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Abstract 

     Increasingly, the availability of personal genomic data in cloud servers hosted by 

hospitals and research centers has incentivized researchers to turn to research that 

deals with analyzing genomic data. This is due to its importance in detecting diseases 

caused by genetic mutations, detecting genes that carry genetic diseases, and 

attempting to treat them in future generations.  Secure query execution on encrypted 

data is considered an active research area in which encryption is used to ensure the 

confidentiality of genomic data while restricting the ability to process such data 

without first decrypting it. To provide a secure framework and future insight into the 

potential contributions of homomorphic encryption to the field of genomic data, this 

paper proposes a framework for guaranteeing genomic data privacy using various 

partial homomorphic encryption techniques. By examining the characteristics of the 

three partial homomorphic encryptions based on different parameters. The framework 

has been online tested and compared based on different parameters. Three 

homomorphic encryption algorithms were adopted to ensure genomic data privacy by 

employing homomorphic operations in the query matching process. Experiments on 

real datasets, specifically MERS and SARSr-COV, showed that the proposed 

framework is efficient and improves query execution time by an average of 96% 

compared to existing work. 

 

Keywords: ElGamal, Genomic data, Homomorphic encryption, Paillier, Privacy 
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لتوفير إطار عمل آمن  خصوصية البيانات الجينومية باستخدام تقنيات تشفير جزئية مختلفة متجانسة الشكل 
ورؤية مستقبلية للمساهمات المحتملة للتشفير المتماثل في مجال البيانات الجينومية من خلال فحص خصائص  

تم اختبار إطار العمل عبر الإنترنت ومقارنته بناءا   .مختلفةالتشفير الجزئي ثلاثي الشكل بناءا على معاملات  
الشكل متجانسة  تشفير  خوارزميات  اعتماد ثلاث  تم  مختلفة.  معايير  العمل  على  لضمان خصوصية    في هذا 

،   SARSr-COVو  MERSالبيانات الجينومية. توضح التجارب على مجموعات البيانات الحقيقية، وتحديداا 
 .السابقةبالاعمال ٪ مقارنة  96علام بمعدل أن المقترح فعال ويحسن وقت تنفيذ الاست

 

1. Introduction 

Genomics is a discipline that studies the content, structure, and evolution of genomes. The 

primary goal is mass sequencing of nucleotide sequences. Tremendous technological evolution 

has been witnessed in the field and now it is no longer limited to the determination of sequences 

but also involves the analysis of both genes and proteins in terms of expression and function 

[1]. 

The genome is the carrier of biological genetic information and contains the important genetic 

information of human beings. The genome sequencing technology can analyze and calculate 

specific Deoxyribonucleic Acid (DNA) sequences in the genome, laying a foundation for 

further research and utilization. The Genome-Wide Association Study (GWAS) provides more 

possibilities for genomic data research and can help human beings know themselves better by 

exploring genes. However, GWAS is characterized by a huge data volume and complicated 

data processing. It is feasible to send genomic data to big data platforms for analysis and 

calculation. While big data provides support for bioinformatics research, it also faces 

unprecedented data security threats. The disclosure or improper use of genomic data will not 

only violate the personal privacy of data providers but also cause national and social problems. 

Therefore, the privacy protection of genomic data is an important link in GWAS [2]. 

Several bioinformatics processes are applied to digital genomic data. This raises the risk of 

exposing personal information. The main bioinformatics processes that can compromise 

privacy are sequence alignment, querying private genomic data, and searching a genomic 

database. Possible security issues when processing genomic data include insecure environments 

for sequence alignment, performing a query on private genomic data, searching a private 

genomic database, securely querying a public database, and performing secure queries on a 

private genomic database [3]. 

Moreover, since the utilization of cloud services has increased with the development of 

technology, the security and privacy of genomic data stored in the cloud should be ensured  [4]. 

A breach of an individual genomic data may reveal their susceptibility to a specific disease, 

affecting their health insurance eligibility [5]. Therefore, privacy and security have become 

critical requirements [6].  

This paper investigates how genomic data can be useful to researchers while maintaining data 

privacy so that subjects' identities are not revealed. The contributions of this paper are as 

follows: 

 

• Propose a secure framework for ensuring the privacy of genomic data shared and stored on 

a cloud server. 

• Introduce AES and three partial homomorphic encryption algorithms to protect genomic 

data from being discovered by unwanted parties including data privacy, query privacy, and 

output. . The query counting operation relies on the homomorphic operations of the Paillier, 

Rivest, Shamir, and Adleman (RSA), and ElGamal algorithms, which allows for the 

comparison of queried encrypted Single Nucleotides Polymorphism (SNP) values with stored 

encrypted SNP values without revealing their values. 
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     This paper is organized as follows: Section 2 provides the related work for preserving 

genomic data privacy. Section 3 focuses on the fundamental concepts of genomic data and 

encryption methods. The proposed framework for secure counting queries is introduced in 

Section 4. Finally, Section 5 discusses the findings and future directions. 

