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Abstract 

          The purpose behind this paper is to discuss nanoparticles effect, porous media, 

radiation and heat source/sink parameter on hyperbolic tangent nanofluid of peristaltic 

flow in a channel type that is asymmetric. Under a long wavelength and the 

approaches of low Reynolds number, the governing nanofluid equations are first 

formulated and then simplified. Associated nonlinear differential equations will be 

obtained after making these approximations. Then the concentration of nanoparticle 

exact solution, temperature distribution, stream function, and pressure gradient will 

be calculated. Eventually, the obtained results will be illustrated graphically  via 

MATHEMATICA software. 
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 في قناة غير متناظرة THNتأثير الوسط المسامي في جريان تمعجي لمائع من النمط 

 

  عقيل جبار هاشم *, احمد مولود عبد الهادي
 قسم الرياضيات , كلية العلوم , جامعة بغداد , بغداد , العراق 

 
 الخلاصة :

, وألاشعاع   الوسائط المسامية , معلمة الحرارةالهدف من هذا البحث هو مناقشة تأثير الجسيمات النانوية ,       
وعدد تقريبي  طويل    موجي طول    تحت تاثير في قناة غير متناظرة.    THNعلى التدفق التمعجي لسائل من نوع  

, تتم أولا صياغة المعادلات ألاساسية للموائع النانوية ثم يتم تبسيطها. وبعد اجراء هذه التقديرات    زينولدا ر ل  صغير
التقريبية سيتم الحصول على المعادلات التفاضلية غير الخطية. بعد ذلك سيتم حساب الحلول الدقيقة لتركيز  

التدفق وتدرج الضغط. في النهاية , سيتم توضيح النتائج التي تم    انوية وتوزيع درجة الحرارة ودالةالجيسمات الن
 .تيكا ماثمابواسطة برنامج    الحصول عليها بيانيا 

 
1. Introduction 

     In this research the phenomenon of peristaltic is going to be explained as a phenomenon in 

which the transport of material induced along the length of distensible tube via a continuous 

wave of shrinking and extension, in the direction of the wave propagation, mingling and 

conveying the fluid. Swallowing of food through esophagus, the movement of chyme in the 

gastrointestinal tracts, urine transport from kidney to bladder, and the vasomotion of small 

blood vessels are all examples of the role of peristaltic in transporting physiological fluids in 
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the body. Several recent equipment has been invented depending on the idea of peristaltic 

pumping for transporting fluids without inner moving parts. For instance, blood pumping in 

heart-lung machine. 

 

     Peristaltic transport has been investigated by many authors such as Abdulhadi and Sabah 

[1], Abdulhadi and Morad [2], Abdulhadi and Fat’hy [3], Abdulhadi and Qabas [4], Many other 

investigators have been attracted by the mechanism of peristaltic transport in different 

situations. With referring to physiological and mechanical conditions, the peristaltic flow for 

different fluids has been reported. In majority of these studies, the peristaltic flow in a 

symmetric kind of channel is confined. In this research, nanofluid is also going to be clarified 

as a fluid containing small amount of uniformly dispersed and suspended nanometer-sized 

particles in base fluid. The fluid thermal conductivity is improved when a small number of 

nanoparticles is appended to the basis fluid, in this case the fluid is named nanofluid which was 

first coined by Choi (1995). In addition to, porous media has been introduced as ‘the ratio of 

the pores volume compared to total bulk media volume ‘. (often explained as fragment or 

percent). 

 

     The aim of this paper is to investigate the peristaltic transport of tangent hyperbolic 

nanofluid with the influence of radiation and heat source sink parameters throughout a porous 

medium in a symmetric kind of channel that is, in addition, taken from the following references 

Safia and Afzal [5], Safia and Nedeem [6], Abbasi et.al [7], White [8], Shapiro et al.[9], Burns 

and Pareks [10], Mekheimer [11], Mekheimer and El Kot [12],  Mekheimor and al –Arabi [13], 

Kothandapani et al.[14], Ali [15], Saffman [16], Nadeam and Akbar [17], Takabatake and 

Ayukawa [18],  Khan and Shehzad [19], Latham [20], Robert [21],  and Fung [22],the low-

Reynolds assumption is the technique that is employed under a prolonged-wave length (small 

wave number ). 

 

2. The Mathematical Modeling of the Problem 

     Under the effect of radiation and heat source sink parameters, the peristaltic transport of 

hyperbolic tangent nanofluid in a microchannel with density 𝜌 and variable viscosity 𝜇 is taken 

in consideration. Let  ȳ = ± h be the right and left side wall borders, 

 

 
Figure A: 

 

 with a continuous tempo  c throughout the length of the  microchannel and the medium is 

deliciated  that is attracted by a sinusoidal waveform, in fig. A,  the right wall of declined 

channel preserved temperature T0 and the volume of nanoparticle fraction C0 while the left wall 

has temperature T1 and the volume nanoparticle fraction  C1 , the geometry of the  microchannel 
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is limited as the side of the channel wall has a width of 2d. It takes the form in the fixed reference 

frame (𝑋,̅ �̅�) as follows: 

�̅�1(x̅ ,t)̅ = d1 + a̅1 cos2𝜋

λ
 (x̅ − 𝑐t ̅). 

