Ahmed and AL- Husseiny Iragi Journal of Science, 2019, Vol. 60, No.8, pp: 1766-1782
DOI: 10.24996/ijs.2019.60.8.14

N-/
Iraqi

Journal of

Science

ISSN: 0067-2904

Dynamical Behavior of an eco-epidemiological Model involving Disease in
predator and stage structure in prey

Lina Shihab Ahmed, Hassan Fadhil AL- Husseiny*
Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq

Abstract

An eco-epidemic model is proposed in this paper. It is assumed that there is a
stage structure in prey and disease in predator. Existence, uniqueness and bounded-
ness of the solution for the system are studied. The existence of each possible steady
state points is discussed. The local condition for stability near each steady state point
is investigated. Finally, global dynamics of the proposed model is studied
numerically.
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1. Introduction

There are many factors that affect each of prey and predator, for example, pollution of the
environment, and lack of food, predation, fishing and others. In addition to the factors heir important
factor is the spread of infectious diseases between the prey alone, predator, or both. Therefore, the
back of a great interest by researchers to study the effect of the spread of diseases, and this type for
modeling is called eco-epidemiological, such as in 1986 Anderson and May [1] were the first who
merged between it, ecology and epidemic systems, they created a prey-predator model with diseases.
And there are researchers proposed and studied different prey-predator models with disease spread in
prey population [2-5]. As well as, there are many papers about prey-predator model with disease for
example, Bairagi et.al [6] studied prey predator model with harvest and disease. Chakraborty et al. [7]
studied a ratio-dependent eco epidemic model with prey harvesting and they assumed that both the
susceptible and infected prey are subjected to combine harvesting. Upadhyay and Roy [8] proposed an
eco-epidemic model with simple law of mass action and modified functional response in [9]. In this
work, we suggested idea eco-epidemic model describing prey-predator model with epidemic disease in
the prey and involving top predator.
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2. The mathematical Formulation:

In this section, we , the food web model consists of two compartments of predator (susceptible and
infected) and a stage-structure prey in which the prey species growth logistical without of predation,
while the predator decay exponentially in the absence of prey species.

It is assumed that the prey population separate into two compartments: N;(T)which represent the
density of immature prey population at time T, and N, (T) that denotes to the density of mature prey
population at time T. Further the density of the susceptible predator at time T is denoted by N5(T),
while N4(T) represents the density of infected predator population at time T. Now in order to
formulate the dynamics of such system, the following hypotheses are adopted:

1. The immature prey depends completely in its feeding on the mature prey that grows logistically
with intrinsic growth rate r > 0 and carrying capacity k > 0. The immature prey individual grow up
and become mature prey with growth up rate a; > 0 . However the mature prey facing death with
natural death rate d; > 0.

2. There is a kind of protection for the two stages of prey species from facing predation by the
susceptible predator with refuge rate constant m,, m, € (0,1) respectively.

3. The susceptible predator consumed the immature prey individuals according to Holling type-II
functional response with predation rate a, > 0. and half saturation constant b > 0. And consumed the
mature prey individuals according to Holling type-Il functional response with predation rate a; > 0
and contribute of portion of such food with conversion rate 0 < e < 1 .Moreover, the infected predator
consumed the immature prey individuals according to lotka-volltera type of functional response with
predation rate ¢ > 0, c; represent the disease transmission from susceptible predator to infected
predator and contributes a portion of such food with conversionrate 0 <e; < 1.

4. Finally, in the absence of food the susceptible predator. Facing death with natural death rate
d, > 0 but the infected predator facing death due to disease and natural death rate d; > 0.

From above assumptions the system can be formulated mathematically with the following set of
differential equations:

dN, N, az (1 —my)N; N3
— =7 2(1__)_(11]\[1_
dt k b+ (1 —my)N; + (1 —my)N,
- C(l - ml)N1N4_
dN; az(1 —my)N; N3
dt b+ (1—-my)N; + (1 —my)N,
—d.N, ey
dN. ela,(1 —my)N; + a3;(1 —m,)N.
s _elopomoN: +as=mNl
dt b+ (1—-my)N; + (1 —my)N,
—d;N3
dN,
dt
= C1N3N4 + 616(1 - ml)N1N4
—d3N;