 

2. Related Works 

The security and privacy of genomic data are fundamental issues, and many techniques are used 

to protect the privacy of this data. A common approach is to use cryptographic algorithms to 

protect genomic data and maintain its privacy. 

 

     Cetin et al. [5] developed a novel string-matching system that allows for privacy-preserving 

queries on homomorphically encrypted data. The protocol merged well-known techniques 

Permutation-based hashing and Permutation-based cuckoo hashing with private intersection 

protocols to minimize computational and communication costs. 

 

     Raisaro et al. [7] designed, implemented, and deployed a secure and efficient privacy-

preserving solution for exploring genomic cohorts in a real operational scenario at the Lausanne 

University Hospital by employing differential privacy and Homomorphic Encryption (HE). 

While a combination of bootstrapping in Fully Homomorphic Encryption (FHE) with a scaling 

operation in fixed-point arithmetic was introduced by Chen et al. [8], through using of a 

minimax polynomial approximation to the sigmoid function and the 1-bit gradient descent 

approach to decrease plaintext growth in the training phase. They showed that training over 

encrypted data is possible, even if at a considerable computational expense. However, in critical 

applications, the approach can ensure the highest level of data privacy. 

Hasan et al. [9] suggested methods to process biomedical data that contain genotype and 

phenotype by employing an index tree scheme, which significantly reduces the computational 

overhead cost, to securely execute the count query operation. They ensured the conventionality 

of the biomedical data by using encryption. A framework suggested by Chen et al. [10] to 

manage the security challenges of outsourced/transferred genomic data computations on a large 

scale by utilizing homomorphic encryption with the Garbled Circuit scheme, ensuring the 

privacy of genomic data. Additionally, Blatt et al. [11] suggested a set of statistical approaches 

that use HE to execute large-scale GWASs on encrypted genetic/phenotype data without having 

to decode the data. They implemented over a dozen crypto engineering modifications and 

rebuilt the GWAS tests to fully benefit from encrypted data packing and parallel computing 

coupled with very efficient statistical calculations. In contrast to claims that HE is unsuitable 

for large-scale GWASs, HE solutions are 30 times faster than the cutting-edge multiparty 

computing technique. 

 

     Mahdi et al. [12] suggested a protocol to handle the substring search query and set maximal 

matching problems. They made use of the suffix tree to create an index tree for the genomic 

data by using different algorithms AES and Garbled Circuit to ensure the privacy of data, query, 

and output. On the other hand, Yilmaz et al. [13] suggested a data-sharing system for genomic 

data that excludes some SNP states that are loosely linked with previously shared SNPs (and 

does not employ such states during data sharing). The suggested system determines a value to 

split among the non-eliminated states by establishing explicit privacy assurances. To make the 

shared data more useful, they demonstrated how to alter probability distributions for non-

eliminated SNP states, and suggested an optimum and greedy approach for determining the 

processing order of SNPs in the proposed data-sharing algorithm to maximize the utility. 

      paper aims to develop a secure framework for storing and processing genomic data that 

ensures the confidentiality of search processes' data, queries, and results. The presented work 



Yousif and Hameed                                  Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678 
 

1666 

is similar to [9], however, the distinction is that it can work with encrypted datasets stored in 

the cloud and perform online encrypted operations on them while conducting searches. This is 

achieved by leveraging homomorphic subtraction and division operations to skip time-

consuming extra phases. In addition to Paillier and AES algorithms used in [9], RSA and 

ElGamal algorithms were used to encrypt genomic data.  

 

3. Preliminary Concepts 

     This section provides background information on genomic data, homomorphic encryption, 

and advanced encryption standard. 

 

3.1 Genomic data 

     Genomics is a biology branch focusing on genomic structure, function, and activity. A 

genome is a human’s full collection of DNA sequences. From a technological standpoint, one 

of the data sources for healthcare is genetic data; a person's genome shows their illness 

susceptibility and information about their family members [14]. A genome contains all 

information required for the function of single cells as well as very complex organisms. A 

genome is a collection of genes controlled in a range of cells whose division results in an 

organism. A genome is made up of noncoding sections, regulatory regions, and other 

components that work together to make life processes possible [15]. Approximately 99.9% of 

all people's DNA is identical, with the remaining 0.1 percent accounting for variations. The 

most prevalent source of variation in the human genome is Single Nucleotide Polymorphism 

(SNP). A single nucleotide alteration in the genome A, T, C, or G is known as an SNP, and 

there are around 50 million SNPs in the human genome [16].  

 

3.2 Homomorphic encryption 

     Homomorphic Encryption (HE) is an encryption type that supports computation over 

encrypted data. A special type of HE that permit arbitrary computation on encrypted data was 

introduced in [7], which is called Fully Homomorphic Encryption (FHE). The output of these 

computations was also encrypted in [17]. It became a common method to secure data in the 

cloud [18]. 

 

    HE is classified into several types based on its operational capabilities. FHE, Somewhat 

Homomorphic Encryption (SWHE), and Partially Homomorphic Encryption (PHE). 

