
Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678
 DOI: 10.24996/ijs.2024.65.3.38

__

*Email: heba.mahmoud1201a@sc.uobaghdad.edu.iq
1663

Preserving Genotype Privacy Using AES and Partially Homomorphic

Encryption

Hiba M. Yousif*1,2, Sarab M. Hameed1

1Computer Science Department, College of Science, University of Baghdad, Baghdad, Iraq
2College of engineering, University of Information Technology and Communications

 Received: 9/2/2023 Accepted: 27/3/2023 Published: 30/3/2024

Abstract

 Increasingly, the availability of personal genomic data in cloud servers hosted by

hospitals and research centers has incentivized researchers to turn to research that

deals with analyzing genomic data. This is due to its importance in detecting diseases

caused by genetic mutations, detecting genes that carry genetic diseases, and

attempting to treat them in future generations. Secure query execution on encrypted

data is considered an active research area in which encryption is used to ensure the

confidentiality of genomic data while restricting the ability to process such data

without first decrypting it. To provide a secure framework and future insight into the

potential contributions of homomorphic encryption to the field of genomic data, this

paper proposes a framework for guaranteeing genomic data privacy using various

partial homomorphic encryption techniques. By examining the characteristics of the

three partial homomorphic encryptions based on different parameters. The framework

has been online tested and compared based on different parameters. Three

homomorphic encryption algorithms were adopted to ensure genomic data privacy by

employing homomorphic operations in the query matching process. Experiments on

real datasets, specifically MERS and SARSr-COV, showed that the proposed

framework is efficient and improves query execution time by an average of 96%

compared to existing work.

Keywords: ElGamal, Genomic data, Homomorphic encryption, Paillier, Privacy

preserving, RSA

 والتشفير المتماثل جزئيًا AES الحفاظ على خصوصية النمط الجيني باستخدام خوارزميه

 1, سراب مجيد حميد21,*محمود يوسف هبة
 الحاسوب، كلية العلوم، جامعة بغداد، بغداد، العراق قسم علوم 1

 كلية الهندسة /المعلومات و الاتصالات ولوجياكنجامعة ت2

 الخلاصة
أدى التخزين المتزايد للبيانات الجينومية الشخصية في الخوادم السحابية التي تستضيفها المستشفيات ومراكز

اكتشاف الأمراض الأبحاث إلى تحول الباحثين إلى الأبحاث التي تتناول تحليل البيانات الجينية لأهميتها في
الكشف عن الجينات التي تحمل الأمراض الوراثية ومحاولة علاجها في الأجيال و التي تسببها الطفرات الجينية

القادمة. يعتبر تنفيذ الاستعلام الآمن على البيانات المشفرة مجال بحث نشط يستخدم فيه التشفير لضمان سرية
تقترح هذه الورقة إطاراا لضمان .البيانات الجينية مع تقييد القدرة على معالجة هذه البيانات دون فك تشفيرها أولاا

 ISSN: 0067-2904

mailto:heba.mahmoud1201a@sc.uobaghdad.edu.iq

Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678

1664

لتوفير إطار عمل آمن خصوصية البيانات الجينومية باستخدام تقنيات تشفير جزئية مختلفة متجانسة الشكل
ورؤية مستقبلية للمساهمات المحتملة للتشفير المتماثل في مجال البيانات الجينومية من خلال فحص خصائص

تم اختبار إطار العمل عبر الإنترنت ومقارنته بناءا .مختلفةالتشفير الجزئي ثلاثي الشكل بناءا على معاملات
الشكل متجانسة تشفير خوارزميات اعتماد ثلاث تم مختلفة. معايير العمل على لضمان خصوصية في هذا

، SARSr-COVو MERSالبيانات الجينومية. توضح التجارب على مجموعات البيانات الحقيقية، وتحديداا
 .السابقةبالاعمال ٪ مقارنة 96علام بمعدل أن المقترح فعال ويحسن وقت تنفيذ الاست

1. Introduction

Genomics is a discipline that studies the content, structure, and evolution of genomes. The

primary goal is mass sequencing of nucleotide sequences. Tremendous technological evolution

has been witnessed in the field and now it is no longer limited to the determination of sequences

but also involves the analysis of both genes and proteins in terms of expression and function

[1].

The genome is the carrier of biological genetic information and contains the important genetic

information of human beings. The genome sequencing technology can analyze and calculate

specific Deoxyribonucleic Acid (DNA) sequences in the genome, laying a foundation for

further research and utilization. The Genome-Wide Association Study (GWAS) provides more

possibilities for genomic data research and can help human beings know themselves better by

exploring genes. However, GWAS is characterized by a huge data volume and complicated

data processing. It is feasible to send genomic data to big data platforms for analysis and

calculation. While big data provides support for bioinformatics research, it also faces

unprecedented data security threats. The disclosure or improper use of genomic data will not

only violate the personal privacy of data providers but also cause national and social problems.

Therefore, the privacy protection of genomic data is an important link in GWAS [2].

Several bioinformatics processes are applied to digital genomic data. This raises the risk of

exposing personal information. The main bioinformatics processes that can compromise

privacy are sequence alignment, querying private genomic data, and searching a genomic

database. Possible security issues when processing genomic data include insecure environments

for sequence alignment, performing a query on private genomic data, searching a private

genomic database, securely querying a public database, and performing secure queries on a

private genomic database [3].

Moreover, since the utilization of cloud services has increased with the development of

technology, the security and privacy of genomic data stored in the cloud should be ensured [4].

A breach of an individual genomic data may reveal their susceptibility to a specific disease,

affecting their health insurance eligibility [5]. Therefore, privacy and security have become

critical requirements [6].

This paper investigates how genomic data can be useful to researchers while maintaining data

privacy so that subjects' identities are not revealed. The contributions of this paper are as

follows:

• Propose a secure framework for ensuring the privacy of genomic data shared and stored on

a cloud server.

