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Abstract

Oil seep samples along Abu-Jir Fault Zone were studied to determine their
chemical characterization and origin. They are dominated by the normal alkanes,
more complex mixture of branched and cyclic hydrocarbons. Organofacies coupled
with the stable carbon isotopes have been integrated to infer the oil seep origin. Oil
seeps contain H,S gas, which derives as a catabolic by product of sulfate-reducing
bacteria from gypsum of the Fatha Formation during the early diagenetic under
anoxic conditions which is demonstrated by values of C29/H that are greater than 1.
The oil seeps are characterized by "°C values vary from -29.0 to -27.96%o and from
-28.34 to -27.88%0 in the saturated and aromatic compounds, respectively;
consequently, they have low values of the canonical variable ranged from -3.47 to -
0.17 reflecting a marine non-waxy oil generated from planktonic kerogen of type-Il
that has been partially mixed with the terrestrial origin. The values of the tricyclic
terpanes (C22/C21 and C31R/H) that are higher than 0.5 and 0.25 respectively
support the marine source rocks. The Triassic age was suggested for the oil age in
the dependence of the occurrence of the aromatic dinosteranes which marked
dinoflagellates were participated in the oil derivation.

Keywords: Organic geochemistry, Carbon isotopes, Biodegradation, Oil seep,
Canonical variable.
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Introduction
Many oil seeps can be seen on the surface in the different locations in Iraq which are related with
geology and structure. The Abu-Jir Fault Zone (AJFZ) is of the greatest factors influencing the rise in
oil to the surface. The study area is located within the Abu-Jir Fault Zone (AJFZ) Figure-1.
Accordingly, set of springs emerged to the surface. The AJFZ is a fault basin provides many oil
seepages to the surface [1], [2] and [3]. The location of theses seepages is clearly tectonically
controlled [4]. The hydrocarbon is represented by heavy crude oil, bitumen, asphalt and dissolved H,S
gas that accompanies the spring water flowing on the surface. Hydrocarbon seep has been continual
since the Miocene so far. Seep activity begun in the Middle Miocene and much of oil expelled from
the Jurassic and Lower Cretaceous source rocks [4]. The geology of the study area is characterized by
the many exposures of the Upper member of Euphrates Formation (Early Miocene) which mainly
consists of limestone, marl and dolomitic limestone Figure-1. The Nfayel beds (Lower Miocene)
conformable overlays the Euphrates Formation consisting of green marl, limestone and gypsum. These
beds together with the Fatha Formation (Middle Miocene) exposed on the surface, forming a semi flat
landscape characterizes by scattered small hills. The Injana Formation that composed of clasitic has
scarcity outcrops in the study area. The main structure in the study area is AJFZ in which, water
springs and oil seepage flow. H,S gas, volatile materials and Bitumen associated oil seeps intrude
limestone, marl and gypsum ascending upwards to the surface where H,S and volitiles escape to the
atmosphere leaving behind the bitumen. The previous studies that have been carried on the study area
focused on the spring water, and did not interest with the water-associating hydrocarbon.
Hydrogeochemical studies throughout the AJFZ demonstrated that the spring water is a marine origin
composed from mixture of oil field and meteoric waters [1], [2] and [3]. Alkans, polycyclic alphatics
and polycyclic aromatic hydrocarbons can be used for describing the characterization of oil source [5].
Carbon isotopes provide information on the generation, maturation and genetic correlation of
hydrocarbons and precursors which can be used in oil and gas exploration [6]. The hydrocarbon source
can be defined by using the distribution of n-alkanes, 8"°C and 8*S in crude oils [7]. This paper deals
with the organic geochemistry of saturated and aromatic compounds for seven oil seepages in the
study area to describe the organofacies and define the origin of oil seeps.
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Figure 1- Geological map of the study area shows the sampling site of oil seeps within the Abu-Jir Fault Zone
(AJFZ), The AJFZ is installed in this map based on [1] Modified after [8]
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Materials and Methods