FHE is the most comprehensive HE system, allowing arbitrary functions to be evaluated on 

ciphertexts [19]. SWHE supports an unlimited number of operations, but each action generates 

noise, and after a certain number of operations, the underlying encrypted data is lost. As a result, 

SWHE systems can perform any operation for a limited amount of time. Every addition 

operation adds to the noise, and every multiplication action doubles the noise [20]. PHE is the 

oldest homomorphic encryption process, permitting only one operation on the ciphertexts [21].  

 

     This paper focuses on three PHE algorithms: Paillier, RSA, and ElGamal.  

• Paillier algorithm is a probabilistic public-key cryptosystem. It is considered to be one of 

the most efficient encryption algorithms with an additive homomorphic property. It is widely 

used to preserve privacy and secure computation. Paillier algorithm consists of 3 stages: key 

generation, encryption, and decryption.  

In a key generation, the algorithm produced a pair of keys: a public key (𝑛, 𝑔), where 𝑛 is the 

result of multiplying two large prime numbers 𝑝 and 𝑞 ∈ ℤ𝑛2
∗ . The secret key (𝜆(𝑛) = (𝑝 −

1) × (𝑞 − 1)). 
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     In the encryption algorithm first, the alphanumeric symbols are converted into purely 

numeric ones, then a random  𝜇 ∈ ℤ𝑛
∗   is chosen such that: 0 < 𝜇 < 𝑛. The ciphertext c is 

computed as in Equation 1 [22]. 

𝑐 = 𝑔𝑚 × 𝜇𝑛 (𝑚𝑜𝑑 𝑛2)                                               

(1) 

In the decryption algorithm, the message is computed according to Equation 2.   

𝑚 = 𝐿(𝑐𝜆(𝑛)(𝑚𝑜𝑑 𝑛2)) × (𝑔𝜆(𝑛)(𝑚𝑜𝑑 𝑛2)))−1(𝑚𝑜𝑑 𝑛)                                             (2) 

 

 The subtraction operation is computed after obtaining the encrypted value of the first number 

(𝐶1) and the encrypted value of the second number (𝐶2), and applying Equation 3. 

 

𝑆𝑈𝐵𝑟𝑒𝑠𝑢𝑙𝑡 = (𝐶1 × 𝐶2
−1𝑛2) 𝑚𝑜𝑑 𝑛2                                 (3).  [23] 

• Rivest, Shamir, and Adleman (RSA) is the most widely used public-key cryptosystem 

since 1978. Multiplicative homomorphism is a property of the RSA scheme. The RSA 

homomorphic encryption is thus the product of two modulo n messages. In RSA semantic 

security, the integer factorization problem difficulty is employed. The security of data depends 

on the keys used, where strong keys lead to strong encryption and decryption [24] [25].  

The key generation algorithm includes determining the public and private keys as follows:  

- Choosing two prime numbers 𝑎, 𝑏, where 𝑎 ≠ 𝑏. 

- Computing 𝑛 = 𝑎 × 𝑏 . 
- Computing 𝜑(𝑛) = (𝑎 − 1) × (𝑏 − 1).  

- Choosing an integer 𝑒, such that gcd (𝜑(𝑛), 𝑒)) = 1,1 < 𝑒 < 𝜑(𝑛)).  

- Computing 𝑑 = 𝑒−1 𝑚𝑜𝑑 𝜑(𝑛). The public and private keys are (𝑛, 𝑒) and (𝑛, 𝑑) 

respectively.  

- After converting character symbols into integer form, the cipher text 𝑐 can be obtained 

by applying Equation 4. 

𝑐 = 𝑚𝑒 𝑚𝑜𝑑 𝑛                                                               (4) 

 

In the decryption operation, the original message 𝑚  can be retrieved using Equation 5 [26] . 

𝑚 = 𝑐𝑑 𝑚𝑜𝑑 𝑛                                                                (5) 

 

Division operation can be calculated after computing the cipher value of the first number 𝐶1, 

and the cipher value of the second number 𝐶2, and applying Equation 6. 

𝐷𝐼𝑉𝑟𝑒𝑠𝑢𝑙𝑡 = (𝐶1 × 𝐶2
−1)𝑒 𝑚𝑜𝑑 𝑛                                                              (6) 

  

• ElGamal algorithm [27] is an asymmetric key algorithm based on the Diffie-Hellman key 

exchange algorithm. It was created by Taher El Gamal in 1985, and is based on the difficulty 

of calculating the discrete logs of a large prime module. It includes key generation, encryption, 

and decryption.  

First, in the key generation step: a large prime number p is chosen by randomly selecting g ∈
 Ζ𝑞

∗  and x such that (1 < 𝑥 < 𝑝 − 1), storing it as a private key, then determining ℎ =

𝑔𝑥𝑚𝑜𝑑 𝑝. The public key is (𝑝, 𝑔, ℎ). randomly chosen 𝑟 ∈  Ζ𝑞, the ciphertext is computed 

using Equation 7. 