Now, by simplifying the model (1), the number of parameters is reduced by using the following
dimensionless variables and parameters:

=T a; s b as
=rl , U =— , U, =— , Uy =— , Uy = — ,
7y 2Ty 37k YTy
d4 c1 d, cik eck
Usg = — , Ug = — , Uy =—, Uug = —, Ug=—,
5 r 6 Cc 7 r 8 r 9 Tr
Ug =— , X =—, Xy =— , X3 =— , Xy =—
- 1-0 T' 1 k 2 k 3 k 4 r
Accordingly, the dimensionless of system (1) becomes
dx1 X1

—— = x(1 —x3) —ugxy —up(1 —my)xs

dt (1 —my)x1x,

uz + (1 —myx; + (1 —my)x, B
= f1(x1,%2,%3,%4)
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dx; _ Uy (1 —my)xpx3
dr _ h Uz + (1 —mpx; + (1 —my)x, Us¥z
= fo(x1,%2,%3,%4) (2)
dxs Uz (1 —my)xy + us (1 —my)x,

— =x3|e —UgXy — U
dt us+ @ —mdx + A —myx, &F 77
= f3(x1,%2,%3,%4)
dx,
TR [ugxs + (1 — myuox; — uyq]
= fa(x1,x3,%3,%4)

Clearly, the equations of system (2) are continuous and have continuous partial derivatives on the

following positive 4th dim.space:
RY ={(x1,%2,%3,%4) ER*: %, (0) 20,%,(0) =0, x3(0) =0, x, (0) > 0}.

Therefore, these equations are Lipschizian on R4, and hence the solution of system (2) exists and
unique. Furthermore, each of the solutions of system (2) with positive initial condition is bounded as
shown in the following.
Theorem (1): Each of the solutions of system (2) which are initiated in R4 arebounded.
Proof: Let (x1 (1), x5 (1), X3 (t),x4,(t)) be a solution of system (2) with positive initial condition
(X1,X7,X3,%X,) €RY.

Now define the function M(t) = x4 (t) + x,(t) + x3(t) + x4(t) and then taken the time derivative
of M(t) along the solution of system (2).

aM Uy (1 —my)xqx3
—=0-us)x,—(1—e
dt ( 5)% = ( )u3 + (1 —mypx; + (1 —my)x,
Uy (1 —my)x,x3
—(1-e) —
uz + (1 —=mp)xy + (1 —my)x;

So, due to the fact that the conversion rate constant from prey population to predator population

cannot exceeding the maximum predation rate constant from predator population to prey population,
hence from the biological point of view, always us; <1, e<1, ug<1, ug <ug we get:

dM
_=X1+X2_(X1+X2+U7X3

— (1 —ug)(1 —my)x;x4

(U — Ug)X3Xy — UsX3 — UgpXy

dt
+ Uy0X4)
dMm
Esxl + X, — u(X + X3 + X3

+x4)
Where p = min{1,u;,u;o}
Since x; +x, = N represents prey specie which is growth logistically with carrying capacity(1),
hence N <1

So that,
i—l\f <1- puM.
Now, solve the differential equation with initial value M(0) = M,, we get:

1 1
M) <-+ (MO - —) e M,
n m

Then,
1 1
lim M(t) < lim —+ lim (MO - —) e Mt
t—-oo t—-oo u t—oo |,[
So

M(t)sﬁ , Vt>0.
Then each the solution of system (2 )uniformly bounded.
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3.Existence of the steady state points
In this part, the existence of all possible steady state points of system (2) is discussed. It is
observed that, system (2) has only four steady state points, which are mentioned in the following:

o The steady state pointE, = (0,0,0,0) , which is known as the varieshing point and is always
exists.
o The two species steady state point E; = (i, X,, 0,0)where:

- _ (1-us)ug

X1 = T >0 (33)

T(Zz(l—U5)>0

Exists under the following condition
us; < 1. (3b)
o The steady state point E, = (%;,%,,%3,0)
X1
_ uguy + [uy —eus](1 — my)x;
[eu, —u7](1 - m;)
From the second equation of system (2) we have

(4a)

Uguzxy + Uy (1 — my)xf 4+ ug (1 — my)xyx; — ug (1 — my)xpxs — usuzx, — us(1 —my)x;x,
—us(1—my)x5 =0 (4b)