• Introduce AES and three partial homomorphic encryption algorithms to protect genomic

data from being discovered by unwanted parties including data privacy, query privacy, and

output. . The query counting operation relies on the homomorphic operations of the Paillier,

Rivest, Shamir, and Adleman (RSA), and ElGamal algorithms, which allows for the

comparison of queried encrypted Single Nucleotides Polymorphism (SNP) values with stored

encrypted SNP values without revealing their values.

Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678

1665

 This paper is organized as follows: Section 2 provides the related work for preserving

genomic data privacy. Section 3 focuses on the fundamental concepts of genomic data and

encryption methods. The proposed framework for secure counting queries is introduced in

Section 4. Finally, Section 5 discusses the findings and future directions.

2. Related Works

The security and privacy of genomic data are fundamental issues, and many techniques are used

to protect the privacy of this data. A common approach is to use cryptographic algorithms to

protect genomic data and maintain its privacy.

 Cetin et al. [5] developed a novel string-matching system that allows for privacy-preserving

queries on homomorphically encrypted data. The protocol merged well-known techniques

Permutation-based hashing and Permutation-based cuckoo hashing with private intersection

protocols to minimize computational and communication costs.

 Raisaro et al. [7] designed, implemented, and deployed a secure and efficient privacy-

preserving solution for exploring genomic cohorts in a real operational scenario at the Lausanne

University Hospital by employing differential privacy and Homomorphic Encryption (HE).

While a combination of bootstrapping in Fully Homomorphic Encryption (FHE) with a scaling

operation in fixed-point arithmetic was introduced by Chen et al. [8], through using of a

minimax polynomial approximation to the sigmoid function and the 1-bit gradient descent

approach to decrease plaintext growth in the training phase. They showed that training over

encrypted data is possible, even if at a considerable computational expense. However, in critical

applications, the approach can ensure the highest level of data privacy.

Hasan et al. [9] suggested methods to process biomedical data that contain genotype and

phenotype by employing an index tree scheme, which significantly reduces the computational

overhead cost, to securely execute the count query operation. They ensured the conventionality

of the biomedical data by using encryption. A framework suggested by Chen et al. [10] to

manage the security challenges of outsourced/transferred genomic data computations on a large

scale by utilizing homomorphic encryption with the Garbled Circuit scheme, ensuring the

privacy of genomic data. Additionally, Blatt et al. [11] suggested a set of statistical approaches

that use HE to execute large-scale GWASs on encrypted genetic/phenotype data without having

to decode the data. They implemented over a dozen crypto engineering modifications and

rebuilt the GWAS tests to fully benefit from encrypted data packing and parallel computing

coupled with very efficient statistical calculations. In contrast to claims that HE is unsuitable

for large-scale GWASs, HE solutions are 30 times faster than the cutting-edge multiparty

computing technique.

 Mahdi et al. [12] suggested a protocol to handle the substring search query and set maximal

matching problems. They made use of the suffix tree to create an index tree for the genomic

data by using different algorithms AES and Garbled Circuit to ensure the privacy of data, query,

and output. On the other hand, Yilmaz et al. [13] suggested a data-sharing system for genomic

data that excludes some SNP states that are loosely linked with previously shared SNPs (and

does not employ such states during data sharing). The suggested system determines a value to

split among the non-eliminated states by establishing explicit privacy assurances. To make the

shared data more useful, they demonstrated how to alter probability distributions for non-

eliminated SNP states, and suggested an optimum and greedy approach for determining the

processing order of SNPs in the proposed data-sharing algorithm to maximize the utility.

 paper aims to develop a secure framework for storing and processing genomic data that

ensures the confidentiality of search processes' data, queries, and results. The presented work

Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678

1666

is similar to [9], however, the distinction is that it can work with encrypted datasets stored in

the cloud and perform online encrypted operations on them while conducting searches. This is

achieved by leveraging homomorphic subtraction and division operations to skip time-

consuming extra phases. In addition to Paillier and AES algorithms used in [9], RSA and

ElGamal algorithms were used to encrypt genomic data.

3. Preliminary Concepts

 This section provides background information on genomic data, homomorphic encryption,

and advanced encryption standard.

3.1 Genomic data

 Genomics is a biology branch focusing on genomic structure, function, and activity. A

genome is a human’s full collection of DNA sequences. From a technological standpoint, one

of the data sources for healthcare is genetic data; a person's genome shows their illness

susceptibility and information about their family members [14]. A genome contains all

information required for the function of single cells as well as very complex organisms. A

genome is a collection of genes controlled in a range of cells whose division results in an

organism. A genome is made up of noncoding sections, regulatory regions, and other

components that work together to make life processes possible [15]. Approximately 99.9% of

all people's DNA is identical, with the remaining 0.1 percent accounting for variations. The

most prevalent source of variation in the human genome is Single Nucleotide Polymorphism

(SNP). A single nucleotide alteration in the genome A, T, C, or G is known as an SNP, and

there are around 50 million SNPs in the human genome [16].

3.2 Homomorphic encryption

 Homomorphic Encryption (HE) is an encryption type that supports computation over

encrypted data. A special type of HE that permit arbitrary computation on encrypted data was

introduced in [7], which is called Fully Homomorphic Encryption (FHE). The output of these

computations was also encrypted in [17]. It became a common method to secure data in the

cloud [18].

 HE is classified into several types based on its operational capabilities. FHE, Somewhat

Homomorphic Encryption (SWHE), and Partially Homomorphic Encryption (PHE).

FHE is the most comprehensive HE system, allowing arbitrary functions to be evaluated on

ciphertexts [19]. SWHE supports an unlimited number of operations, but each action generates

noise, and after a certain number of operations, the underlying encrypted data is lost. As a result,

SWHE systems can perform any operation for a limited amount of time. Every addition

operation adds to the noise, and every multiplication action doubles the noise [20]. PHE is the

oldest homomorphic encryption process, permitting only one operation on the ciphertexts [21].

 This paper focuses on three PHE algorithms: Paillier, RSA, and ElGamal.