𝑎 =  𝑔𝑟𝑚𝑜𝑑 𝑝, 𝑏 = 𝑚. ℎ𝑟𝑚𝑜𝑑 𝑝                                                                  

(7) 

The ciphertext of message 𝑚 is the (𝑎, 𝑏).  To retrieve the message, Equation 8 is used [28].  

𝑢 = 𝑎𝑥 𝑚𝑜𝑑 𝑝 

𝑚 = 𝑏. 𝑢−𝑝 𝑚𝑜𝑑 𝑝   
                                                                 

(8) 
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To perform division operation in El Gamal, two parts of each cipher (𝐶1, 𝐶2) are computed 
(𝑎1, 𝑏1), (𝑎2, 𝑏2). Then, Equation 9 is applied. 

𝐷𝐼𝑉𝑎 = (𝑎1 × 𝑎2
−1)𝑚𝑜𝑑 𝑝, 𝐷𝐼𝑉𝑏 = (𝑏1 × 𝑏2

−1)𝑚𝑜𝑑 𝑝          (9) 

  

3.3 Advanced Encryption Standard 

AES is a symmetric block cipher invented in 1998 by two Belgian cryptographers (Joan Daem 

and Vincent Rijmen). It was released in 2001 as FIPS Publication 1997 (Federal Information 

Processing Standards). AES encryption key lengths are 128, 192, and 256 bits. A typical data 

block size is 128 bits and uses the number of cipher rounds that can be configured for each 

block to be encrypted. In general, the 128-plaintext block size corresponds to one of three key 

lengths: 128, 192, or 256 bits in 10 rounds, 12 rounds, and 14 rounds, respectively [29].  

 

4. The Proposed Secure Framework 

       The proposed security framework aims to provide secure storage of DNA sequences when 

outsourcing, and secure querying of tasks to perform bioinformatics processes such as counting 

query operations. Count query is determining how many records in the database matching a 

given query, and securely querying a public database. The proposed framework includes a 

mechanism to protect the confidentiality of genomic data so that the cloud does not learn about 

genomic data, and query confidentiality (the cloud does not know about queries executed by 

researchers).  

 

       The proposed framework, depicted in Figure 1, consists of four components: Information 

Sources (IS) that represent data sources, Cloud Servers (CS) where encrypted data is stored and 

queries are processed, Trusted Research Center (TRC), and the Researcher (R) who inquiries 

about information. The following assumptions support the proposed framework: 

• CS is a semi-honest entity. It applies the protocol but monitors communications and tries to 

report additional information during the execution of the researcher query. However, it does 

not deviate from the computational protocol and operates maliciously.  

• TRC regards itself as a trustworthy entity because it is responsible for sharing the keys 

required for IS with trusted researchers.  

• There is no collusion among CS, R, and IS. Furthermore, neither CS, IS nor TRC act in 

fraudulent misrepresentation to generate incorrect output. 

 

 
Figure 1: The proposed framework for protecting genomic data. 

     According to the framework, each component oversees a specific task that is distinct from 

the tasks assigned to the other components. The components work together to make the system 

safe and efficient. TRC generates key pairs (𝑝𝑘, 𝑠𝑘) where 𝑝𝑘and 𝑠𝑘are the public and the 
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private keys respectively. The public key is sent from TRC to IS to encrypt the genomic data 

files. These files are sent from the IS to CS, which is responsible for storing them.  On the other 

hand, a researcher who wants to query a specific genome sequence sends an encrypted query 

to the cloud. Then, the cloud returns the encrypted result to TRC. The result is decrypted by 

TRC, and then it is encrypted with the research public key and sent to the researcher. 

 

4.1 Genomic data representation and encoding 

     The genomic data holds an organism's hereditary information. DNA is responsible for 

encoding the human genome. it consists of nucleotides that are represented as (A, C, G, T), and 

are bonded to each other in the form of A bonds to T and C bonds to G. SNP is the most popular 

form of DNA variation at a specific position in the genome, representing s a difference in a 

single nucleotide. Most SNPs don’t have any effect on the health of humans. While some of 

these SNPs are responsible for developing particular diseases in humans.  

 

 The dataset used in this paper (https://www.kaggle.com/) is in the form of multiple fasta 

files (multi -fasta) that contains genomic data in the form of records of sequences with their 

corresponding descriptions. The description includes the unique identifier of the genome or 

gene along with its name. 

 

 Formally speaking, the dataset can be described as 𝕊 = {[𝐷1, 𝑆1], … , [𝐷𝑛𝑆𝑛]}, where 𝑛 is 

the number of human SNP sequences.  𝐷𝑗 ∈ 𝑆  is the genomic data description that represents 

the SNP sequence ID. While 𝑆𝑗 ∈ 𝑆  is a sequence of nucleotides (SNP). The genomic 

sequences are made up of four nucleotides (A, C, G, and T), and the SNP sequence, 𝑆𝑗 is made 

up of two nucleotides as shown in Table 1. 