By substituting equation (4a) in equation (4b) we get
[ty (uy — eus)(euy — uz)(1 — my)(A —my)* + uy (uy; — eus)*(1 — my)(1 —my)?
— us(u; — eus)(euy — uy)(1 —my)*(1 — my)
—us(1— mz)((euz —u;)(1 - ml)z]xzz
+ [ugus(u; — eus)(eu; —uy)(1 —my)(1 —my)
+ 2uguzu; (uy; — eus)(1 —my)(1 — my) + wyuzuy (eu; —uy)(1 - m1)(21 —my)
— ugusuz(euy — uz) (1 —my)?1x, — uy(1 —mp)((euy — uz) (1 —my)) x5

+ [u1u§u7((eu2 —uy)(1 - ml)) + ulugu%(l - m1)] =0 = fi(xz,x3)
X1X3

uz + (1 —myxg + (1 —my)x;
=0 (4c)
Also by substituting equation (4a) in equation(4c) we get:

|- = m)((ewy —un) (1 = my))* = (1 = my)((w; — eus)(1 = m)((ewz — u)(1 = my))| 63
+ [((1 —my) — u3)((eu2 —u;)(1 - m1))2
+ ((1 -my) —u, (1 - mz))((euz —uy)(1— ml))((u7 —eus)(1— mz))
— w3t (1 = my) (e = ur)(1 = my)) = (1 = m) (w7 — eus)(1 = my))° | 3
+ [us((euz — u) (1 = my))°
+ u3u7((1 —-my) —uy (1 — mz))((euz —u;)(1— m1))
- u1u3((u7 —eus)(1— mz))((euz —uy)(1 - m1))
— 2uyuzu; (1 —my)(u; — eus)(1 — mz)] xz[‘”ﬂ‘%“%(l - ml)][—u2u3u7(1
- m1)((3u2 —u;)(1— ml))]x3 [_uz(l
- ml)((u7 —eus)(1— mz))((euz —uy)(1 - ml))]x2x3 =0 = f2(x2,x3)

X2 — xzz —wyx; —u(1—my)

Now, with some simplification we have:
fi(x2,x3) = a3x5 + ax; + azxyxz + ay
=0 (4d)

1769



Ahmed and AL- Husseiny Iragi Journal of Science, 2019, Vol. 60, No.8, pp: 1766-1782

fz (xz, X3) = blx:z3 + bzx% + b3x2 + b4 + b5x3 + b6x2x3 = 0 (43)

Where
ay = us (7 — eus)(euy —un) (1 = my)(1 = my)? o+ wy a7 — eus)*(1 = my) (1 = m)?
— us(u; — eus)(euy — uy)(1 —my)?(1 —my)
— us(1 = my)((eu, — uy) (1 = my))’]|

az = [u1u3(u7 —eus)(eu; —uz)(1 —my)(1 —my)
+ 2uyuzu; (u; — eus)(1 —my)(1 —my)
+ uguzus (eu; — ur) (1 —my) (1 —my) — uzusuy (eu, — uy)(1 —my)?
- u3u5((eu2 —u;)(1 - m1))2]
az = —uy(1— mz)((euz —u;)(1 - m1))2
<0
as = [u1u§u7((eu2 —u;)(1— m1)) + ulugu%(l - m1)]
by = [-(1 = my)((eu — u)(1 = my))
— (1= my)((uy — eus) (1 = my))((euz — u)(1 —my))]
by = [((1 = my) —us)((euz —up)(1 = my))”
+ ((1 -my) —u (1 - mz))((euz —u;)(1— ml))((u7 —eus)(1— mz))
—uzuy (1 — ml)((euz —u;)(1— m1))
—uy (1= my)((u — eus)(1 —my))”
bs = [u3 ((euz —u;)(1- ml))2 + u3u7((1 —my) —uy (1 - mz))((euz —uy)(1 - ml))
- u1u3((u7 —eus)(1— mz))((euz —u;)(1— m1))
— 2uyuzu; (1 —my)(u; — eus)(1 — mz)]

b, = —u1u§u7((eu2 —u;)(1 - ml)) - ulugu%(l —my)
<0
bs = —upuzu, (1 — ml)((euz —u;)(1 - m1))
<0
be = —uy(1 - ml)((u7 —eug)(1— mz))((euz —u;)(1- m1))
<0

