 23310 and 17605 cm⁻¹ which were assigned to ${}^{1}A_{1}g \rightarrow {}^{3}T_{2}g$ and ${}^{1}A_{1}g \rightarrow {}^{3}T_{1}g(H)$ transitions of octahedral Pt(IV) complexes [30]. The molar conductivities were (0.013, 0.064, 0.010, 0.016, 0.057, 0.035, 0.071 s.mol⁻¹. cm²) for L₁, C₁, C₂ , L_2 , C_3 , C_4 and C_5 respectively. These values showed the non electrolytic nature for all studied compounds [1,31]. The suggested structures of complexes Figure-5 and -6 showed the coordination of ligands with metal ions through the oxygen atoms and agostic interaction (B - H...M).

Figure 5- The structures of L₁ complexes

Figure 6-The structures of L₂ complexes

Conclusion

Two new boron ligands have been successfully prepared and their structures were confirmed by ¹HNMR and FTIR spectra, elemental and thermogravimetric analyses. The FTIR spectra of the ligands referred to the bonding of boron atom with both nitrogen of indole ring and oxygen of carboxyl group. Coordination of the two ligands with the metal ions (Co(II), Ni(II), Cu(II) and Pt(IV)) gave mono, di and tetranuclear complexes in which occurred through the oxygen of carboxylate anion and B-H ...M agostic interaction .All complexes showed non electrolytic nature . The spectral data, elemental analyses and magnetic susceptibility measurements suggested square planar geometry of copper complexes, octahedral geometry of nickel and platinum complexes and tetrahedral geometry of cobalt complexes. The results obtained are in good agreement with those calculated for the suggested formula.

References

- 1. Umar, A., Rahman, M.M., Khan, M.M., and Hahn, Y.B. 2007. Synthesis and physico-chemical and spectroscopic investigations of sodium dihydrobis(1,2,3-benzotriazolyl)borate ligand and its transition metal Complexes. *Turk.J.Chem.*, 31, pp:179-189.
- 2. Ahmad,N., Abdullah,N. and Malik,M.A. 2012.Synthesis, structural and magnetic studies of dinuclear complexes with oxo-homoscorpionate borate ligand *.World Applied Sciences Journal*, 17(2), pp:148-156.
- **3.** Papini,G. **2007**.New metal complexes supported by scorpionate and macrocyclic ligands : chemistry and biological studies. Ph.D.Thesis.University of Dicamerino.
- **4.** Dias, H.V.R., Alidori, S., Lobbia, G.G., Papini, G., Pellei, M.and Santini, C. **2007**. Small scorpionate ligands:silver(I)-o rganophosphane complexes of 5-CF3-substituted scorpionate ligand combining a B-H....Ag coordination motif. *Inorg. Chem*, 46(23), pp: 9708-9714.
- **5.** Dias,.H.V.R.and Lu,H-L. **2000**. Direct synthesis of a bis(pyrazolyl)boratocopper(I) complex: synthesis and characterization of [H₂B(3,5-(CF₃)₂Pz)₂]Cu(PPh₃)₂ displaying an unusual coordination mode for a poly(pyrazolyl)borate ligand . *Inorg. Chem.*, 39(10), pp: 2246-2248.
- 6. Dias, H.V.R. and Gorden, J.D. 1996. Synthesis and characterization of copper (II), zinc(II), and potassium complexes of a highly fluorinated bis(pyrazolyl)borate ligand . *Inorg. Chem.*, 35(2) , pp:318-324.