 

Table 1: A sample of genomic data representation 

 Description 
Sequences 

SNP1 SNP2 SNP3 SNP4 ….. SNPn-1 SNPn 

1. 
>NC_038294 |Betacoronavirus England 

1| complete genome 
AT TT AA GA …. AA AA 

2. 

>MN541209 |Middle East respiratory 

syndrome-related coronavirus isolate 

SPC00440 S protein gene| partial cds 

TG TT GA TT  AA GC 

3. 

>NC_019843 |Middle East respiratory 

syndrome coronavirus| complete 

genome 

GA TT TA AG  TC GC 

. 

. 

. 

. 

. 

. 

       

n-2 

>MG987420 |Middle East respiratory 

syndrome-related coronavirus isolate 

NL13892| complete genome 

GA TT TA AG  AA CC 

n-1 

>MN541210 |Middle East respiratory 

syndrome-related coronavirus isolate 

SPC00441 S protein gene| partial cds 

TG TT GA TT  TC CG 

n 

>MN541281 |Middle East respiratory 

syndrome-related coronavirus isolate 

SPC00579 S protein gene| partial cds 

TG TT GA TT  AA CG 

 

 The genomic data needs to be encoded to be used for homomorphic computation. In this 

paper, each SNP is made up of two nucleotides. There are 16 possible combinations represented 

by   AA, AT, AG, etc. The genomic sequence is encoded as an integer ranging from 1 to 16 as 



Yousif and Hameed                                  Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678 
 

1670 

shown in Table 1. For example, the sequence "ATCGAGTGCC" can be expressed as ["AT", 

"CG", "AG", "TG", "CC"] and is encoded to [1, 7, 3, 12, 5] as shown in Table 2.  

 

Table 2 - Nucleotides encoding 

AA AC AG AT CC CA CG CT TT TA TC TG GG GC GA GT 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 

4.2 Encryption of genomic data 

     Data owners send genomic data, 𝕊, to TRC where encryption takes place to produce 

encrypted data, 𝕊′. TRC encrypts the genomic data, which is the dataset 𝕊, where each row 

represents the individual data (description part) and each column represents the attribute of the 

individual (sequence part). the encryption is done as follows: First, the description part contains 

a unique identifier and description for the sequence so it is important to encrypt this part of the 

record to avoid attempts to identify the sequence using the AES algorithm with a key size equal 

to 256 bits. Second, the sequence part which consists of a series of 'A', 'T', 'G', and 'C' must be 

encoded according to Table 1 and finally encrypted using one of the partially homomorphic 

encryption algorithms Paillier, RSA, or ElGamal.  Algorithm 1 clarifies the encryption process 

of genomic data.  

 

Algorithm 1. Genomic sequence encryption 

Input:  

𝕊: Genomic data  

Output:  

𝕊′: Encrypted genomic data  

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

Begin 

sequences         [  ] 

sequence_object       read(𝕊) 

foreach seq in sequence_object  

         sequences       append(seq) 

For i           0  to | 𝕊 |      

         Encrypt 𝐷𝑖 with AES 

         For j        0  to | 𝑆𝑖 | 

                Encode the nucleotide pairs according to table 1  

                Encrypting 𝑆𝑖𝑗 by a partially homomorphic algorithm (Paillier, RSA, or           

ElGamal) using Eq.1, Eq.4, or Eq.7. 

         End for 

End for 

End foreach loop 

End 

 

4.3 Tree generation  

      The encrypted data, 𝕊′, is uploaded to CS. When researchers attempt to query information, 

𝑞, from the encrypted data. Researchers encrypt the query, 𝑞′, and send it to the CS. CS 

generates an indexed tree, 𝑇, from the encrypted data, 𝕊′ and performs a search operation. The 

adoption of indexed tree generation is because it is simpler to implement, uses less memory, 

and allows for faster node traversal. Each node in the tree, except the root, has four elements: 

value that is an encrypted form of the SNP, id (which is SNP position in the sequence), the 

count that represents the occurrences of SNP at this position, and child that represents 
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subsequent SNPs in the sequence. The generation of the tree from genomic data is shown in 

Algorithm 2. 

 

Algorithm 2. Indexed tree generation  

Input:  

𝕊′: encrypted sequences of  SNPs  

Output:  

Tree: Indexed Tree  

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16 

Begin 

Tree         root 

for i         1 to | 𝕊′|  

 SNP        𝕊′ [i] 
  sid        i// index of the node 

 child         TreeNode(SNP,sid) 

 flag      0 //to find repeated occurrences for the SNP 

 n      TreeNode 

 for each node in the n. children  

            Check the equality of values for node n and child  

            count(n) +       1 

            flag       1 

 End foreach loop 

 Check the flag value to add the child to the parent. 