�̅�2(x̅,t)̅ = - d2 - a̅2 cos2 [
𝜋

λ
(x̅ − 𝑐t ̅) + 𝜑] .                                                                                  (1) 

     Where a̅ the capacity of walls,  λ wave-length, 𝑡 ̅ dimensional time, and d represents 

wideness of the channel. 

 

3. The Governing Equations of the Problem 

     The flow is governed by basic equations within electro hydrodynamics (EHD) of hyperbolic 

tangent nanofluid, that is unable to be compressed and given by the continuity equation: 
∂𝑢

𝜕�̅�
 +  

∂�̅�

𝜕�̅�
= 0 .                                                                                                                            (2) 

  

     The momentum equations are: 

𝜌f(
∂𝑢

𝜕�̅�
 + �̅�  

∂𝑢

𝜕�̅�
 +�̅� 

∂𝑢

𝜕�̅�
 )= −

∂�̅�

𝜕�̅�
+

∂

𝜕�̅�
(�̅�𝑥𝑥̅̅̅̅ )+ 

∂

𝜕�̅�
)�̅�𝑥𝑦̅̅̅̅ )+ �̅�𝑐 𝐸𝑥 −

𝜇˳𝑢

𝑘
   .                                             (3)       

𝜌f(
∂�̅�

𝜕�̅�
 + �̅�  

∂�̅�

𝜕�̅�
 +�̅� 

∂�̅�

𝜕�̅�
 )= −

∂�̅�

𝜕�̅�
+

∂

𝜕�̅�
(�̅�𝑥𝑦̅̅̅̅ )+ 

∂

𝜕�̅�
)�̅�𝑦𝑦̅̅ ̅̅ )−

𝜇˳𝑣

𝑘
   .                                                         (4)  

 

     The temperature equation is given by:   

𝜌𝑐𝑝 ( �̅�  
∂�̅�

𝜕�̅�
 + �̅� 

∂�̅�

𝜕�̅�
 )= ĸ(

𝜕2

𝜕�̅�2 + 
∂2

𝜕�̅�2)�̅� – 
∂�̅�𝑟

𝜕�̅�
 + 𝑄˳̅̅̅ .                                                                       (5)  

 

     In which �̅�𝑥𝑥̅̅̅̅ , �̅�𝑥𝑦̅̅̅̅  and �̅�𝑦𝑦̅̅ ̅̅  are components of shear stress of hyperbolic tangent. 

And the radiative heat of flux satisfy : 

 �̅�𝑟= - 
4𝜎′

3𝑘′

𝜕�̅�4

𝜕�̅�
    .                                                                                                                        (6) 

 

     The difference in temperature within the flow, which is obviously seen, is small enough such 

like the expression �̅�4 in Taylor free stream temperature series,  𝑇˳ ̅̅̅̅  and terms of the higher 

order are neglected firstly in (�̅� −  𝑇˳̅). Hence, replacing Eq. (6) we will have: 

  �̅�𝑟 = - 
16𝜎′𝑇 3

3𝑘′  
𝜕�̅�

𝜕�̅�
   .                                                                                                                   (7) 

 

4. Method of Solution: 

     For simplifying the governing equations of motion, temperature and condensation, the 

subsequent dimensionless alteration can be explained as : 

x = 
�̅�

𝜆
 , y = 

�̅�

𝑑
 , t = 

𝑐 �̅�

𝜆
 , u = 

�̅�

𝑐
 , v = 

�̅�

𝛿 𝑐
 , =

𝑑

𝜆
 ,  

h = 
�̅�

𝑑
 , p = 

𝑑2�̅�

𝑐𝜆𝜇˳̅
 , =

�̅�−𝑇˳̅

𝑇1̅̅ ̅−𝑇˳̅
 , Ф = 

Ф̅

ζ
 , a = 

�̅�

𝑑
 , 

𝜎 =  
𝑐̅−𝑐˳̅

𝑐1̅̅ ̅−𝑐˳̅
 , 𝑠𝑥𝑥= 

𝑑

 𝜇˳ ̅̅̅̅ 𝑐 
�̅�𝑥𝑥 , 𝑠𝑥𝑦 =  

𝑑

𝜇˳ ̅̅̅̅ 𝑐
 �̅��̅�𝑦 , 

𝑠𝑦𝑦 = 
𝑑

𝜇˳ ̅̅̅̅ 𝑐
 �̅�𝑦𝑦̅̅ ̅̅  , 𝛾 ̇  = 

𝛾 ̇̅ 𝑑

𝑐
  .                                                                                                           (8) 

 

     Where x is axial assortment with no dimension, p pressure without dimension , u and v are 

axial that are non-dimensional and cross-cut velocity constituent, y is non-dimensional 

transverse coordinate, a is magnitude ratio, ζ is zeta prospective, 𝜃 is the dimensionless 

temperature, 𝛿 is wave number, and 𝜎 is the rescaled nanoparticle  of volume fraction that is 

also dimensionless. 
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     In this case, defining the connection between the stream function 𝜓  and the velocity fields 

will be introduced as  : 

 u = 
𝜕𝜓

𝜕𝑦
 , v = - 

𝜕𝜓

𝜕𝑥
      .                                                                                                                (9) 