Seven samples of oil seeps were collected from area restricted between Heet and Abu-Jir village as
shown in Figure-1. Gas chromatography-mass spectrometry (GC-MS) was used for analyzing oil seep
samples and as a key technique for the interpretation of the organic geochemistry of the oil
constituents. All analyses used in this paper have been done in the Geomark Research, Inc. USA.
Carbon isotope ratios are reported as 8"°C and expressed as:

613C: [{(13C/12C)sample - (13C/12C)standard} / (13C/12C)standard] 1000 (%0)

A Cretaceous marine organism named Peedee belemnite (PDB) whose shell consists of CaCO3; was
used as a standard for the measurements of C isotope. The seep oil samples were fractionated using
high performance liquid chromatography (HPLC) into saturates, aromatics, and resins following the
standard procedures outlined by [9] The canonical variable relationship (CV) was used to distinguish
oils derived from marine and non-marine sources using equation postulated by [10]:

CV=-2.53 8"Cgy. + 2.22 8"°Cprom — 11.65.
Results (Biodegradation):

A redox gradations as oxic—suboxic—anoxic and euxinic postulated by [11] is presented in Table-
1.The studied oil samples are represented by wide range of redox potential (Eh). They were migrated
from oil reservoir of euxinic conditions. Then these conditions have been sequentially changed during
ascended upward from euxinic, suboxic near the surface to oxic on the surface due to the intraction
with the atmosphere. Under oxic conditions, aerobic micro-organism consumes oxygen for
metabolism, causing suboxic conditions. In case of oxygen depletion, the organic matter has broken
down by other available oxidants such as Fe-Mn oxides and sulfates. In the studied area, sulfate of
Fatha Formation represented by gypsum is an oxidant agent. As the condition becomes anoxic due to
the depletion of oxygen, H,S gas associated oil seeps derived as a catabolic by product of sulfate-
reducing bacteria. Methanogenic bacteria begin to break down organic matter [12]. Desulfovibrio
desulfuricans is a sulfate-reducing bacteria [13] reduces (SO4?) to H,S to get energy during anaerobic
respiration [14] In the study area, bacteria under euxinic conditions reduce sulfate in gypsum forming
sulfur deposits and releasing Ca ions to the spring water and H,S gas to the atmosphere. The H,S gas
escape to the atmosphere leaves behind bitumen-rich oil behind. It is known, the microbial activity
near surface being effective. In a sense, oxygen after intensive biodegradation approached to zero [11].
Table 1- Redox classification of the depositional environments, after [11]

Oxic Suboxic Anoxic Euxinic
Redox classes No free H,S in the water Free H,S present in the
column water column
O, concentration in bottom 2>[0,]> _
waters (ml O,/I H,0) [02]>2 0.2 [02]<0.2 [02]=0

Organofacies:

Organofacies are characterized certain biotic sources and retain their source information after burial
in sediments [15]. Stable carbon isotope composition and biomarker properties of oil seeps are listed
in Table-2. The percentages of Aromatic, Saturated, NOS and Asphalt presented in Table-2 are
illustrated in Figure-2. Asphalt is dominant in all samples except sample no. 4 which is characterized
by the dominance of Aromatic compounds. The high quantity (91.6%) of Asphalt in the sample no. 5
reflects low pressure, in a sense, the longtime exposure to the atmosphere, where aromatic and
saturated have been released. This conclusion is supported by strong negative correlations between
asphalt and both of aromatic and saturated compounds Figure-3. NOS% is positively correlated with
both aromatic and saturated compounds; the coefficient of determination (R? was computed to be
0.855 and 0.713 and defined by the exponential equations: Y=1.355¢*** and Y=1.098¢%%*
respectively Figure-3. The isoprenoids (terpenoids) which are diverse organic class were diagnosed in
the studied samples Figure 4. Aryl isoprenoids were formed due to the diagenetic transformation of
Aromatic carotenoids. These compounds exist in the C10—C31 range [16] and [17] the predominance
of n-alkanes and acyclic isoprenoids in the C11 to C35 region of the gas chromatograms is diagnostic
of marine organofacies sources [18]. The relatively enriched 8°C signatures in the studied samples
confirm that the origin of aryl isoprenoids was derived from Chlorobiaceae which is green sulfur
bacteria common in the anoxic zone can perform anoxygenic photosynthesis in existence of H,S-
saturated waters [19]. Hartgers [20], [21] and [22] stated that the origin of aryl isoprenoids from
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Chlorobiaceae can be confirmed by their relatively enriched §'°C signatures. The relative differences
among the peaks of the Aryl isoprenoids in the studied samples in Figure-4 are attributed to the
hydrocarbon fractionation during biodegradation which relies on the timing of seepage. Dinosteranes
were identified in the all samples and documented in Figure-5 to express as mark for the
dinoflagellates. [23] Stated that the Dinosteranes are used as a mark for the dinoflagellates that were
originally considered existing only in Triassic and younger age. The values less than 1.0 of the
steranes ratio (C28/C29) in all samples indicate an oil of marine origin generated from source rock
older than Jurassic and Cretaceous rocks [24]. A crystalline hydrocarbon, phenanthrenes (Cy4H10) was
diagnosed in the studied samples Figure-6. A negative correlated was found between the
phenanthrenes and quantity of asphalt. Dibenzothiophene (DBT) is a model compound among sulfur-
containing Hydrocarbon aromatic compounds in crude oil [25]. Under low oxygen conditions, DBT
degradation has little knowledge despite of a various bacteria can aerobically degrade it [26]. The
highest peaks were noticed in sample no. 4 which contains a high quantity of aromatic (37.8%) and
saturated (10.5%) compounds, whilst the lowest pecks were in sample no 5 which contains a high
quantity of asphalt Figure-7. Depending on the values of C27, ng and C29, Oil samples were plotted on

the ternary diagram designed by [27]. They occupied the field of bay and estuarine (Figure 8), except
for one sample (No. 5S) fell in the terrestrial field. It looks like of terrestrial origin has less reducing
conditions and receiving significant clastic input [28]. It is believed that this sample subjected to
severe weathering and biodegradation due to the long exposure to the atmosphere; and therefore, it has
the same origin of the other samples, doesn't typical terrestrial origin. In all studied samples, values of
C22/C21 are higher than 0.5 and C31R/H are greater than 0.25 (Table 2); if the value of C22/C21> 0.5
and C31R/H > 0.25 in all studied samples indicates marine source rocks [29]. It is evident that the
conditions were anoxic due to the values of C29/H, where they are greater than 1.0 in all samples
(Table2). Peters et al [30] stated a greater than 1.0 of this parameter indicates oil generated under
anoxic carbonate or marl source rocks. Gammacerane index (Ga/C31R) is evident for the salinity of
the depositional environment; if it is lower than 0.5 it means a low salinity [29] Three oil seep samples
have less than 0.5 of Ga/C31R value, but the other four samples are a little higher than 0.5 (Table-2)
indicating low to high water salinity. Oleanane in crude oils were used as a marker for both source
input and geologic age; the angiosperms are present in Late Cretaceous; the absence of Oleanane in
Early Cretaceous and older sediments is known [24] The value 0.0 of Oleanane in all oil seep samples
Table-2 indicates either that this Oleanane does not contribute in enriching the source rock, or the age
of oil is older than the beginning of the emergence of these plants (Late Cretaceous). The non-
condensate samples indicate a non-gas field origin based on low saturated/aromatic hydrocarbon ratio
(0.21, 0.3, 0.26, 0.28, 0.26, 0.2 and 0.34). The condensate samples of high saturated/aromatic
hydrocarbon ratio (greater than 10) indicate gas fields [31].