• Paillier algorithm is a probabilistic public-key cryptosystem. It is considered to be one of

the most efficient encryption algorithms with an additive homomorphic property. It is widely

used to preserve privacy and secure computation. Paillier algorithm consists of 3 stages: key

generation, encryption, and decryption.

In a key generation, the algorithm produced a pair of keys: a public key (𝑛, 𝑔), where 𝑛 is the

result of multiplying two large prime numbers 𝑝 and 𝑞 ∈ ℤ𝑛2
∗ . The secret key (𝜆(𝑛) = (𝑝 −

1) × (𝑞 − 1)).

Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678

1667

 In the encryption algorithm first, the alphanumeric symbols are converted into purely

numeric ones, then a random 𝜇 ∈ ℤ𝑛
∗ is chosen such that: 0 < 𝜇 < 𝑛. The ciphertext c is

computed as in Equation 1 [22].

𝑐 = 𝑔𝑚 × 𝜇𝑛 (𝑚𝑜𝑑 𝑛2)

(1)

In the decryption algorithm, the message is computed according to Equation 2.

𝑚 = 𝐿(𝑐𝜆(𝑛)(𝑚𝑜𝑑 𝑛2)) × (𝑔𝜆(𝑛)(𝑚𝑜𝑑 𝑛2)))−1(𝑚𝑜𝑑 𝑛) (2)

 The subtraction operation is computed after obtaining the encrypted value of the first number

(𝐶1) and the encrypted value of the second number (𝐶2), and applying Equation 3.

𝑆𝑈𝐵𝑟𝑒𝑠𝑢𝑙𝑡 = (𝐶1 × 𝐶2
−1𝑛2) 𝑚𝑜𝑑 𝑛2 (3). [23]

• Rivest, Shamir, and Adleman (RSA) is the most widely used public-key cryptosystem

since 1978. Multiplicative homomorphism is a property of the RSA scheme. The RSA

homomorphic encryption is thus the product of two modulo n messages. In RSA semantic

security, the integer factorization problem difficulty is employed. The security of data depends

on the keys used, where strong keys lead to strong encryption and decryption [24] [25].

The key generation algorithm includes determining the public and private keys as follows:

- Choosing two prime numbers 𝑎, 𝑏, where 𝑎 ≠ 𝑏.

- Computing 𝑛 = 𝑎 × 𝑏 .
- Computing 𝜑(𝑛) = (𝑎 − 1) × (𝑏 − 1).

- Choosing an integer 𝑒, such that gcd (𝜑(𝑛), 𝑒)) = 1,1 < 𝑒 < 𝜑(𝑛)).

- Computing 𝑑 = 𝑒−1 𝑚𝑜𝑑 𝜑(𝑛). The public and private keys are (𝑛, 𝑒) and (𝑛, 𝑑)

respectively.

- After converting character symbols into integer form, the cipher text 𝑐 can be obtained

by applying Equation 4.

𝑐 = 𝑚𝑒 𝑚𝑜𝑑 𝑛 (4)

In the decryption operation, the original message 𝑚 can be retrieved using Equation 5 [26] .

𝑚 = 𝑐𝑑 𝑚𝑜𝑑 𝑛 (5)

Division operation can be calculated after computing the cipher value of the first number 𝐶1,

and the cipher value of the second number 𝐶2, and applying Equation 6.

𝐷𝐼𝑉𝑟𝑒𝑠𝑢𝑙𝑡 = (𝐶1 × 𝐶2
−1)𝑒 𝑚𝑜𝑑 𝑛 (6)

• ElGamal algorithm [27] is an asymmetric key algorithm based on the Diffie-Hellman key

exchange algorithm. It was created by Taher El Gamal in 1985, and is based on the difficulty

of calculating the discrete logs of a large prime module. It includes key generation, encryption,

and decryption.

First, in the key generation step: a large prime number p is chosen by randomly selecting g ∈
 Ζ𝑞

∗ and x such that (1 < 𝑥 < 𝑝 − 1), storing it as a private key, then determining ℎ =

𝑔𝑥𝑚𝑜𝑑 𝑝. The public key is (𝑝, 𝑔, ℎ). randomly chosen 𝑟 ∈ Ζ𝑞, the ciphertext is computed

using Equation 7.

𝑎 = 𝑔𝑟𝑚𝑜𝑑 𝑝, 𝑏 = 𝑚. ℎ𝑟𝑚𝑜𝑑 𝑝

(7)

The ciphertext of message 𝑚 is the (𝑎, 𝑏). To retrieve the message, Equation 8 is used [28].

𝑢 = 𝑎𝑥 𝑚𝑜𝑑 𝑝

𝑚 = 𝑏. 𝑢−𝑝 𝑚𝑜𝑑 𝑝

(8)

Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678

1668

To perform division operation in El Gamal, two parts of each cipher (𝐶1, 𝐶2) are computed
(𝑎1, 𝑏1), (𝑎2, 𝑏2). Then, Equation 9 is applied.

𝐷𝐼𝑉𝑎 = (𝑎1 × 𝑎2
−1)𝑚𝑜𝑑 𝑝, 𝐷𝐼𝑉𝑏 = (𝑏1 × 𝑏2

−1)𝑚𝑜𝑑 𝑝 (9)

3.3 Advanced Encryption Standard

AES is a symmetric block cipher invented in 1998 by two Belgian cryptographers (Joan Daem

and Vincent Rijmen). It was released in 2001 as FIPS Publication 1997 (Federal Information

Processing Standards). AES encryption key lengths are 128, 192, and 256 bits. A typical data

block size is 128 bits and uses the number of cipher rounds that can be configured for each

block to be encrypted. In general, the 128-plaintext block size corresponds to one of three key

lengths: 128, 192, or 256 bits in 10 rounds, 12 rounds, and 14 rounds, respectively [29].