 

     When non-dimensional variables and parameters above have been used in (8), we will have 

the adjusted equations as: 
𝜕𝑢

𝜕𝑥
 + 

𝜕𝑣

𝜕𝑦
 = 0  .                                                                                                                           (10) 

 

R𝑒δ(
∂2

∂t ∂y
+

∂

∂y

∂2

∂x ∂y
 - 

∂

∂x

∂2

∂𝑦2)𝜓 = − 
∂p

∂x
 + δ 

∂sxx

∂x
 +   

∂sxy

∂y
 + Uhs(δ2 ∂2Ф

∂x2 + 
∂2Ф

∂y2 ) + Gr𝜃 - k2 ∂𝜓

∂y
   (11) 

 

Where k2 =
d2

k
 

- Re𝛿3(
𝜕2

𝜕𝑡𝜕𝑥
 + 

𝜕

𝜕𝑦
 

𝜕2

𝜕𝑥2
 - 

𝜕

𝜕𝑥

𝜕2

𝜕𝑥𝜕𝑦
) 𝜓 = - 

𝜕𝑝

𝜕𝑦
 + 𝛿2 𝜕𝑠𝑥𝑦

𝜕𝑥
+𝛿

𝜕𝑠𝑦𝑦

𝜕𝑦
 + 𝑘2𝛿2 ∂𝜓

∂x
  .                        (12) 

-  

R𝑒𝛿𝑃𝑟 (
𝜕𝜓

𝜕𝑦
  

∂

𝜕𝑥
 - 

𝜕𝜓

𝜕𝑥
   

∂

𝜕𝑦
) 𝜃 = 𝛿2 ∂2𝜃

𝜕𝑦2
 + (1 +Rn) 

∂2𝜃

𝜕𝑦2
 + 𝛽  .                                                        (13) 

 

     Where Re = 
𝜌𝑐𝑑

𝜇˳̅
  is the Reynold number, Uhs  = −

 Exεζ

𝜇˳̅𝑐
 is the Helmholtz-Smoluchowski 

velocity  ,   𝑤𝑒 =  
Г𝑐

𝑑
 is the Weissenberg number, 𝛽 =

𝑄˳̅̅ ̅𝑑2

(�̅�1−�̅˳� )𝛼𝑚
 is the non-dimensional heat 

source  / sink parameters, 𝑝𝑟 =
𝜇˳̅𝑐𝑓

𝛼𝑚
 is the Prandtl number.  𝑁𝑡 =  

ρ�́�𝑝(�̅�1−�̅˳� ) 𝐷𝑇 

𝑇𝑚𝛼𝑚
 is the parameter 

of  thermophoresis,  𝑅𝑛 =  − 
16�́�

3�́�𝜇˳̅𝑐𝑓
 is the parameter of radiation, 𝐺𝑟 =  

ρg𝛽1(𝑇1̅̅ ̅ −𝑇 )

𝑐𝜇˳̅
 is the local 

temperature Grashof number , and  Bh = 
ℎ𝑏𝑑

𝑘𝑏
  the heat transfer Biot number at walls. 

 

     The assumptions have been employed of a long wavelength and low Reynolds number and 

disregarding the term of arrangement δ and highest, Equations. (11),(12),(13) will be: 
∂p

∂x
 =  

∂

∂y
(1 + n(𝑤𝑒

∂2𝜓

∂y2 − 1)) (
∂2𝜓

∂y2 ) +  uhs
∂2Ф

∂y2  + Gr𝜃 - k2 𝜕𝜓

∂y
 .                                             (14) 

 

 
∂p

∂y
 = 0.                                                                                                                                     (15) 

 

(1+Rn) 
∂2θ

∂y2 + 𝛽= 0 .                                                                                                                 (16) 

 

     Derived equation (14) for y and equation (15) for x, terminating the term of pressure from 

eq.(14). It will be: 
𝜕2

∂𝑦2
(1 + n(𝑤𝑒

∂2ψ

∂y2
− 1)) (

∂2ψ

∂y2
) +  Uhs

∂3Ф

∂y3
 + Gr

𝜕𝜃

𝜕𝑦
 - k2 𝜕2𝜓

𝜕𝑦2
 = 0.                                           (17) 

 

     Employing the linearization of Debye-Huckel, the equation  of Poisson-Boltzmann 

decreased to: 

∇2Ф̅ = 𝑘2 Ф̅  .                                                                                                                        (18) 

 

     Taking advantage of the linearization of Debye-Huckel and non-dimensional equation of 

Poisson-Boltzmann can also resulted as: 
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𝜕2Ф

𝜕𝑦2
 = ĸ2Ф.                                                                                                                             (19) 

 

5. Rate of Volumetric Flow and Boundary Conditions  

     In laboratory frame, the dimensional volume flow average is the instant volume flow average 

in the fixed frame that is given by: 

  Q (�̅�,𝑡̅) = ∫ 𝑢(𝑥, 𝑦, 𝑡)𝑑𝑦
ℎ(𝑥,𝑡)

−ℎ(𝑥,𝑡)
  .                                                                                            (20) 

 

     In wave frame, the equation above is  

   F (𝑥𝑤) = ∫ 𝑢𝑤(𝑥𝑤 , 𝑦𝑤)𝑑𝑦𝑤
ℎ(𝑥𝑤)