Now, in order to determine the values of &, and &; , consider the two isoclines (4d) and (4e) as
x3 — 0 which gives:
fi(x;) = a;X3 + 2%, +a, =0 ()

f,(x3) = byx5 + byx3 + bsx, + b, =0 (i)
Obviously equation (i) is second degree polynomial equation, while equation (i i) is a third degree
polynomial equation.
Consequently eq.(i) have a positive root say x,,provided that one of the following conditions hold:
a; >0 and a, <0
or } (4f)
a; <0 and a, >0
However, equation (ii)has just one positive root, say x,,, provided that one of the following
conditions hold:
b; >0 andb, >0
b; >0 andb; <0
Since we have f(x,, x3) = 0 then the derivative with respect to x, becomes:

(49)
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dx;
dx,
2a.xy + a, + azx;
T asXx;
Note that, Z—zz < 0 and hence the isoclines (4d) is Decreasing if the following condition hold:
2a1X, +a; +azx; >0 (4h)
Similarly from equation (4e), we noted:
dxs 3b1x2 + 2byx, + by + bgxs
dx, be + bexs
Herej—z > 0 and hence the isoclines (4e) is increasing function iff the following condition hold:
3by1x% + 2byx, + by + bgxz < 0 (41)

Now, if x,, < X,,, We get by the above analysis, it is noted that the two isoclines (4d) and (4e)
intersect at unique point (x,,x3) iff the conditions (4f) , (49) , (4h) and (4i) are satisfied, and hence
the system (2) has only one positive steady state point if in addition to these conditions the following
holds:

—161:1((11—222));22 >u, > eus 4N
o Lastly, the positive (coexistence) steady state point E; = (%;,X,, X3, %,) exists if there is positive
solution to the following set of equation:

X1X3
Xy = x5 — Uy — up(1 —my) us + (L —m)x; + (1 — my)x, — (1 —my)x1x4
=0 (5a)
Uy Xy — U (1 —my) 2% —Usxy; =0 (5b)
uz + (1 —my)x; + (1 —my)x;
Uy (1 —my)xy + us(1 —my)x, _
X3 |e —UgXxy —U;| =0 (5¢)

uz + (1 —mypx; + (1 —my)x,
xg4ugxs + (1 —myugxy — Uyl =0 (5d)
From equation (5d) we obtain:
ugo — (1 —mpugxy

X3 = Ug (5e)

From equation (5c) we obtain:
% = (euy —u7)(1 —my)xy + (euy — uy)(1 —my) —uzuy,
* ugluz + (1 —my)x; + (1 — my)x,]
From equation (5b) we get:
ugug(1 —my)xf + uguzugxy
+ [urug(1 —my) + ugue(1 — my)(1 — my) — usug(1 — my)]x,x;
+ [—uguyo(1 — my) — uzusuglx, — usug(l —my)xs = f (x4, %)

(56)

Substituting equations (5e) and (5f) in equation (5a) we get:
—ugug(1 —my)x3 + [ugug(l —my) — usuguglxs + uguguzx, — uglg(l —my)x; x5
+ [ugug(1 —my) — uyugug(l —my) — ugleuy — u;)(1 —my)(1 —my)]x;x;
+ [upuguo(1 — my)? — ugugug (1 —my) — ug(euy — uy)(1 —my)?Jxf
+ [ugusug(1 — my) — upuguy (1 —my) — ujuzugugle; = 0 = g(xy, x;)
Now, with some simplification we have:

fx1,x2) = X7 +1ox1 + 13X, + 13X +13x5 =0 (59)
g(x1, %) = 51X5 + 5,%% + S3X + S4X1 X5 + S5 XXy + SeX2 + 5,x, =0 (5h)
Where
r =uug(l—my) >0, 1, =ujuzug
>0
13 = Usug(l — my) + uguo(1 —my)(1 — my) — usug(l —my)
Ta = —Uglyo(1 — my) — Uzsug < 0
rs = —ugug(l—m,) <0
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51 = —ugug(l—my) <0
sz = UgUg(l — my) — UzUsUg
S3 = Uzugug > 0
Sy = —Ugug(l—my) <0
s5 = UgUg(1 —my) — ugugug(l —my) — ugleuy —uz)(1 —my)(1 —my)
Se = UplUglio(1 —my)? — usugug(1l — my) — ug(eu, — uy)(1 —my)?
s7 = UgUyug(l —my) — Upuglyo(1 — my) — U Uz UCUg
Now, in order to determine the values of X;and X,, consider the two isoclines i and ii as x; = 0,
which gives:
fx2) =X +15%3 = x,(ry +75%3) = 0 )
g(xy) = 51x3 + 5,x% + 53, =0 (iD)
Obviously equation (i) is second degree polynomial equation, while equation (ii) is a third degree
polynomial consequently due to Descartes’ rule equation (i)has two roots one of them, say op =
0 other of them say x,,, = _r—::‘ < 0, However, equation (ii) has a unique positive root, say x,.,,and

from equation (59) it is easy to verify that
dx;

dx,
T3X1 + 13 + 275x%,

211X + 15 + 13X,
Hence,% > 0 and hence the isoclines (5g) is increasing function if the following condition hold:
2
T3X1 + 13 + 215%x, < 0Y)
211X + 15 +13%, >0
OR (50
T3X1 + 13 + 215, > OJ
2ryxy + 15 +13%, <0
Similarly from equation (5h), we noted
dx,
dx,
351X2 4 25,5 + 53 + 28,X1 X5 + S5X;

SaX2 + sgxy + 2561 + 57
Note that % < 0 and hence the isoclines (5h) is decreasing iff the following condition hold:
2

351X2 + 25,%y + 53 + 28,%1X5 + Sgxy > 0

S4X2 + Sgxy + 25¢x1 + 57 > 0
OR (5/)

351X2 + 255X + 53+ 25,%1X5 + 55x, < 0 |

S4X2 + Sgxy + 25¢x1 + 57 < 0

Therefore the positive equilibrium point Esexists uniquely provided that in addition to the above
conditions the following two conditions hold

B < —20 (5k)
Ug(1—my)
(euy — u7)(1 —myx; + (eu; — uy) (1 —my)x, > uzuy D)

4. The stability Conditions
In this part, the local conditions for stability near the steady state points of system (2) is
investigated. It is to verify that the Jacobian matrix of system (2), at the general point (x4, x5, X3, X4)
J = (dig)axa iL,j=1234. (6)

upuz (1 —my)xs + ux (1 —my)(1 —my)xyx3
(uz + (1 —my)x; + (1 —my)x,)?

ap; = —[ug + (1 —my)xy] —
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(uz(1 —my)x1x3)(1 —my)
+ (1 —=mpx; + (1 —my)xy)?

a12:1_2x2+[(u
3

_ —uy (1 —my)x;
S uz+ (1 —m)xg + (1 —my)x,
a1g = —(1—my)x;
yy = ug + uy (1 —my)(1 —my)x;x5
(ug + (1 —my)x; + (1 —my)x,)?

a3

G = —ye — [u3u4(1 —my)xz +us(1—my)(1— mz)x1x3]
22 > (uz + (1 —my)x; + (1 —my)xz)?
- —uy (1 —my)x, @ =0
BT ug+ A -mdu +A-myx,
a4y, = euyus (1 —my)xs + [u; —ugle(1 —my)(1 — my)xyx3

(uz + (1 —myx; + (1 —my)xz)?
euzu, (1 —my)xz + [ug —uzle(1 —my)(1 — my)xgx3

a2 = (s + (1 — mx; + (1 — my)xy)?
eu, (1 —my)x; + euy (1 — my)x,
33 = uz + (1 —myx; + (1 —my)x; ~ (exy 1)
A34 = —UX3 , Q41 = (1 —my)ugxy,
a2 =0 , a43 =ugxs

Qg = UgX3 + Ug(1 —mMy)x1 — U o o
Therefore, the Jacobian matrix of system (2) at the vanishing steady state pointEis:

—Uy 1 0 0

_lw —us O 0
](EO)_ 0 0 —U, 0

0 0 0 —u

Thus the eigenvalues of J(E,)are

Eitherd,, = —u; < 0andA,, = —uyo < Oor A% + B;A + B, = Owhich gives two eigenvalues