End for 

End 

 

4.4 Secure count query 

     The purpose of the query count operation is to find the number of records that match the 

requested information. The researcher query is encrypted according to the algorithm used in 

encrypting the genomic data set (using Eq1, 4, or 7). The search operation depends on the 

homomorphic operation, which is either subtraction or division between encrypted SNPs in 𝑞′ 
and encrypted SNPs in the encrypted indexed tree to ensure the equality of two SNPs in the 

predetermined positions, as shown in Algorithm 3. The use of a homomorphic operation allows 

the comparison of queried encrypted SNP values with stored encrypted SNP values without 

revealing their values. 

 

Algorithm 3. Secure  count query 

Input:  

Root: root node, list of encrypted SNPs, list of positions    

Output:  

encrypted result 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

 

Begin 

Encrypt the list of SNPs that will be queried  with a partially homomorphic algorithm 

(Paillier, RSA, or ElGamal) using Eq.1, Eq.4, or Eq.7.  

Check the length of the list of encrypted NPSs and the positions 

QueryResult          [ ] // list for results 

q        [root] //insert tree in list 

Insert the first node of the tree into the list  

While length (list of encrypted SNPs) > 0 



Yousif and Hameed                                  Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1663-1678 
 

1672 

 

11: 

12: 

    Perform a homomorphic operation using one of the equations (3, 6, or 9) between 

the stored nodes value in q and the first value of the queried node as appending the 

result in QueryResult list 

End while 

End                     

 

4.5 Counting query decryption 

       The encrypted query is delivered from the researcher (R) to the cloud (CS), where the 

search process is carried out for the required information. The results are returned in an 

encrypted form to the TRC, which in turn decrypts it using a decryption equation with the 

adopted algorithm using Equation 2, 5, or 8. Then TRC delivers the result to the intended 

researcher after encrypting it with the public key of the researcher. 

 

5. Experimental Results 

       The proposed framework allows any computation to be transformed into a homomorphic 

operation that protects privacy from an attacker. For the proposed framework, three partial 

homomorphic encryption algorithms were investigated. CS and CI were run in two separate 

machines with Intel(R) Xeon(R) CPU @ 2.20GHz, 12 G RAM, and 107G Hard disk.  

 Furthermore, the proposed framework was tested on two real datasets from 

(https://www.kaggle.com/datasets/): MERS and SARSr-COV. The first dataset contains 1345 

genomic sequences (records), with a minimum length of 110 nucleotides, a maximum length 

of 30119 nucleotides, and an average length of 14197 nucleotides. The second dataset contains 

1578 records with a minimum of 87 nucleotides, a maximum of 29903 nucleotides, and an 

average of 18440 nucleotides. The length of the genomic sequences varies from 87 to 30119 

nucleotides. In addition, the results report the impact of the key size on the performance of the 

proposed framework by setting the key size of the partial homomorphic encryption algorithms 

to 512 and 1024 bits and the key size of AES to 256.  

 

5.1 Security analysis  

     To evaluate the security of the proposed framework, it is considered that the system lacks 

security if there is any revealing in the SNP sequence, query, and output. 

  

     In the proposed framework, IS sends genomic data to TRC, and TRC is responsible for 

encryption and uploads to CS, so no data leakage occurs during encryption and generation of 

encrypted genomic data. CS cannot infer any information since it received encrypted data. 

Additionally, TRC makes the public key available to researchers after they trust them to encrypt 

their queries, thus preventing leakage during research queries. Finally, since the query is 

encrypted and neither the TRC nor CS knows about it, it protects against leaks while receiving 

the results. Once the results are sent back to TRC, it is decrypted and passed on to the 

researchers since the query is not revealed, it will not know what the result means 

.  

5.2 Performance analysis 

 This section demonstrates the performance of the proposed framework in terms of storage, 

upload time, and search time. In addition, to assess the effect of data size on the performance 

of the proposed framework, each dataset was portioned into 200, 400, 600, 800, and 1000 

records. Furthermore, an evaluation with different query sizes (10, 20, 30) was performed to 

demonstrate the effect of query size on the framework performance.  
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A. Storage analysis 

 The storage spaces required to represent the encrypted MERS dataset and its corresponding 

encrypted tree using three homomorphic ciphers Paillier, RSA, and ElGamal with two different 

key sizes (1024 and 512 bits) are shown in Figures 2 and 3 (A and B) respectively. The storage 

space for the encrypted data using Paillier, RSA, and ElGamal was 64,462 MB, 64,321 MB, 

and 68,320 MB respectively. While the storage of spaces required for the tree was 1740, 1542, 

and 1902 MB, respectively. As can be seen, representing the data as a tree saves approximately 

95% of the storage space, which provides an effective storage solution for genomic datasets 

and influences query execution speed. Furthermore, as the number of records increased, the 

encrypted data and encrypted tree storage space increased linearly. 