−ℎ(𝑥𝑤)
 .                                                                                      (21) 

 

     In two frames, velocity and the coordinates (wave frames and laboratory) are related as:  

 X = 𝑥𝑤 – ct, y = 𝑦𝑤 , u = 𝑢𝑤 + c, v = 𝑣𝑤  .                                                                            (22) 

 

 by Eqs. (20)- (22), we will have: 

 Q = F+ 2h(x).                                                                                                                         (23) 

 

     The time of averaged flow rate is recognized as 𝛩 =  ∫ 𝑄(𝑥, 𝑡)𝑑𝑡 
1

0
furthermore, it can be 

derived as: 

  𝛩 = 𝐹 + 2 + 𝑎 .                                                                                                                   (24) 

 

     The boundary conditions which are non-dimensional (boundary conditions that are 

connective) are used as: 

𝜓 = 
𝐹

2
 , 

𝜕𝜓

𝜕𝑦
 = -1 , 

𝜕𝜃

𝜕𝑦
 = Bh(1- 𝜃), 𝜎 = 1,and Ф =1 at y = h 

𝜓 = - 
𝐹

2
 , 

𝜕𝜓

𝜕𝑦
 = -1 , 

𝜕𝜃

𝜕𝑦
 = Bh𝜃, 𝜎 = 0 ,and Ф =  0  at y = -h .                                                      (25) 

 

6. Solution of the Problem  

6.1. Exact Solution 

     Solution of Equations (16) – (19) are submissive to boundary conditions introduced in Eqs. 

(25), the investigative solutions are obtained as: 

 Ф(y) = 
sinh(ℎ+𝑦)𝑘)

sinh(2ℎ𝑘)
  .                                                                                                              (26) 

 

 θ(𝑦) = 𝑐(𝑐𝑜𝑠ℎ(𝛾1y) + sinh(𝛾1y)) + D(cosh(𝛾2y)) + sinh(𝛾2y)) .                                        (27) 

 

𝜎(𝑦) = 𝐸 + 𝐹𝑦 −  
𝑁𝑡

𝑁𝑏
(𝑐(cosh(𝛾1y) + sinh(𝛾1y)) + D(cosh(𝛾2y) + sinh(𝛾2y)) .                    (28) 

 

6.2. Disturbance Solution 

     Equation (16) and (19) are described to be differential and highly nonlinear equations. The 

solution has been acquired as a perturbation method for the stream function because it is not 

possible to get the investigative solution directly in term of small parameters  We (Weissenberg 

number), by extending, p and F in the coming equation: 

 𝜓 = 𝜓˳+ 𝑤𝑒𝜓1+ O (𝜓2) 

P = P0 + 𝑤𝑒𝑝1 + O (𝑝2) 

F =F˳ +𝑤𝑒𝐹1 + O (𝐹2) .                                                                                                          (29) 
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     In the above expressions, replacing in Equations. (17) and gathering the powers We, the 

system will be as follows: 

𝜕2

∂𝑦2
(

∂2𝜓˳

∂y2 + n𝑤𝑒 (
∂2𝜓˳

∂y2 )
2

+ n𝑤𝑒
2 ∂2𝜓˳

∂y2

∂2𝜓1

∂y2 − n
∂2𝜓˳

∂y2 +  𝑤𝑒
∂2𝜓1

∂y2 + 𝑛𝑤𝑒
2 ∂2𝜓˳

∂y2

∂2𝜓1

∂y2 +

𝑛𝑤𝑒
3 (

∂2𝜓1

∂y2 )
2

− 𝑛𝑤𝑒
∂2𝜓1

∂y2
) + Uhs

∂3Ф

∂y3  + Gr
𝜕𝜃

𝜕𝑦
 - k2 𝜕𝑢

𝜕𝑦
 = 0.                                                   (30) 

 

6.2.1. For The System of Zero's- Order  
𝜕4𝜓˳

𝜕𝑦4  = 
uhs

𝑛−1
 
∂3Ф

∂y3  + 
Gr

𝑛−1
 
𝜕𝜃

𝜕𝑦
 - 

k2

𝑛−1
 
∂2𝜓˳

∂y2  .                                                                                        (31) 

 
𝜕𝑝˳

𝜕𝑥
 = (1 – n)

𝜕3𝜓˳

𝜕𝑦3
 + uhs

∂2Ф

∂y2
 + Gr𝜃 - k2 𝜕𝜓˳

𝜕𝑦
   .                                                                            (32) 

 

𝜓˳= ± 
𝐹

2
 , 

𝜕𝜓˳

𝜕𝑦
 = -1 , at y = ± h  .                                                                                               (33) 

 

6.2.2. For The System of First-Order  
𝜕4𝜓1

∂𝑦4  = 
𝑛

𝑛−1
 

𝜕2

∂𝑦2 (
∂2𝜓˳

∂y2 )2 .                                                                                                           (34) 

 

𝜕𝑝1

𝜕𝑥
 = (1 – n)

𝜕3𝜓1

𝜕𝑦3  + n
𝜕

𝜕𝑦
(

∂2Ф

∂y2 )
2

 - k2 𝜕𝜓1

𝜕𝑦
 .                                                                                (35) 

 

𝜓1= ± 
𝐹1

2
 , 

𝜕𝜓1

𝜕𝑦
 = 0 , at y = ± h .                                                                                               (36) 

 

6.3. Temperature Equation Solution 

     In Eq.(16)  the temperature solution satisfies the boundary conditions in Eq. (25) is found in 

the form of : 

𝜃[𝑦] = 𝑐1 + 𝑦𝑐2 −
𝑦2𝛽

2(1+Rn)
   .                                                                                                 (37) 

 

     Where 𝑐1, 𝑐2 are fixed and can be quantified via employing the boundary conditions in Eq. 