Stable Carbon Isotopic Composition:

Stable carbon isotope data of the saturate and aromatic hydrocarbons are listed in Table-2. In the
purpose to differentiate algal from land plant source materials and marine from continental
depositional environments, the stable carbon isotopic composition of organic matter was
recommended [15] and [32]. The saturated and aromatic fractions of the oil seeps in the study area
have a 8"°C values vary from -29.0 to -27.96%o and from -28.34 to -27.88%. respectively. They are
within the 8"*C range value (34%o to -18%o) that characterizes the most of crude oil [6]. Stable carbon
isotope values of oils are dependent mainly on the depositional environment of the source rock and the
degree of thermal maturity at which the oil was expelled. The decreasing contribution of terrestrial
organic matter to the marine sediments is reflected in the carbon isotope composition [33] and the
carbon isotope ratio reflects the carbon source [34]. Consequently, the low values of CV in the study
samples reflect a less contribution of terrestrial organic matter. The canonical variable (CV) values
range between -3.47 and -2.66; as it is lower than 0.47 indicating typical marine (non-waxy) oils
Figure-9 where [10] distinguished oils derived from marine and non-marine sources from different
parts of the world using the CV value. The §*°C values of crude oil are lower than those of the organic
matter from which they should derive, but they are similar to the ratios of the lipid fractions, especially
of lower plants and animals [35]. It is noteworthy that the isotopic fractionation relies on time and type
of processes. Maturation, migration, bacterial activities and pore water participated in the isotopic
fractionation. During the maturation, the simple molecules rich in H and **C changes to the complex
molecules of less H and 2C. The heavy carbon (**C) enriched in the aromatic fraction during oil
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migration, whilst depleted in the saturated fraction [33]. Bacterial methanogenesis maybe played a
complex role and produced a bacterial methane very **C-rich due to the sulfate reduction in the
anaerobic bitumen-rich sediments leaving behind a residual pore water with significantly enriched in
3C. Oil before seeping in the study area has been mixed with groundwater; pore waters have **C/**C
ratios no lower than organic matter [33]. Type-I oil generally has heavier isotope values than type-1I
oil, which matches the source rock. Stable carbon isotope data of the saturate and aromatic
hydrocarbons are plotted in Figure-9. The stable carbon isotope composition shows type-I1 oils belong
to the planktonic kerogen. Oil seep samples were isotopically plotted and compared with the global
crude oil samples (Figure-10). Hence, the studied samples looks like to be derived from Eocene source
rocks based on similar isotopic composition with other proposed Eocene oils in California and based
on oil-source rock correlation studies according to [36] and [31]. It is believed that the source rocks
have an older age than the Eocene. This anomaly suggests a considerate either that the oil had matured
in the Eocene, or may attribute to the isotopic fractionation during diagenesis, in particular,
isotopically crude oil is lighter than kerogen from which they were generated. The §"3C in kerogen is
mainly varied from -33 to -17%o. [37].

Table 2- Stable carbon isotope composition and biomarker properties of oil seeps from AJFZ