 

Figure 2: Storage space of encrypted data and encrypted tree when key equals 512 

 

Figure 3: Storage space of encrypted data and encrypted tree when key equals 1024 

 

B. Upload and query execution times 

 The performance of the proposed method in terms of upload and query execution (search) 

times are reported in Tables 3 -6. As can be seen, upload time increases linearly as the number 

of records increases. When the data size and query size are small, the RSA algorithm 
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outperforms Paillier and ElGamal in terms of query time execution, but when the data size is 

medium or large, Paillier outperforms the RSA and ElGamal. The execution time of the query 

is proportional to the number of SNPs. Although the first and second datasets have the same 

number of records, the query execution time differs because it depends on the depth of the tree 

(the index tree in the second data set is larger) and there is no repeating sequence as in the first 

data set. The size of the tree and the number and position of SNPs being queried all affect the 

speed of query execution. Furthermore, the size of the encrypted tree is too small in comparison 

to the encrypted data.  This reduces computational effort and storage requirements compared to 

raw data.  

 

Table 3: Comparison of the three homomorphic encryption algorithms in terms of upload time, 

encrypted tree size, and search time with a key size of 1024 for MERS 

Algorithm 
# 

Records 

Upload 

time 

(second) 

Encrypted 

genomic 

data size 

(MB) 

Encrypted 

tree size 

(MB) 

Search time (second) 

10 

Query size 

20 

Query 

size 

30 

Query 

size 

Paillier 

200 1.3345 211 0.308 0.0383 0.0541 0.0844 

400 1.8987 300 0.738 0.0316 0.0913 0.1394 

600 9.5509 1510 1.112 0.0502 0.1041 0.1592 

800 11.3219 1790 1.373 0.0595 0.1259 0.1855 

1000 14.4845 2290 1.902 0.0586 0.1301 0.2057 

ElGamal 

200 2.6774 423.3 0.356 0.0405 0.0828 0.1278 

400 9.9936 1580 0.854 0.0536 0.1305 0.2226 

600 19.1018 3020 1.438 0.0748 0.1457 0.237 

800 22.7071 3590 1.774 0.1248 0.1748 0.2687 

1000 29.0322 4590 2.202 0.1931 0.2144 0.4962 

RSA 

200 1.2371 195.6 0.272 0.0341 0.0621 0.1027 

400 5.5351 875.1 0.652 0.0371 0.1058 0.1368 

600 8.7919 1390 1.096 0.0546 0.1125 0.1791 

800 10.4364 1650 1.353 0.0550 0.1239 0.2169 

1000 13.4092 2120 1.679 0.0649 0.1440 0.2481 

 

Table 4: Comparison of the three homomorphic encryption algorithms in terms of upload time, 

encrypted tree size, and search time with a key size of 512 for MERS 

Algorithm # Records 

Upload 

time 

(second) 

Encrypted 

data size 

(MB) 

Encrypted 

tree size 

(MB) 

Search time (second) 

10 Query 

size 

20 

Query 

size 

30 Query 

size 

Paillier 

200 0.6768 107 0.252 0.0252 0.0420 0.0733 

400 3.0310 479.2 0.603 0.0423 0.0812 0.1227 

600 4.9412 781.2 1.014 0.0461 0.1043 0.1746 

800 5.8672 927.6 1.252 0.0538 0.1267 0.1835 

1000 7.3371 1160 1.555 0.0633 0.1304 0.2083 

ElGamal 

200 1.3593 214.9 0.308 0.0326 0.0682 0.1081 

400 6.0898 962.8 0.738 0.0582 0.1103 0.1674 

600 9.6774 1530 1.242 0.0772 0.1454 0.2063 

800 11.5117 1820 1.533 0.0864 0.1497 0.2548 

1000 14.7375 2330 1.904 0.1092 0.1997 0.3126 

RSA 

200 0.6230 98 0.25 0.0296 0.0550 0.0847 

400 2.7875 440.7 0.598 0.0415 0.0991 0.1387 

600 4.5433 718.3 1.006 0.0472 0.1018 0.1718 

800 5.3960 853.1 1.241 0.0640 0.1349 0.1841 

1000 6.7679 1070 1.542 0.0679 0.1104 0.1568 
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Table 5: Comparison of the three homomorphic encryption algorithms in terms of upload time, 

encrypted tree size, and search time with a key size of 1024 for SARSr-COV 

Algorithm # Records 
Upload time 

(second) 

Encrypted 

database 

size (MB) 

Encrypted 

tree size 

(MB) 

Search time (second) 

10 Query 

size 

20 Query 

size 

30 

Query 

size 

Paillier 

200 3.0449 481.4 0.664 2.4459 2.4588 2.5154 

400 4.3700 690.9 1.257 2.7594 2.8056 2.8166 

600 6.9576 1100 1.697 3.0999 3.1197 3.1513 

800 8.4756 1340 2.45 3.3302 3.3659 3.4210 

1000 9.1081 1440 2.782 3.8816 3.9043 3.9570 

ElGamal 

200 1.3377 489 0.664 3.5183 3.5361 3.6225 

400 4.3700 701.8 1.257 4.0440 4.0667 4.1061 

600 7.0208 1130 1.697 4.4761 4.4802 4.5877 

800 8.4756 1360 2.45 4.9013 4.9646 5.0322 

1000 9.1081 1460 2.782 5.7848 5.8527 5.9256 

RSA 

200 2.7413 433.4 0.654 3.3881 3.4152 3.4694 

9400 3.9500 624.5 1.239 3.9882 3.9909 4.0245 

600 6.3883 1010 1.671 4.5593 4.5644 4.5721 

800 7.7166 1220 2.412 4.8764 4.9495 4.9882 

1000 8.2226 1300 2.74 5.5872 5.5898 5.7742 

 