Aoy =4 L (g2 _up
X1,X2 2 —2 1 2

where
By =uy +ug >
0
By, =u (us —1) <
0

Therefore, E, is a saddle point.
The Jacobian matrix of system (2) atE, is given by

—u,  1-25, (1 - m)E _
u; + (1 —myx; + (1 —my)x, —(1—my)x;
—uy(1 —my)x,
JEY=| " T A —mpm + A —my%, 0
eu,(1 —my)i; + euy (1 — my)i, 0
0 Gt A—mym + A-m)a,
0 0 0 Ug(1 — my)x; —uyq,]

Accordingly the characteristic equation of] (E, )canbe written as:

1773
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eu, (1—m1)f1+€U4(1—m2)f2

[2— (uo (1 = m) % —w30)] |2 — ( ;)| [A2 +BiA+B,] =0 (8b)
Where

By = —[~u; —us] = u; +us

B, = wjus —uy (1 — 2x;)

uz+(1-my)x; +(1-my)x,

So either

[4 = (uo(1 — my)¥;—uyp)] [A - <

eu, (1 —my)x; + euys (1 — my)i, 0
—u =
uz + (1 —mpx; + (1 —my)x, 7

We get the eigenvalues of J(E,) in the x5, x, direction respectively as :

eu, (1 —my)x; + euy(1 —my)x;,
= —u
B ug+ (1 -m)x + (1 - myx, 7 (8¢)
Ax, = ug(1 —mq)X;—uqy

OR
A2+ BjA+B,=0

Hence, we get the other two eigenvalues of J(E;) inthe x;,x, direction as:

_ B 1 2
Dy, =5 £ 5 B = 4B, 8d)

Then all the eigenvalues have negative real parts if the following conditions hold:
Ug(1 —my)x; <wug

uz + (1 - ml)fl) (8e)

eu, (1 —my)ix; + euy(1 —my)x, < u, ( (1 —my)%,

So, E, is a local stable in theR¥ . And it is unstable point on the other hand.

Thus Jacobain matrix of system (2) at E, is a given by:

€11 €12 C13 —(1—-my)x,;
C21 €22 (323 0
](EZ) = C31 C23 0 _u65€3 (9a)
0 O 0 usjeg + U9(1 - ml))’el_ulo
Where
o = — uUpuz (1 —my)R3 + ux (1 —my)(1 — my)x,%5
H ! (uz + (1 —my)x; + (1 — my)x,)?
C12

U (1 —my)(1 —my)%, %5

+ (1 —mpx; + (1 —my)%,)?

. —Uy (1 —my)%

S uz+ (1 —-mpE; + (1 —-my)R,
=—(1-mx,

=1-2x,+
2 [(u3

C13

o = e 4 us(1—my)(1 —my)%,%,
2 s+ (- m1)/\551 + (1 —my)x,)?2 L
uzuy (1 —my)xs +us(1 —my)(1 — mz)xlxs]

22 = 7l T [ (3 + (1 — Mm%, + (1 —my)%,)2
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C23 ~
—uy(1 —my)x,

- uz + (1 —myx; + (1 —my)%,

€31
_eupuz(1 —my)xs + [u; —wuJe(1 —my)(1 —my)R, %3

(uz + (1 —mpx; + (1 —my)x,)?

C32

_euguy (1 —my)%s + [uy —uzle(1 —my)(1 —my)%, 25
(uz + (1 —my)x; + (1 — my)%,)?
euy (1 —my)x; + euy(1 —my)x,

C33 = -

BT up+ (1 -m)f + (1 -my)f,
=0
Then the eigenvalues of J(E,)are

Uy

[A— (ug®s + ug(1 —my)R; —ugol[A> + 4122 + A2+ 43] =0
. Ay = —[c11 + c2p + €33]
{12 = C11C22 — C12C1 T €11C33 — €13C31 + C22C33 — C23C33
Az = €11€23C33 — C12C23C31 — €13C21C32 + €13C22C31 + €11C23C32 + C12C21C33
Accordingly, either

[A — (ugX3 + ug(l —my)x; —uy0] =0 (9b)

or
B+ A2 +A,1+4;=0 (90)
Hence from equation (9b) we obtain
AXy = ugks + ug(1 — my)%; — Ugp}
Which is negative if the following condition hold
UgXs + ug(1 —my)x; < uyy (9d)