4. The Proposed Secure Framework

 The proposed security framework aims to provide secure storage of DNA sequences when

outsourcing, and secure querying of tasks to perform bioinformatics processes such as counting

query operations. Count query is determining how many records in the database matching a

given query, and securely querying a public database. The proposed framework includes a

mechanism to protect the confidentiality of genomic data so that the cloud does not learn about

genomic data, and query confidentiality (the cloud does not know about queries executed by

researchers).

 The proposed framework, depicted in Figure 1, consists of four components: Information

Sources (IS) that represent data sources, Cloud Servers (CS) where encrypted data is stored and

queries are processed, Trusted Research Center (TRC), and the Researcher (R) who inquiries

about information. The following assumptions support the proposed framework:

• CS is a semi-honest entity. It applies the protocol but monitors communications and tries to

report additional information during the execution of the researcher query. However, it does

not deviate from the computational protocol and operates maliciously.

• TRC regards itself as a trustworthy entity because it is responsible for sharing the keys

required for IS with trusted researchers.

• There is no collusion among CS, R, and IS. Furthermore, neither CS, IS nor TRC act in

fraudulent misrepresentation to generate incorrect output.

Figure 1: The proposed framework for protecting genomic data.

 According to the framework, each component oversees a specific task that is distinct from

the tasks assigned to the other components. The components work together to make the system

safe and efficient. TRC generates key pairs (𝑝𝑘, 𝑠𝑘) where 𝑝𝑘and 𝑠𝑘are the public and the

Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678

1669

private keys respectively. The public key is sent from TRC to IS to encrypt the genomic data

files. These files are sent from the IS to CS, which is responsible for storing them. On the other

hand, a researcher who wants to query a specific genome sequence sends an encrypted query

to the cloud. Then, the cloud returns the encrypted result to TRC. The result is decrypted by

TRC, and then it is encrypted with the research public key and sent to the researcher.

4.1 Genomic data representation and encoding

 The genomic data holds an organism's hereditary information. DNA is responsible for

encoding the human genome. it consists of nucleotides that are represented as (A, C, G, T), and

are bonded to each other in the form of A bonds to T and C bonds to G. SNP is the most popular

form of DNA variation at a specific position in the genome, representing s a difference in a

single nucleotide. Most SNPs don’t have any effect on the health of humans. While some of

these SNPs are responsible for developing particular diseases in humans.

 The dataset used in this paper (https://www.kaggle.com/) is in the form of multiple fasta

files (multi -fasta) that contains genomic data in the form of records of sequences with their

corresponding descriptions. The description includes the unique identifier of the genome or

gene along with its name.

 Formally speaking, the dataset can be described as 𝕊 = {[𝐷1, 𝑆1], … , [𝐷𝑛𝑆𝑛]}, where 𝑛 is

the number of human SNP sequences. 𝐷𝑗 ∈ 𝑆 is the genomic data description that represents

the SNP sequence ID. While 𝑆𝑗 ∈ 𝑆 is a sequence of nucleotides (SNP). The genomic

sequences are made up of four nucleotides (A, C, G, and T), and the SNP sequence, 𝑆𝑗 is made

up of two nucleotides as shown in Table 1.

Table 1: A sample of genomic data representation

 Description
Sequences

SNP1 SNP2 SNP3 SNP4 ….. SNPn-1 SNPn

1.
>NC_038294 |Betacoronavirus England

1| complete genome
AT TT AA GA …. AA AA

2.

>MN541209 |Middle East respiratory

syndrome-related coronavirus isolate

SPC00440 S protein gene| partial cds

TG TT GA TT AA GC

3.

>NC_019843 |Middle East respiratory

syndrome coronavirus| complete

genome

GA TT TA AG TC GC

.

.

.

.

.

.

n-2

>MG987420 |Middle East respiratory

syndrome-related coronavirus isolate

NL13892| complete genome

GA TT TA AG AA CC

n-1

>MN541210 |Middle East respiratory

syndrome-related coronavirus isolate

SPC00441 S protein gene| partial cds

TG TT GA TT TC CG

n

>MN541281 |Middle East respiratory

syndrome-related coronavirus isolate

SPC00579 S protein gene| partial cds

TG TT GA TT AA CG

 The genomic data needs to be encoded to be used for homomorphic computation. In this

paper, each SNP is made up of two nucleotides. There are 16 possible combinations represented

by AA, AT, AG, etc. The genomic sequence is encoded as an integer ranging from 1 to 16 as

Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678

1670

shown in Table 1. For example, the sequence "ATCGAGTGCC" can be expressed as ["AT",

"CG", "AG", "TG", "CC"] and is encoded to [1, 7, 3, 12, 5] as shown in Table 2.

Table 2 - Nucleotides encoding

AA AC AG AT CC CA CG CT TT TA TC TG GG GC GA GT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4.2 Encryption of genomic data

 Data owners send genomic data, 𝕊, to TRC where encryption takes place to produce

encrypted data, 𝕊′. TRC encrypts the genomic data, which is the dataset 𝕊, where each row

represents the individual data (description part) and each column represents the attribute of the

individual (sequence part). the encryption is done as follows: First, the description part contains

a unique identifier and description for the sequence so it is important to encrypt this part of the

record to avoid attempts to identify the sequence using the AES algorithm with a key size equal

to 256 bits. Second, the sequence part which consists of a series of 'A', 'T', 'G', and 'C' must be

encoded according to Table 1 and finally encrypted using one of the partially homomorphic

encryption algorithms Paillier, RSA, or ElGamal. Algorithm 1 clarifies the encryption process

of genomic data.

Algorithm 1. Genomic sequence encryption

Input:

𝕊: Genomic data

Output:

𝕊′: Encrypted genomic data

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

Begin

sequences []

sequence_object read(𝕊)

foreach seq in sequence_object

 sequences append(seq)

For i 0 to | 𝕊 |

 Encrypt 𝐷𝑖 with AES

 For j 0 to | 𝑆𝑖 |

 Encode the nucleotide pairs according to table 1

 Encrypting 𝑆𝑖𝑗 by a partially homomorphic algorithm (Paillier, RSA, or

ElGamal) using Eq.1, Eq.4, or Eq.7.