Sample numbers
4S
1S 2S 3S 6S
Parameters Heet Gypsum | Jabha Abu oS Abu- 'S
. ; - jer Ash " Awasel
spring | bitumeous | sprin jir
water
GC-MS Ts/(Ts=Tm) 0.10 0.12 0.11 | 0.11 | 0.13 | 0.12 0.11
Satu-rated Oleanane Index % 0 0 0 0 0 0 0
hydrocarbons Gammacerane Index % 0.49 0.91 043 | 049 | 0.56 | 0.53 0.52
C35/C34 Homohopane 1.01 1.18 1.03 | 092 | 0.94 | 1.09 0.95
C27 (%) 33.6 28.1 347 | 354 | 131 29.8 32.7
Regular C28 (%) 23.5 23.1 214 | 214 | 201 | 23.6 21.5
Steranes and C29 (%) 42.8 48.8 439 | 43.2 | 66.9 | 46.6 45.8
Sterane ratio C28/C29 <1= marine 0.55 0.47 0.49 | 0.49 0.3 0.5 0.47
Diasterane Index 0.85 0.23 0.67 | 0.56 | 0.90 | 0.40 0.60
13 - - -
87°C saturate (%o PDB) -28.23 -28.50 28.18 | 27.96 -29.0 28.44 -28.20
Stable C 13 1o _ - - - - _
isotopes &7°C aromatic (%o PDB) 28.22 -28.26 2822 | 28.18 | 27.88 | 28.34 28.09
3"°C whole oil (%0 PDB)
Ccv -2.88 -2.28 -3.00 | -3.47 | -0.17 | -2.61 | -2.66
Sat% 6.8 5 7.9 10.5 1.2 6.6 6.5
Aro% 32.4 16.8 30.6 | 37.8 1.9 33.2 18.8
Bulk NSO% 26.8 18.8 18.6 | 22.8 5.4 25.6 17
constituents Asphalt% 33.9 59.4 428 | 289 | 916 | 34.6 57.7
Sat/Aro% 0.21 0.3 0.26 | 0.28 | 0.62 0.2 0.34
Paraffin/Naphthene 0.64 1.24 1.18 | 1.04 | 0.73 | 1.14 0.38
Tricyclic C22/C21>0.5 marine 0.99 1.02 1.0 1.07 | 1.54 | 0.99 1.07
Terpane C24/C23 0.27 0.25 0.26 | 0.25 0.4 0.27 0.27
Norhggﬁge/ HO | catR/H > 0.25 marine | 0.28 0.3 029 | 026 | 0.29 | 0.29 | 0.26
C29/H if >1 anoxic, and
thermal mature 0.98 1.18 1.06 | 1.06 | 1.02 1.2 1.05
Gamir:ggjra“e Ga/C31R < 0.5 L. salinity | 0.49 0.91 043 | 049 | 056 | 053 | 0.52
OL/H
Oleanane >0.2= younger than Cret
index <0.2=L. Cret. 0.0 0.0 0.0 0.0 0.0 0.0 0.0
If 0.0= Earler than Cret.
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Figure 2- Whole organic compounds in the studied oil seeps; symbols (1S to 7S) refer to sample numbers.
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Figure 3- Relationships between organic compounds in the oil seeps.
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Figure 4- Aryl isoprenoids in the studied oil seeps; symbols (1S to 7S) refer to sample numbers.
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Figure 5- Aromatic dinosteranes in the studied oil samples; symbols (1S to 7S) refer to sample numbers.
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Figure 6- Phenanthrenes in the studied oil seeps samples (4S, 5S, 6S and 7S).
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Figure 7- Dibenzothiophene in the studied oil samples (4S, 5S, 6S and 7S).
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diagram after [27].
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Figure 9- Relationship between the carbon stable isotopic composition of the saturate and aromatic fractions for
seep oils from the AJFZ diagram after [10].
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Figure 10- Isotopic composition oil seeps compared with the results of [38] oils, oil seeps, and oil stains,
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Conclusions:
Based on this study, it is possible to conclude these points:

1.

2.

3.

The gypsum of Fatha Formation was a source of the sulfur deposits and H,S gas dissolved in the
spring water due to the reduction of sulfate in via anaerobic bacteria under anoxic conditions.

Oil seeps were generated from planktonic kerogen belongs to the type-11, which has a substantial
amounts of sulfur associates bitumen rather than H,S gas.

The degree of waxiness reflects the amount of land-derived organic matter depends on source
input [39]. The studied oils are characterized by low CV values (-2.88, -2.28, -3.00, -3.47, -0.17, -
2.61, -2.66) confirming that these oils are non-waxy and have been mainly originated from the
marine organic source deposited under anoxic conditions. The origin of the oil seeps is marine
non-waxy oil generated from marine source rock deposited in an environment of low to high
salinity with little participation of bay and estuary under anoxic conditions and belongs to non-
gas field origin.

The high variability in NSO% values (5.4% to 26.8%) indicates that samples have been subjected
to a disparity biodegradation. NOS% is positively correlated with both aromatic and saturated
compounds; the coefficient of determination (R°) was computed to be 0.855 and 0.713 and
defined by the exponential equations: Y=1.355e%3* and Y=1.098e"#** respectively.

The values less than 1.0 of the steranes ratio (C28/C29) in all samples indicate an oil of marine
origin generated from source rock older than Jurassic and Cretaceous rocks. Dinosteranes were
identified in all samples and documented in Figure 5 to express as mark for the dinoflagellates.
Moldowan and Talyzina [23] stated that the Dinosteranes are used as a mark for the
dinoflagellates that were originally considered as existing only in Triassic and younger age.
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