(25) that is: 

𝑐1 = −
−Bh−2ℎ𝛽−Bhℎ2𝛽−BhRn

2Bh(1+Rn)
 ,𝑐2 =

Bh

2(1+Bhℎ)
.                                                                         (38)  

             

6.4. For System Of Order (W𝒆𝟎) Solving 

     Eq. (31) solution is contented with the boundary conditions Eq. (33) can be inscribed as: 

𝜓˳(𝑦) = 𝑐5 + 𝑦𝑐6 +
−6c3Cos[√t3𝑦]+

6t1t3t4𝜅Cosh[(ℎ+𝑦)𝜅]

t3+𝜅2 −6c4Sin[√t3𝑦]+t2𝑦2(3c2−
𝑦𝛽

1+Rn
)

6t3
   .               (39) 

 

     Eq. (32) solution is satisfying the boundary conditions , Eq. (33) can be inscribed as : 

𝑝˳ = Uhs𝜅2Csch[2𝜅(1 − 𝑎(1 − Cos[𝑥]2))]Sinh[𝜅(1 + 𝑦 − 𝑎(1 − Cos[𝑥]2))] +

Gr(
Bh𝑦

2(1+Bh(1−𝑎(1−Cos[𝑥]2)))
−

𝑦2𝛽

2(1+Rn)
−

−Bh−2𝛽(1−𝑎(1−Cos[𝑥]2))−Bh𝛽(1−𝑎(1−Cos[𝑥]2))
2

−BhRn

2Bh(1+Rn)
.                                                                       (40) 

          

     Where 𝑐3 and 𝑐4 are fixed can be obtained by employing boundary conditions in Eq. (33) 

and “MATHEMATICA” software : 
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𝑐3 = −
Csc[ℎ√t3](2c2ℎt2(t3+𝜅2)+t1t3t4𝜅2Sinh[2ℎ𝜅])

2√t3(t3+𝜅2)
  

𝑐4 =
3𝐹0𝑡32+6ℎ𝑡32−2ℎ3𝑡2𝑡3𝛽+3𝑡1𝑡3𝑡4𝜅+3𝐹0𝑡3𝜅2+⋯

6(𝑡3+𝜅2)(ℎ√𝑡3𝐶𝑜𝑠[ℎ√𝑡3]−𝑆𝑖𝑛[ℎ√𝑡3])(1+𝑅𝑛)
  .                                                                  (41) 

 

6.5. For System Of Order (W𝒆𝟏) Solving 

     Eq. (34)  solution is contented with the boundary conditions Eq.(36) can be formed as: 

   𝜓1 = 𝑐7 + 𝑦𝑐8 + 𝑦2𝑐9 + 𝑦3𝑐10 + …                                                                                  (42) 

 

     Eq. (35)  solution is satisfying the boundary conditions Eq.(36) can be formed as:  

𝑝1= 1/(8 k4) (-1+n)2 n (-((2 Gr)/(-1+…                                                                                  (43) 

 

Where 𝑐7, 𝑐8, 𝑐9, 𝑐10  are fixed and can be quantified by employing boundary conditions in Eq. 

(36) and “MATHEMATICA” software. 

 

 
Figure 1: Temperature distribution for               Figure 2 : Temperature   distribution for  

    variation of 𝛽                                                    variation of Bh 

 Bh = 1, Rn = 0.2, 𝑎 = Pi 4⁄                                      𝛽 = 0.5, Rn = 0.2, 𝑎 = Pi 4⁄  

 (a) 𝛽 = 0.1,(b) 𝛽 = 0.3,(c) 𝛽 = 0.5                      (a) Bh = 1,(b)Bh = 2,(c) Bh = 3 

 

                                             
 

Figure 3: Temperature distribution for         Figure. 4: Temperature division for variation of 

𝑎variation of Rn                                               of a 

    𝛽 = 0.5, Bh = 1, a = Pi 4⁄ ,                            𝛽 = 0.5, Bh = 1, Rn = 0, 𝑎 = Pi 4⁄ ,  

     (a)Rn = 0,(b) Rn = 0.3,(c) Rn = 0.5        (a)𝑎 = Pi 6⁄ ,(b)𝑎 = Pi 2⁄ ,(c)𝑎 = Pi 
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(Ⅰ)                                               (Ⅱ)                                             (Ⅲ) 

Figure 5:  stream line for Bh = 2 , Rn = 0.2, 𝑤𝑒 = 0.05 , 𝜅 = 1, Uhs = 2 , 𝑘 = 2, Gr = 2, 𝑛 =
0.2 (Ⅰ)𝑎 = 0.6 (Ⅱ) 𝑎 = 0.7 (Ⅲ) 𝑎 = 0. 
 