 End for

End for

End foreach loop

End

4.3 Tree generation

 The encrypted data, 𝕊′, is uploaded to CS. When researchers attempt to query information,

𝑞, from the encrypted data. Researchers encrypt the query, 𝑞′, and send it to the CS. CS

generates an indexed tree, 𝑇, from the encrypted data, 𝕊′ and performs a search operation. The

adoption of indexed tree generation is because it is simpler to implement, uses less memory,

and allows for faster node traversal. Each node in the tree, except the root, has four elements:

value that is an encrypted form of the SNP, id (which is SNP position in the sequence), the

count that represents the occurrences of SNP at this position, and child that represents

Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678

1671

subsequent SNPs in the sequence. The generation of the tree from genomic data is shown in

Algorithm 2.

Algorithm 2. Indexed tree generation

Input:

𝕊′: encrypted sequences of SNPs

Output:

Tree: Indexed Tree

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16

Begin

Tree root

for i 1 to | 𝕊′|

 SNP 𝕊′ [i]
 sid i// index of the node

 child TreeNode(SNP,sid)

 flag 0 //to find repeated occurrences for the SNP

 n TreeNode

 for each node in the n. children

 Check the equality of values for node n and child

 count(n) + 1

 flag 1

 End foreach loop

 Check the flag value to add the child to the parent.

End for

End

4.4 Secure count query

 The purpose of the query count operation is to find the number of records that match the

requested information. The researcher query is encrypted according to the algorithm used in

encrypting the genomic data set (using Eq1, 4, or 7). The search operation depends on the

homomorphic operation, which is either subtraction or division between encrypted SNPs in 𝑞′
and encrypted SNPs in the encrypted indexed tree to ensure the equality of two SNPs in the

predetermined positions, as shown in Algorithm 3. The use of a homomorphic operation allows

the comparison of queried encrypted SNP values with stored encrypted SNP values without

revealing their values.

Algorithm 3. Secure count query

Input:

Root: root node, list of encrypted SNPs, list of positions

Output:

encrypted result

1:

2:

3:

4:

5:

6:

7:

8:

9:

Begin

Encrypt the list of SNPs that will be queried with a partially homomorphic algorithm

(Paillier, RSA, or ElGamal) using Eq.1, Eq.4, or Eq.7.

Check the length of the list of encrypted NPSs and the positions

QueryResult [] // list for results

q [root] //insert tree in list

Insert the first node of the tree into the list

While length (list of encrypted SNPs) > 0

Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678

1672

11:

12:

 Perform a homomorphic operation using one of the equations (3, 6, or 9) between

the stored nodes value in q and the first value of the queried node as appending the

result in QueryResult list

End while

End

4.5 Counting query decryption

 The encrypted query is delivered from the researcher (R) to the cloud (CS), where the

search process is carried out for the required information. The results are returned in an

encrypted form to the TRC, which in turn decrypts it using a decryption equation with the

adopted algorithm using Equation 2, 5, or 8. Then TRC delivers the result to the intended

researcher after encrypting it with the public key of the researcher.

5. Experimental Results

 The proposed framework allows any computation to be transformed into a homomorphic

operation that protects privacy from an attacker. For the proposed framework, three partial

homomorphic encryption algorithms were investigated. CS and CI were run in two separate

machines with Intel(R) Xeon(R) CPU @ 2.20GHz, 12 G RAM, and 107G Hard disk.

 Furthermore, the proposed framework was tested on two real datasets from

(https://www.kaggle.com/datasets/): MERS and SARSr-COV. The first dataset contains 1345

genomic sequences (records), with a minimum length of 110 nucleotides, a maximum length

of 30119 nucleotides, and an average length of 14197 nucleotides. The second dataset contains

1578 records with a minimum of 87 nucleotides, a maximum of 29903 nucleotides, and an

average of 18440 nucleotides. The length of the genomic sequences varies from 87 to 30119

nucleotides. In addition, the results report the impact of the key size on the performance of the

proposed framework by setting the key size of the partial homomorphic encryption algorithms

to 512 and 1024 bits and the key size of AES to 256.

5.1 Security analysis

 To evaluate the security of the proposed framework, it is considered that the system lacks

security if there is any revealing in the SNP sequence, query, and output.

 In the proposed framework, IS sends genomic data to TRC, and TRC is responsible for

encryption and uploads to CS, so no data leakage occurs during encryption and generation of

encrypted genomic data. CS cannot infer any information since it received encrypted data.

Additionally, TRC makes the public key available to researchers after they trust them to encrypt

their queries, thus preventing leakage during research queries. Finally, since the query is

encrypted and neither the TRC nor CS knows about it, it protects against leaks while receiving

the results. Once the results are sent back to TRC, it is decrypted and passed on to the

researchers since the query is not revealed, it will not know what the result means

.

5.2 Performance analysis

 This section demonstrates the performance of the proposed framework in terms of storage,

upload time, and search time. In addition, to assess the effect of data size on the performance

of the proposed framework, each dataset was portioned into 200, 400, 600, 800, and 1000

records. Furthermore, an evaluation with different query sizes (10, 20, 30) was performed to

demonstrate the effect of query size on the framework performance.

Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678

1673

A. Storage analysis

 The storage spaces required to represent the encrypted MERS dataset and its corresponding

encrypted tree using three homomorphic ciphers Paillier, RSA, and ElGamal with two different

key sizes (1024 and 512 bits) are shown in Figures 2 and 3 (A and B) respectively. The storage

space for the encrypted data using Paillier, RSA, and ElGamal was 64,462 MB, 64,321 MB,

and 68,320 MB respectively. While the storage of spaces required for the tree was 1740, 1542,

and 1902 MB, respectively. As can be seen, representing the data as a tree saves approximately

95% of the storage space, which provides an effective storage solution for genomic datasets

and influences query execution speed. Furthermore, as the number of records increased, the

encrypted data and encrypted tree storage space increased linearly.