- 7. Dias, H.V.R., Lobbia, G.G., Papini, G., Pellei, M. and Santini, C. 2009. Copper(I) isocyanide and phosphane complexes of fluorinated mono- and bis(pyrazolyl)borates. *European Journal of Inorganic Chemistry*, 2009(26), pp:3935-3941.
- 8. Maria,L., Paulo,A., Santos,I.C., Santos,I., Kurz,P., Spingler,B. and Alberto,R. 2006. Very small and sof scorpionates:water stable technetium tricarbonyl complexes combining A bis-agostic(K³-H, H, S)binding motif with pendant and integrated bioactive molecules . *J .Am. Chem. Soc.* 128, pp:14590-14598.
- **9.** Imran, M., Neumann, B., Stammler, H-G., Monkowius, U., Ertl, M. And Mitzel, N.W. **2014**. Boratebased ligands with two soft heterocycle/ thione groups and their sodium and bismuth complexes. *Dalton Trans.* 43, pp: 1267-1278.
- **10.** Cammi,R., Lanfranchi,M., Marchio,L., Mora,C., Paiola,C., and Pellinghelli,M.A. **2003**. Synthesis and molecular sructure of the dihydrobis(thioxotriazolinyl)borato complexes of zinc(II), bismuth(III), and nickel(II). M…H–B interaction studied by Ab initio calculations . *Inorg. Chem.*, *42* (5), pp:1769-1778.
- **11.** Arjmand,F., Mohani,B. and Parveen,S..**2006**.New dihydro OO' bis(Salicyldene)2,2'aminobenzothiazolyl borate complexes : kinetic and voltammetric stydies of dimethyltin copper complexes with guanine, adenine and calf thymus DNA . *Bioinorganic Chemistry and Applications*, 2006, pp:1-10.
- **12.** Sagar, R. k., Kumar, C. S., Singh A., and Maurya1, J.N. **2013**. Variation in physical and biochemical characteristics of wheat plants treated with sewage water & plant growth regulators. *Nature an Science*, 11(6), pp:129-135
- 13. Sibu,S.and Jan, P. 2011. Why plants need more than one type of auxin . *Plant Science*, 180(3), pp: 454-460.
- 14. Ayvaz, M., Koyuncu, M., Guven, A. and Fagerstedt, K.V. 2012. Does boron affect hormone levels of barley cultivars? *EurAsian Journal of BioSciences (Eurasia J Biosci)*, 6, pp:113-120.
- **15.** Berleth, T., Mattsson, J. and Hardtke, C.S. **2000**. Vascular continuity and auxin signals, *Trends in plant Science*, 5 (9), pp: 387-393.
- **16.** Oberhansli, T., Defago, G. and Hass, D. **1991**. Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHAO of pseudomonas fluorescens: role of tryptophan side chain oxidase . *Journal of General Microbiology*, 137, pp:2273-2279.
- 17. Sheikh,H.N., Hussain,A., Sharma,M. and Kalsotra,B.L. 2004. Synthesis and characterization of indole -3- acetates and indole-3-butyrates of Mo(VI) and W(VI), *Indian Journal of Chemistry*,43A, pp: 562-565.
- **18.** Hosseini,S.H. and Ashjari,M. **2013**. Synthesis and characterization of polyindole with liquid crystalline azobenzene as side chains. *International Journal of Physical Sciences*, 8(32), pp:1611-1622.
- **19.** Jahagirdar , M. M., Kulkarni, D.R. and Lohar, K.S. **2013**. Corrosion inhibition of IAA and PAA mixed ligand complexes: A thermodynamic approach. *Golden Research Thoughts*, 3(3),pp: 1-5.
- **20.** Naik,G.N., Pathan,A.H., Bakale,R.P., Ligade,S.G. and Gudasi,K.B., **2013**. Rare earth complexes of indole-3-acetic acid derived Schiff base: synthesis, characterization and plant growth activity. *Chemistry Journal*, 3(6), pp:149-157.
- **21.** Ananthalakshmi, S., Punitha, J.T. and Gowri, M. **2013**. Complexation behaviour of 3- indole acetic acid with dipositive metal ions and the characterization of the complexes. *International Journal of Pharmacy & Life Sciences*, 4(5), pp: 2638-2643.
- 22. Kamnev, A.A., Shchelochkov, A.G., Perfiliev, Y.D., Tarantilis, P.A.and Polissiou, M.G.2001.Spectroscopic investigation of indole-3- acetic acid interaction with iron(III), *Journal of Molecular Structure*, 563-564, pp:565-572.
- 23. Silverstein, R.M. and Webster, F.X. 1997. Spectrometric identification of organic compounds, Sixth Edition, John Wiley and Sons, Inc., New York.
- 24. Nakamoto, K. 1997. *Infrared and ramman spectra of inorganic and coordination compounds*, Fifth Edition, John Wiley and Sons, Inc., New York.
- **25.** Imran,M., Neumann,B., Stammler,H-G, Monkowius,U., Ertl,M. And Mitzel,N.W.**2013**. The versatile behaviour of a novel Janus scorpionate ligand towards sodium, potassium and bismuth (III) ions . *Dalton Trans.*, 42, pp: 15785 15795.

- **26.** Siddiqi,K.S., Umar,A.,Nami,S.A.A. and Khan,S. **2006**. Synthesis, characterization and spectroscopic studies of the dihydrobis(1,2,3-benzotriazolyl)borate anion and its complexes with MCl₂.Py₂. *J.Serb. Chem.Soc.*, 71(11), pp:1137-1145.
- **27.** Abdulghani, A.J. and Khaleel, A.M-N. **2013**. Preparation and characterization of Di-, Tri-, and tetranuclear Schiff base complexes derived from diamines and 3,4-dihydroxybenzaldehyde. *Bioinorganic Chemistry and Applications*, 2013, pp:1-14.
- **28.** Tumer, M., Deligonul, N., Golcu, A., Akgun, E. and Dolaz, M. **2006**. Mixed-ligandcopper(II) complexes: investigation of their spectroscopic, catalysis, antimicrobial and potentiometric properties . *Transition Metal Chemistry*, 31, pp:1-12.
- **29.** Lever, A.B.P. **1968**. *Inorganic electronic spectroscopy* . elsevier publishing co. Amsterdam-London, New York.
- **30.** Abdulghani, A.J. and Khaleel, A.M-N. **2009**. Synthesis and characterization of new Schiff bases derived from N(1)-substituted isatin with dithiooxamide and their Co(II), Ni(II), Cu(II), Pd(II), and Pt(IV) complexes. *Bioinorganic Chemistry and Applications*, 2009, pp:1-12.
- **31.** Geary, W.J. **1971.** The use of conductivity measurements in organic solvents for the characterization of coordination compounds. *Coordination Chemistry Reviews*, 7, pp: 81-122.