            

   

 

 

 

 

 

 

 

 

 

                           (Ⅰ)                                   (Ⅱ)                                               (Ⅲ) 

  Figure6: stream line for Rn = 0.2, 𝑎 = 0.6 , We = 0.05 , 𝜅 = 1 , Uhs = 2, 𝑘, 𝐺𝑟 = 2, 𝑛 = 0.2  

 

                        (Ⅰ)                                         (Ⅱ)                                         (Ⅲ)  

       Figure7: stream line for 𝐵ℎ = 2, 𝑎 = 0.6 , 𝜅 = 1, Uhs = 2, 𝑘 = 2, Gr = 2, 𝑛 = 0.2, 𝛽 = 1 

       (Ⅰ)Rn = 0(Ⅱ) Rn = 1 (Ⅲ) Rn = 4 
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                       (Ⅰ)                                              (Ⅱ)                                               (Ⅲ) 

     Figure 8:  stream line for 𝐵ℎ = 2, 𝑎 = 0.6 , Rn = 1 , 𝜅 = 1 , Uhs = 2, 𝑘 = 2, Gr = 2, 𝑛 =
0.2, 𝛽 = 1     
(Ⅰ)𝑊𝑒 = 0.05 (Ⅱ) 𝑊𝑒 = 0.005 (Ⅲ) 𝑊𝑒 = 0.0005 

 

          (Ⅰ)                                                     (Ⅱ)                                                     (Ⅲ) 

 

Figure 9: stream line for Rn = 0.2, 𝑎 = 0.6 , We = 0.05 , Uhs = 2, 𝑘 = 2, Gr = 2, 𝑛 =
0.2, 𝛽 = 1     

(Ⅰ)𝜅 = 1 (Ⅱ) 𝜅 = 2(Ⅲ) 𝜅 = 3 

 

(I)                                                   (II)                                            (III)        

     Figure 10: stream line for Bh = 2, Rn = 1, 𝑎 = 0.6 , We = 0.05 , 𝜅 = 1, 𝑘 = 2, Gr =
             2, 𝑛 = 0.2, 𝛽 = 1 (Ⅰ)Uhs = 2 (Ⅱ) Uhs = 3  (Ⅲ) Uhs = 4 
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                        (Ⅰ)                                                     (Ⅱ)                          (Ⅲ) 

Figure11: stream line for Bh = 2, Rn = 1, 𝑎 = 0.6 , We = 0.05 , 𝜅 = 1, Uhs = 2, Gr =  2, 𝑛 =
0.2, 𝛽 = 1(Ⅰ)k = 1 (Ⅱ) k = 2  (Ⅲ) k = 3 

 

                       (Ⅰ)                                                       (Ⅱ)                                 (Ⅲ) 

 Figure 12: stream line for Bh = 2, Rn = 1, 𝑎 = 0.6 , We = 0.05 , 𝜅 = 1, Uhs = 2, 𝑘 =
        2, 𝑛 = 0.2, 𝛽 = 1 (Ⅰ)Gr = 2 (Ⅱ) Gr = 3  (Ⅲ) Gr = 4 

 

                      (Ⅰ)                                                 (Ⅱ)                                              (Ⅲ)       

       Figure13: stream line forBh = 2, 𝑅𝑛 = 1, 𝑎 = 0.6 , We = 0.05 , 𝜅 = 1, Uhs = 2, 𝑘 =
        2, Gr = 2, 𝛽 = 1(Ⅰ)n = 0.2 (Ⅱ) n = 0.5  (Ⅲ) n = 0.9 
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                      (Ⅰ)                                                (Ⅱ)                                                (Ⅲ) 

       Figure 14: stream line for  Bh = 2, 𝑅𝑛 = 1, 𝑎 = 0.6 , We = 0.05 , 𝜅 = 1, Uhs = 2, 𝑘 =
        1, Gr = 2 

        (Ⅰ)𝛽 = 0.1 (Ⅱ) 𝛽 = 1  (Ⅲ) 𝛽 = 3 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Pressure gradient for variation of 𝛽       Figure 16: Variation of Bh of the pressure 

gradient                                                                                                              

Bh = 1, Rn = 0.2, 𝑎 = Pi 8⁄ , We = 0.1, 𝜅 = 1,    𝛽 = 0.9, Rn = 0.2, 𝑎 = Pi 8⁄ , We =
0.1, 𝜅 = 1, 
          Uhs = 1, 𝑘 = 2, Gr = 2, 𝑛 = 0.2,                              Uhs = 1, 𝑘 = 2, Gr = 2 

 

  

 

 

 

 

 

 

 

          

 

Figure 17: Pressure gradient for variation of Rn      Figure 18: Pressure gradient for variation 

of a           
 𝛽 = 0.9 , Bh = 1, 𝑎 = Pi 8⁄ , We = 0.1, 𝜅 = 1,    𝛽 = 0.9, 𝐵ℎ = 1, Rn = 0.2, We = 0.1 

Uhs = 1, 𝑘 = 2, Gr = 2, 𝑛 = 0.2                               , 𝜅 = 1,  Uhs = 1, 𝑘 = 2, Gr = 2, 𝑛 = 0.2 