Figure 2: Storage space of encrypted data and encrypted tree when key equals 512

Figure 3: Storage space of encrypted data and encrypted tree when key equals 1024

B. Upload and query execution times

 The performance of the proposed method in terms of upload and query execution (search)

times are reported in Tables 3 -6. As can be seen, upload time increases linearly as the number

of records increases. When the data size and query size are small, the RSA algorithm

(A) encrypted data (B) Encrypted tree

(A) encrypted data (B) Encrypted tree

P
ai

lli
er

El
G

am
alR
SA

0

20

40

60

80

En
cr

yp
te

d
 d

at
a

(M
B

)

Number of records

P
ai

lli
er

El
G

am
alR
SA

0

0.5

1

1.5

2

En
cr

yp
te

d
 t

re
e

si
ze

 (
M

B
)

Number of records

P
ai

lli
er

El
G

am
alR
SA

0

20

40

60

80

200 400 600 800 1000

En
cr

yp
te

d
 d

at
a

(M
B

)

Number of reords

P
ai

lli
er

El
G

am
alR
SA

0

0.5

1

1.5

2

En
cr

yp
te

d
 t

re
e

si
ze

 (
M

B
)

Number of records

Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678

1674

outperforms Paillier and ElGamal in terms of query time execution, but when the data size is

medium or large, Paillier outperforms the RSA and ElGamal. The execution time of the query

is proportional to the number of SNPs. Although the first and second datasets have the same

number of records, the query execution time differs because it depends on the depth of the tree

(the index tree in the second data set is larger) and there is no repeating sequence as in the first

data set. The size of the tree and the number and position of SNPs being queried all affect the

speed of query execution. Furthermore, the size of the encrypted tree is too small in comparison

to the encrypted data. This reduces computational effort and storage requirements compared to

raw data.

Table 3: Comparison of the three homomorphic encryption algorithms in terms of upload time,

encrypted tree size, and search time with a key size of 1024 for MERS

Algorithm

Records

Upload

time

(second)

Encrypted

genomic

data size

(MB)

Encrypted

tree size

(MB)

Search time (second)

10

Query size

20

Query

size

30

Query

size

Paillier

200 1.3345 211 0.308 0.0383 0.0541 0.0844

400 1.8987 300 0.738 0.0316 0.0913 0.1394

600 9.5509 1510 1.112 0.0502 0.1041 0.1592

800 11.3219 1790 1.373 0.0595 0.1259 0.1855

1000 14.4845 2290 1.902 0.0586 0.1301 0.2057

ElGamal

200 2.6774 423.3 0.356 0.0405 0.0828 0.1278

400 9.9936 1580 0.854 0.0536 0.1305 0.2226

600 19.1018 3020 1.438 0.0748 0.1457 0.237

800 22.7071 3590 1.774 0.1248 0.1748 0.2687

1000 29.0322 4590 2.202 0.1931 0.2144 0.4962

RSA

200 1.2371 195.6 0.272 0.0341 0.0621 0.1027

400 5.5351 875.1 0.652 0.0371 0.1058 0.1368

600 8.7919 1390 1.096 0.0546 0.1125 0.1791

800 10.4364 1650 1.353 0.0550 0.1239 0.2169

1000 13.4092 2120 1.679 0.0649 0.1440 0.2481

Table 4: Comparison of the three homomorphic encryption algorithms in terms of upload time,

encrypted tree size, and search time with a key size of 512 for MERS

Algorithm # Records

Upload

time

(second)

Encrypted

data size

(MB)

Encrypted

tree size

(MB)

Search time (second)

10 Query

size

20

Query

size

30 Query

size

Paillier

200 0.6768 107 0.252 0.0252 0.0420 0.0733

400 3.0310 479.2 0.603 0.0423 0.0812 0.1227

600 4.9412 781.2 1.014 0.0461 0.1043 0.1746

800 5.8672 927.6 1.252 0.0538 0.1267 0.1835

1000 7.3371 1160 1.555 0.0633 0.1304 0.2083

ElGamal

200 1.3593 214.9 0.308 0.0326 0.0682 0.1081

400 6.0898 962.8 0.738 0.0582 0.1103 0.1674

600 9.6774 1530 1.242 0.0772 0.1454 0.2063

800 11.5117 1820 1.533 0.0864 0.1497 0.2548

1000 14.7375 2330 1.904 0.1092 0.1997 0.3126

RSA

200 0.6230 98 0.25 0.0296 0.0550 0.0847

400 2.7875 440.7 0.598 0.0415 0.0991 0.1387

600 4.5433 718.3 1.006 0.0472 0.1018 0.1718

800 5.3960 853.1 1.241 0.0640 0.1349 0.1841

1000 6.7679 1070 1.542 0.0679 0.1104 0.1568

Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678

1675

Table 5: Comparison of the three homomorphic encryption algorithms in terms of upload time,

encrypted tree size, and search time with a key size of 1024 for SARSr-COV

Algorithm # Records
Upload time

(second)

Encrypted

database

size (MB)

Encrypted

tree size

(MB)

Search time (second)

10 Query

size

20 Query

size

30

Query

size

Paillier

200 3.0449 481.4 0.664 2.4459 2.4588 2.5154

400 4.3700 690.9 1.257 2.7594 2.8056 2.8166

600 6.9576 1100 1.697 3.0999 3.1197 3.1513

800 8.4756 1340 2.45 3.3302 3.3659 3.4210

1000 9.1081 1440 2.782 3.8816 3.9043 3.9570

ElGamal

200 1.3377 489 0.664 3.5183 3.5361 3.6225

400 4.3700 701.8 1.257 4.0440 4.0667 4.1061

600 7.0208 1130 1.697 4.4761 4.4802 4.5877

800 8.4756 1360 2.45 4.9013 4.9646 5.0322

1000 9.1081 1460 2.782 5.7848 5.8527 5.9256

RSA

200 2.7413 433.4 0.654 3.3881 3.4152 3.4694

9400 3.9500 624.5 1.239 3.9882 3.9909 4.0245

600 6.3883 1010 1.671 4.5593 4.5644 4.5721

800 7.7166 1220 2.412 4.8764 4.9495 4.9882

1000 8.2226 1300 2.74 5.5872 5.5898 5.7742

Table 6: Comparison of the three homomorphic encryption algorithms in terms of upload time,

encrypted tree size, and search time with a key size of 512 for SARS-COV2

Algorithm

Records

Upload

time

(second)