Since A; > 0 , then by using Routh-Hurwitz criterion eq.(9c) has roots with negative real parts if
A; > 0and
A=A1Ay — A3 = (c11 + sz)(C12£21 — €11€22) + €11€13C31 + €12C23C31 + (C22C23 + C13021)C3Az
Now , according to the form of A; and signs of the jacobian matrix elements all terms of A5 are
positive, while the first one will be positive ander the following conditions :

[us + (1 —my)x Juy > up (1 —my)%y (%e)

[uz + (1 —my)x,] > uy(1—my)x, 9f)

However A becomes positives , since the first four terms of A are positive , while the last one will be
positive if in addition to the condition c,,c,3 + c13¢5; > 0 the following condition holds :

[ug®s + ug(1 —my)x;] < uyg €I)]
[us + (1 —my)®;Juy > ug(1 —my)x, (9h)
Uz [uz + (1 —my)x,] > uy (1 —my)%, (99)

1 U, (1 —my)(1 —my,)xX
2,>=|1+ 2( 1)A( 2)%; 3 i 97)
2 (uz + (1 —my)x; + (1 —myp)X,)

Thus by Routh-Hurwitz criterion all the eigen values J(E,) have negative real parts so the steady
state point E, = (%4,%,,%3,0) is local stable.
The Jacobian matrix of system (2) at steady state point E; = (¥;, X5, X3,%4) :
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di; diz dis -1-mx
dy; dpy dys 0
E;) = < 10a
J(E3) d3;  dpz ds —UgX3 ( )
Ug(1 —my)X, 0 wugX, ugXs+uq(l—my)X; — uyol
Where
uyuz (1 —my)¥3 + up (1 —my)(1 — my)¥,Xs]
d{; = — +(1- X.] —
= - -
di2
u,(1—my)(1—m,)xx
=1_212+[ 2( 1)v( 2)% 3v 2]
(uz + (1 —my¥; + (1 —my)¥X,)
dow = —uy(1—my)¥%;
BT us+ (1 - mF + (1 —my)X,
dor = 1w + uy (1 —my)(1 —my)X, X5
2 U us + (1 —-m¥ j‘ (1 —my)x;)? L
don = —pp — UzUs (1 — my)X3 + uy(1 —my) (1 — my)¥X X5
22 > (uz + (1 —my)x; + (1 — my)x,)?
don = —uy (1 —my)¥%,
BT up+ (1 -m)E + (1 -mp¥,
dun = euyuz (1 —my)X; + [u; —usle(1 —my)(1 — my) ¥, ¥;
31 (uz + (} —my)¥%; + (1 —my)¥X;)? L
_ euzuy (1 — my)¥; + [uy — uzle(1 —my)(1 —my) X%, %5
32 (uz + (1 —mpx; + (1 — my)x,)?
euy,(1 —my)x; + euy(1 —my)x, (ke +u7) = 0
= — (ugx U;) =
BT oug+A-mOx +(A-mpx, ot T
It is easy to verify that, the linearized system of system (2) can be written as:
Here
R - (xl,xz,X3,X4)tand S = (51,52, 53, S4)t
Where
Slle_%l, SZ:xZ_%Z
S3=X3—X3 , S4=X4— Xy
Now, consider the following positive define function
aq a, as as
L, =?Slz+7522+2—5é3$§+2—ns42, (1OC)
It is clearly that L,:R% — Rbecontinuously  differentiable  function, So that

L, (X1,%5,%X3,%4) = 0, Ly(xq,X5,X3,%X4) > 0 otherwise so by differentiating L, with respect to time t,
gives:

dL, ds, 4 ds, N a; ds; 4 a, dsg
dr - g TS TR % g TR, Y ar
We get:
dL, - - T
ar —[us + (1 =m¥] + [upus (1 — my)¥; + up (1 —my) (1 — my) ¥, %31

U (1 —my)(1 —my)X X3

|2z —1-
2T T s+ - m% + (- mp)X,)?