Bh = 1 

Bh = 2 

Bh = 3 

 

𝛽 = −0.9 

𝛽 = 0 

𝛽 = 0.9 

Rn=0 

Rn=0.2 

Rn= 0.4 

a=0.2 

a=0.22 

a=0.24 
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Figure19: Variation of  pressure gradient for 𝑊𝑒   Figure20: Variation of pressure gradient    

                                                                                                         for  𝑛      

 𝛽 = 0.1 , 𝐵ℎ = 1, Rn = 1, a = 0.01, 𝜅 = 4.26,      𝛽 = 0.9 , 𝐵ℎ = 1, 𝑁𝑟 = 0.2, a = Pi 8⁄ , 
                                                                                  𝜅 = 1, 
      Uhs = 1, 𝑘 = 2, Gr = 2, 𝑛 = 0.2                             Uhs =1, 𝑘 = 2, Gr = 2, 𝑛 0.2                             

                     

 

  

 

 

 

 

 

 

 

     

      Figure 21: Variation of  pressure gradient for 𝜅  Figure 22: Variation of the pressure 

gradient 𝛽 = 0.9 , 𝐵ℎ = 1, Rn = 0.2, a = Pi 8⁄ , 𝑤𝑒 = 0.1                      𝛽 = 0.9 , 𝐵ℎ = 1, Rn =
0.2, a =  Pi 8⁄ , 𝑤𝑒 = 0.1          

       Uhs = 1, 𝑘 = 2, Gr =  2, 𝑛 = 0.2              𝜅 = 2 , 𝑘 = 2, Gr = 2, 𝑛 = 0.2 

 

       

 

     

 

 

 

 

 

 

 

 

   Figure 23 : Variation of   pressure gradient for 𝑘    Figure(24): Variation of pressure 

gradient for Gr                                                                                                           

    𝛽 = 0.1 , 𝐵ℎ = 1, Rn = 0.2, a = 0.01, 𝑤𝑒 = 0.01   𝛽 = 0.9 , 𝐵ℎ = 1, Rn = 0.2, a =
                                                                                                 Pi 8⁄ , 𝑤𝑒 = 0.1          

       Uhs = 1, 𝜅 = 2, Gr =  2, 𝑛 = 0.2                          𝜅 = 2 , Uhs = 1, 𝑘 = 2, Gr = 2, 𝑛 = 0.2 

 

 

Gr = 2 

Gr = 3 

Gr = 4 

𝜅 = 1    
𝜅 =1.2 

𝜅 =1.3 

 

𝑘 =1 

𝑘 =2 

𝑘 =3 

 

We=0      

We=0.05 

We =0.1 

 

 

n=0.2 

n=0.22 

n=0.24 

 

𝑢ℎ𝑠 = 𝑜. 2    

𝑢ℎ𝑠 = 0.25 

𝑢ℎ𝑠 = 0.29 
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7. Results and Discussion 

     In this part, the numerical and computational results of the peristaltic transport problem of  

tangent hyperbolic nonliquids have been discussed in a channel that is tapered or asymmetric 

type, within the aid of non-slip utilizing states electroosmotic flow under the impact of heating 

and radiation of Joule through a porous medium.  

        

     Under the assumption of long wavelength and low Reynolds number approximations, 

analytical results have been presented by employing technique of small wave number 𝛿 value. 

Moreover, the use of series for stream functions, pressure gradient and flow rate mean F. The 

impacts are depicted graphically of various and important 

parameters                                                                

7.1. Pressure Gradient Distribution  

     The features of pumping are explicitly depending on deduced pressure gradient which is 

modulated via electroosmosis mechanism and generated via peristaltic pumping. The pressure 

gradient is immediately affected the flow rate that is volumetric, there is a relationship between 

the pressure gradient and the axial length of microchannel. Detour nature is curved inwards, the 

effect of these parameters has been numerically evaluated on ∆p by employing 

“MATHEMATICA” program and the results are graphically depicted, figures (15) - (24) are 

found to examine the several vital parameter on pressure gradient. The fixed parameters values 

are gotten from the axial velocity profile. To examine the effects of the high temperature 

transfer Biot number (Bh = 
ℎ𝑏𝑑

𝑘𝑏
) on pressure gradient walls , In Figure (15) the impact of 

parameter of Joule heating 𝛽 on pressure gradient ∆p has been clearly noticed, and which is 

remarked in the pumping ∆p, increasing in pressure gradient caused by an increase in 𝛽, in 

figure (16) the impact of transfer of heat Biot number Bh on ∆p is seen. It has been observed 

that the decrease in the pressure gradient caused by an increase in Bh. In figure (17) the impact 

of thermal radiation principles Rn on ∆p is observed. It has been examined that by increasing 

the thermal radiation, the pressure gradient decreases and the influence of (a) is observed clearly 

in figure (18). We observed  that the increase of (a) causes an increase  of pressure gradient. 

Furthermore, the pressure gradient decreases with the increase in the Weissenberg number and 

this can be observed in figure(19). In  figures(20) and (21), it has been noted the pressure 

gradient increases with an increase of power law index (n)  and electroosmosis parameter 𝜅. 