 

Table 6: Comparison of the three homomorphic encryption algorithms in terms of upload time, 

encrypted tree size, and search time with a key size of 512 for SARS-COV2 

Algorithm 
# 

Records 

Upload 

time 

(second) 

Encrypted 

database 

size (MB) 

Encrypted 

tree size 

(MB) 

Search time (second) 

10 

Query size 

20 

Query size 

30 

Query 

size 

Paillier 

200 1.5395 243.4 0.607 2.4278 2.4461 2.4909 

400 2.2093 349.3 1.143 2.7553 2.7803 2.7917 

600 3.6312 574.1 1.535 3.0323 3.0996 3.1320 

800 4.3978 695.3 2.222 3.2574 3.3201 3.3882 

1000 4.7033 743.6 2.52 3.8981 3.9449 3.9653 

ElGamal 

200 1.5395 963 0.607 3.3932 3.4491 3.4857 

400 2.2093 1350 1.143 3.8863 3.9270 3.9537 

600 3.6312 2220 1.535 4.3951 4.4950 4.5362 

800 4.3978 2690 2.222 4.8025 4.8361 4.9637 

1000 4.7033 2870 2.52 5.6095 5.6955 5.7233 

RSA 

200 1.3807 218.3 0.602 3.3160 3.3312 3.3225 

400 1.9898 314.6 1.133 3.7308 3.7588 3.8418 

600 3.2802 518.6 1.521 4.2414 4.2781 4.3051 

800 3.9765 628.7 2.201 4.5629 4.6100 4.6333 

1000 4.2536 672.5 2.497 5.5554 5.5725 5.6961 

 

C. Comparison results 

 A performance comparison between the proposed framework and [9] was performed to 

evaluate the process of secure counting queries. The proposed framework uses Paillier to 
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encrypt datasets stored in the cloud, homomorphic subtraction, and division operations in the 

search process. 

 From the results shown in Tables 7 and 8, it is clear that the proposed framework is 

superior. The work in [9] takes 0.8441 seconds to process a secure query consisting of 10 SNPs, 

while the proposed method takes 0.0252 seconds to process the same query. This is due to the 

use of homomorphic operations, which eliminates the need for the additional operation (garbled 

circuit) required in [9]. Therefore, the proposed framework improvement for handling secure 

search queries compared to [9] is an average of 96% in query execution time.  

 

Table 7- Comparison between Hasan et al. [9] and the proposed method using Paillier with key 

size =512 

Method 
Query 

size 

Search time (second) 

200 

records 

400 

records 

600 

records 

800 

records 

1000 

records 

Hasan et al. [8] 

10 0.8441 1.4086 2.3957 2.7720 3.0322 

20 0.9218 1.4366 2.5341 2.8975 3.1445 

30 1.0774 1.4724 2.5661 2.9828 3.5133 

The Proposed method 

10 0.0252 0.0423 0.0461 0.0538 0.0633 

20 0.0420 0.0812 0.1043 0.1267 0.1304 

30 0.0733 0.1227 0.1746 0.1835 0.2013 

 

Table 8- Comparison between Hasan et al. [9] and the proposed method using Paillier with key 

size =1024 

Method 
Query 

size 

Search time (second) 

200 

records 

400 

records 

600 

records 

800 

records 

1000 

records 

Hasan et al. [8] 

10 0.9305 1.7054 2.5369 2.6322 3.2347 

20 0.9596 1.7313 2.6561 2.7167 3.4242 

30 1.1329 1.7622 2.8134 3.0957 3.6124 

The Proposed method 

10 0.0383 0.0316 0.0502 0.0595 0.0586 

20 0.0541 0.0913 0.1041 0.1259 0.1301 

30 0.0844 0.1394 0.1592 0.1855 0.2057 

 

6. Conclusion 

     In this paper, we presented a secure framework for storing and performing operations on 

encrypted genomic data that returns results in an encrypted form, thereby providing a secure 

work environment to protect genomic data privacy. The proposed method converts the 

encrypted data stored on the cloud into an indexed tree to improve search speed and save space 

when running the counting query. The proposed method used ensure that the processing of this 

data takes place with a high degree of confidentiality and is not disclosed at any stage of the 

data processing, and homomorphic algorithms are used to protect the data and take advantage 

of their properties. The presented work significantly improves query execution time compared 

to existing work.  

 

      In the future, the framework can be developed further to be suitable for working with 

genome sequences in a fully encrypted environment. 
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