Encrypted

database

size (MB)

Encrypted

tree size

(MB)

Search time (second)

10

Query size

20

Query size

30

Query

size

Paillier

200 1.5395 243.4 0.607 2.4278 2.4461 2.4909

400 2.2093 349.3 1.143 2.7553 2.7803 2.7917

600 3.6312 574.1 1.535 3.0323 3.0996 3.1320

800 4.3978 695.3 2.222 3.2574 3.3201 3.3882

1000 4.7033 743.6 2.52 3.8981 3.9449 3.9653

ElGamal

200 1.5395 963 0.607 3.3932 3.4491 3.4857

400 2.2093 1350 1.143 3.8863 3.9270 3.9537

600 3.6312 2220 1.535 4.3951 4.4950 4.5362

800 4.3978 2690 2.222 4.8025 4.8361 4.9637

1000 4.7033 2870 2.52 5.6095 5.6955 5.7233

RSA

200 1.3807 218.3 0.602 3.3160 3.3312 3.3225

400 1.9898 314.6 1.133 3.7308 3.7588 3.8418

600 3.2802 518.6 1.521 4.2414 4.2781 4.3051

800 3.9765 628.7 2.201 4.5629 4.6100 4.6333

1000 4.2536 672.5 2.497 5.5554 5.5725 5.6961

C. Comparison results

 A performance comparison between the proposed framework and [9] was performed to

evaluate the process of secure counting queries. The proposed framework uses Paillier to

Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678

1676

encrypt datasets stored in the cloud, homomorphic subtraction, and division operations in the

search process.

 From the results shown in Tables 7 and 8, it is clear that the proposed framework is

superior. The work in [9] takes 0.8441 seconds to process a secure query consisting of 10 SNPs,

while the proposed method takes 0.0252 seconds to process the same query. This is due to the

use of homomorphic operations, which eliminates the need for the additional operation (garbled

circuit) required in [9]. Therefore, the proposed framework improvement for handling secure

search queries compared to [9] is an average of 96% in query execution time.

Table 7- Comparison between Hasan et al. [9] and the proposed method using Paillier with key

size =512

Method
Query

size

Search time (second)

200

records

400

records

600

records

800

records

1000

records

Hasan et al. [8]

10 0.8441 1.4086 2.3957 2.7720 3.0322

20 0.9218 1.4366 2.5341 2.8975 3.1445

30 1.0774 1.4724 2.5661 2.9828 3.5133

The Proposed method

10 0.0252 0.0423 0.0461 0.0538 0.0633

20 0.0420 0.0812 0.1043 0.1267 0.1304

30 0.0733 0.1227 0.1746 0.1835 0.2013

Table 8- Comparison between Hasan et al. [9] and the proposed method using Paillier with key

size =1024

Method
Query

size

Search time (second)

200

records

400

records

600

records

800

records

1000

records

Hasan et al. [8]

10 0.9305 1.7054 2.5369 2.6322 3.2347

20 0.9596 1.7313 2.6561 2.7167 3.4242

30 1.1329 1.7622 2.8134 3.0957 3.6124

The Proposed method

10 0.0383 0.0316 0.0502 0.0595 0.0586

20 0.0541 0.0913 0.1041 0.1259 0.1301

30 0.0844 0.1394 0.1592 0.1855 0.2057

6. Conclusion

 In this paper, we presented a secure framework for storing and performing operations on

encrypted genomic data that returns results in an encrypted form, thereby providing a secure

work environment to protect genomic data privacy. The proposed method converts the

encrypted data stored on the cloud into an indexed tree to improve search speed and save space

when running the counting query. The proposed method used ensure that the processing of this

data takes place with a high degree of confidentiality and is not disclosed at any stage of the

data processing, and homomorphic algorithms are used to protect the data and take advantage

of their properties. The presented work significantly improves query execution time compared

to existing work.

 In the future, the framework can be developed further to be suitable for working with

genome sequences in a fully encrypted environment.

7. Disclosure and conflict of interest

The authors declare that they have no conflicts of interest.

Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678

1677

References
[1] M. Achour and A. Belmadani, "Towards Protect a Specific Information in Genomic Data,"

International Journal of Intelligent Engineering and Systems, vol. 14, no. 4, pp.91-104, 2021.

[2] Y. Jiang, T. Shang, and J. Liu, "SM algorithms-based encryption scheme for large genomic data

files," Digital Communications and Networks, vol. 7, pp. 543-550, 2021.

[3] M. Akgün, A. O. Bayrak, B. Ozer, and M. Ş. Sağıroğlu, “Privacy preserving processing of genomic

data: A survey,” Journal of Biomedical Informatics, vol. 56, pp. 103–111, Aug. 2015, doi:

https://doi.org/10.1016/j.jbi.2015.05.022.

[4] G. O. Ogunleye and S. E. Akinsanya, "Elliptic Curve Cryptography Performance Evaluation for

Securing Multi-Factor Systems in a Cloud Computing Environment," Iraqi Journal of Science, vol.

63, no. 7, pp. 3212-3224, 2022.

[5] G. S. Çetin, H. Chen, K. Laine, K. Lauter, P. Rindal, and Y. Xi, a, "Privatequeries on encrypted

genomic data," BMC Medical Genomics, vol. 10, no. 45, pp. 1-14, 2017.

[6] M. S. Fadhil, A. K. Farhan and M. N. Fadhil, "A lightweight AES Algorithm Implementation for

Secure IoT Environment," Iraqi Journal of Science, vol. 62, no. 8, pp. 2759-2770, 2021.