Figure (22) shows the influence of Helmoholtz-Smoluchowski velocity (Uhs) on the pressure 

gradient. It can be clearly seen figure (22) that with the increase in Uhs, the pressure gradient 

increases, figure (23) is depicted to present the raising in the pressure gradient in case k is 

heightened. It is found that, from figure (24), with an increase of Grash number Gr, the value 

of pressure gradient increases. 

 

7.2. Temperature Characteristics 

     To neatly observe the impact of several temperature parameters for constant values of x=0.4, 

temperature explanation obtained via Eq.(37) that is solved via precise solution and these 

parameters findings represented descriptively via employing “MATHEMATICA” program and 

depicted in figures(1)- (4), to compare the impact of different principles such as heat transfer  

Bh , 𝛽, Rn and 𝑎 on nanoparticle volume fraction and thermal temperature in the medium of 

flow these figures are drawn.  

 

     Between transverse coordinate and thermal temperature/nanoparticle volume fraction, there 

is linear relationship that has been observed in the absence of Joule heating parameter. 
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Although, in the presence of heating parameter of Joule, it will be nonlinear relationship. To 

study the impact of (x=0.4 ) On temperature distribution, Figure (1) is drawn. It has been 

observed that the temperature magnitude reduced with the raising of 𝛽. Furthermore, it could 

be perceived that the raise of (Bh) leads to identical manner of impact on 𝛽, temperature as 

shown in figure (2). The influence of thermal radiation Rn on thermal temperature is shown in 

Figure (3). It has been perceived that the temperature magnitude reduces at the center and raises 

at the ends of channel. In figure (4), the temperature distribution for (a) is drawn, it is also 

clearly seen that within a raising in (a) the temperature reduces. 

 

7.3. Streamline 

     In peristaltic transport, the trapping phenomenon is an essential topic, which can be 

explained as a formation of fluid circulating bolus throughout closed streamlines, along with 

the peristaltic waves which pushes ahead the trapped bolus. The phenomenon of trapping is 

shown in figures (5)-(14) for variant values of Bh , Rn , a , We , K , Uhs , Gr , n , 𝛽. In figure(5), 

the influence of (a) is seen, it is observed that the size and number of bolus are rising with 

raising of (a). The behavior of parameter Bh on bolus given in figure (6) which is clarified that 

with raising of Bh, the bolus is unchanged in shape. 

  

     In figure (7), the streams are shown for variant values of Rn. It is tested that with a raising 

of Rn size and a number of bolus increases. In figure (8) the streamlines are shown for several 

values of (We) . It is being noted that with a raise of (We) the size and number of bolus increases 

in the upper wall and reduces in the lower wall. figure(9) It has been noted that with a raise of  

𝜅 ,in the upper wall of the channel the size of bolus is increased, and in the channel lower wall, 

the size of the bolus reduces. In figure (10), the different values of stream for Uhs are shown. 

It is observed that the size and number of bolus are rising with increase of Uhs. In figure (11) 

It has been noted that with a raise of K the bolus increase  in size and number , In figure (12) It 

has been noted that with  Gr raising  , the sizes and number of  bolus increase , In figure (13) It 

has been noted that with a raise of n the bolus increasing in size and number, In figure(14) the 

effects of  𝛽 are plotted. the magnitude rises of 𝛽 results small size and number of bolus in the 

upper wall and slight effect of 𝛽 in the lower wall. 
 

8. Conclusions 

     In this paper, it has been investigated the peristaltic transport of tangent hyperbolic nanofluid 

through a porous medium in a symmetric channel under the influence of radiation and heat 

source sink parameters. By choosing the peristaltic waves, the asymmetry channels are 

produced on the walls  that  a non-uniform to have variant phases and magnitude, low Reynolds 

number and long-wave length and estimations are applied. To get the expression for streamline, 

temperature and pressure gradient are employed. 

 

     For highest average in pressure over a wave length, numerical study has been conducted. 

The effects of Biot number of heat transfer (Bh) electroosmosis parameters (ĸ), power of law 

index (n), radiation parameter (Rn), Helmoholtz-Smoluchowski velocity (Uhs) , Weissenberg 

number (𝑤𝑒), heat parameter of Joule (𝛽) , porosity parameter (k), wave amplitudes (a) , and 

Prandtl number (Pr) on pressure gradient, temperature and streamlines are also discovered in 

detail. It found out that: 

1. The pressure gradient over a wave length increase with an increase of  , (a), 𝑛. 𝜅 , Uhs 𝑘 and 

Gr . 
2. The pressure gradient over a wave length decreases with an increases of Bh , Rn, We. 

3. The temperature decreases with the increasing of 𝛽 , Bh and (a)  . 
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4. The temperature reduces with the raising of Rn at the center and raises at the ends of channel 

with the increases of Rn . 

5. The size and number of trapping bolus increased with a raising of a, Rn, Uhs ,n , K and Gr . 

6. The number and size of bolus in the upper wall of the channel raise, and in the lower wall of 

the channel, the size of bolus reduced with the raising of 𝜅 and 𝑊𝑒. 

7. The number and size of bolus in the upper wall of the channel increase, and slight effect in 

the lower wall with raising of   𝛽. 
8. bolus is unchanged in shape with raising of Bh. 
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