[7] J. L. Raisaro, G. Choi, S. Pradervand, R. Colsenet, N. Jacquemont, N. Rosat, V. Mooser and J.

Hubaux, "Protecting Privacy and Security of Genomic Data in i2b2 With Homomorphic

Encryption and Differential Privacy," IEEE/ACM transactions on computational biology and

bioinformatics, vol. 15, no. 5, pp. 1413-1426, 2018.

[8] H. Chen, R. Gilad-Bachrach, K. Han, Z. Huang, A. Jalali, K. Laine, and K. Lauter, "Logistic

regression over encrypted data from fully homomorphic encryption," BMC Medical Genomics,

vol. 11, no. 81, pp.3-12, 2018.

[9] M. Z. Hasan, S. R. Mahdi N. Sadat and N. Mohammed, "Secure count query on encrypted genomic

data," Journal of Biomedical Informatics, ELSEVIER , vol. 81, pp. 41-52, 2018.

[10] L.Chen, M. Aziz, N. Mohammed, and X. Jiang, "Secure large-scale genome data storage and

query," Computer Methods and Programs in Biomedicine, ELSEVIER, vol. 165, pp. 129-137,

2018.

[11] M. Blatt, A. Gusev, Y. Polyakov, and S. Goldwasser, "Secure large-scale genome-wide association

studies using homomorphic encryption," Proceedings of the National Academy of Sciences, vol.

117, no. 21, pp. 11608-11613, 2020.

[12] S. R. Mahdi, M. Al Aziz, N. Mohammed, and X. Jiang, "Privacy-preserving string search on

encrypted genomic data using a generalized suffix tree," Informatics in Medicine Unlocked, vol.

23, no. 100525, 2021.

[13] E. Yilmaz, T. Ji, E. Ayday and P. Li, "Genomic Data Sharing under Dependent Local Differential

Privacy," in proceedings of 12th ACM conference on data and application security and privacy,

Baltimore, 2022.

[14] A. K. Manocha, M. Singh, S. Jian, and V. Jain, "Smart Computational Intelligence in Biomedical

and Health Informatics," Boca Raton, Taylor & Francis Group, L.L.C., CRC Press, 2022.

[15] K. V. Chaitanya, "Genome and Genomics: From Archaea to Eukaryotes, "Singapore: Springer,

2019.

[16] K. Ayoz, E. Ayday, and A. E. Cicek, "Genome Reconstruction Attacks Against Genomic Data-

Sharing Beacons," Proceedings on Privacy Enhancing Technologies, vol. 3, pp.28-48, 2021.

[17] E. M. Alsaedi and A. K. Farhan, "Retrieving Encrypted Images Using Convolution Neural Network

and Fully Homomorphic Encryption," Baghdad science journal, vol. 20, no. 1, pp. 206-220, 2023.

[18] R. K. Challa and V. K. Gunta, "A Modified Symmetric Key Fully Homomorphic Encryption

Scheme Based on Read-Muller Code," Baghdad Science Journal, vol. 18, no. 2, pp. 899-906, 2021.

[19] A. Chatterjee and K. M. Aung, "Fully Homomorphic Encryption in Real World Application,"

Singapore: Springer Nature Singapore, Pte Ltd., 2019.

[20] K. Munjal and R. Bhatia, "A systematic review of homomorphic encryption and its contributions

in healthcare industry," Complex & Intelligent Systems, pp.1-28, 2022.

[21] M. Tehranipoor, "Emerging Topics in Hardware Security," Switzerland: Springer, 2021.

[22] Ç. K. Koç, F. Özdemir, and Z. Ö. Özger, "Partially Homomorphic Encryption," Turkey: Springer

Nature, 2021.

[23] M. Liu, Y. Luo, C. Yang, D. Xu, and T. Wu, " Method and Application of Homomorphic

Subtraction of the Paillier Cryptosystem in Secure Multi-party Computational Geometry. In:

Yousif and Hameed Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678

1678

Zhang, X., Liu, G., Qiu, M., Xiang, W., Huang, T. (eds) Cloud Computing, Smart Grid and

Innovative Frontiers in Telecommunications. Lecture Notes of the Institute for Computer Sciences,

Social Informatics and Telecommunications Engineering, Springer, Cham. vol 322, pp.569-581,

2020.

[24] H. J. Kiratsata and M. Panchal, "A Comparative Analysis of Machine Learning Models developed

from Homomorphic Encryption based RSA and Paillier algorithm," in proceedings of 5th

International Conference on Intelligent Computing and Control Systems (ICICCS), pp.1458-1465,

2021.

[25] N. H. Hussein and M. A. Ali, "Medical Image Compression and Encryption Using Adaptive

Arithmetic Coding, Quantization Technique and RSA in DWT Domain," Iraqi Journal of Science,

vol. 63, no. 5, pp. 2279-2296, 2022.

[26] X. Yi, R. Paulet, and E. Bertino, "Homomorphic Encryption and Applications," London: Springer

London, 2014.

[27] O. A. Imran, S. F. Yousifa, I. S. Hameeda, W. N. Abeda, "Implementation of El-Gamal algorithm

for speech signals encryption and decryption," special issue of Procedia Computer Science, vol.

167, pp. 1028-1037, in proceedings of International Conference on Computational Intelligence and

Data Science (ICCIDS 2019), 2020.

[28] N. Domadiya and U. P. Rao, "ElGamal Homomorphic Encryption-Based Privacy Preserving

Association Rule Mining on Horizontally Partitioned Healthcare Data," Journal of The Institution

of Engineers (India): Series B, vol. 103, no. 3, pp. 817-830, 2022.

[29] A. Hamza and B. Kumar, "A Review Paper on DES, AES, RSA Encryption Standards," in

proceedings of 9th International Conference on System Modeling and Advancement in Research

Trends (SMART), Moradabad, India, pp. 333-338, 2020.