_lu Uy (1 —my)(1 — my)X, %5 .
Vug+ (I-m)% + (1 -mp¥,| 2

Uzus (1 — my)¥; 4+ us (1 —my)(1 - mz)f1f3] 2
] ; (uz + (1 —my¥; + (1 —my)x,)? 2
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dL,

dt
Where

= —[q1157 + q125152 + 42257 ]

Upuz (1 —my)¥; + up (1 —my)(1 — my)¥, %
(uz + (1 —m% + (1 —my)X,)?
g = 2%, — [1 i uy (1 —my)(1 — my)X X5 +uy uy (1 —my)(1 — my)X, X3
(uz + (1 —my)X + (1 —my)¥X,)? (uz + (1 —my)X; + (1 — my)¥,)?
uzuy (1 —my) X5 + uy (1 —my)(1 — my)¥ X3

q11 = [ug + (1 —my)x,] + [

= us +
G2z = s (s + (1 — Mm%, + (1 — my)¥,)?
Now, it easy we have:
dL 2 . .
d_tz < _[ q1151 + 1/CI22$2] |f and Only |f
X,
> ! 1+
2" T

(U Xy + usX,)(1 — my)(1 — my) X5

(uz + (1 —my)X; + (1 —my)X;)?
Therefore, %is negative definite and henceL,is a Lyapunov faction with respect toE;in the sub
regionf2,. SOE; is asymptotically stable. Note that the faction L, is approaching to infant as any of its
components to the same and its positive definite R$,however its derivative is negative definite on the
sub region £, due to the given sufficient conditions. Therefore E5 is a globally asymptotically stable
within 2, .
Theorem (2): Assume that E; is local stable in Rfif the following condition hold

(10e)

X1 >xt+e (11a)

Xy > X, te (11b)

X1 > X1+ Ug (11¢)

U > Ug (11d)

Then the steady state pointE, is global stable.
Proof: let the following function

_a _ N2 G2 Y
V1 (X1, X3, X3, X4) = ) (X1 —X1)° + > (xz = X2)" + c3x3 + C4xy .

It is easy to see that v,(xq,X,,X3,%X4) € C'(R%,R), in addition, v;(X;,%,,0,0) =0 while
Vvi(X1,X2,X3,X4) > 0 V(Xq,Xp,X3,X4) € RY and (Xq,%p,X3,%4) # (X1,%,0,0) .
Furthermore, by the derivative with time and simplifying we get that:
dv, _ _ _ _ _ _
o —cyuy (0 — %1)% — (g — %) (o — %) (xp + X)) + ¢4 (xg — %1) (x — X3)
+ couq (x4 —_721)(352 —X3) — Cus (X — %)?
G (1 — Xux(1 —my)xyx3
uz + (1 —mpx; + (1 —my)x,
Cous (1 —my) (X — X3)x2x3 czeuy (1 —my)xix3
uz+ (1—mpx; + (1 —myp)x,  uz+ (1 —myx; + (1 —my)x,
n czeuy (1 —my)x;x3 N
— C3UgX3Xy — CaUrX CaUgX2 X
s + (1= m)x + (1 —my)x, 3UeX3X4 3U7X3 4UgX3Xy
+ 4 (1 — my)UgX Xy — C4llg0Xy -
And then substituting c¢; = ¢, = ¢3 = ¢, = 1 in the above equation we get :

— ¢ (g — %) —my)x1x4
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Oy Gey — %) — Gy + B+ L4 up) (o — )y — %) + s (e — 5,)°]
Uy (1 —mq)x1x3
uz + (1 —my)x; + (1 —my)x;
uz(1 —my)xzx3 _
uz + (1 —my)x; + (1 —my)x;
— (ug — ug)xzxy — UzsX3 — UppXy -
Obviously % < 0 for every initial point and then v, is a Lya.function provided that conditions (11a-
11d) hold. Thus E; is global stable this completes the proof.
Theorem (3): Assume that E, = (%;,%,,%3,0) is a locally in R%, then it is global stable provided that
the following conditions:

—[x; — % —e]

[x1 — % —ug](1 —my)x1xy

=[x, — %, — €]

o o~ 12
U (1 —my)(1 —my)xx3 Uy (1 —my)(1 — my)x,%;
X +u, + X

4 <u1k +u, (1 —my)x; 1-(1- m1)21]> (us

1_(X2+5C\2)+

k
uy(1 —my)x
% [1- - m%]) (12a)
1> max{(1—-my)x; ,(1 —my)X,} (12b)
Uy (1 —my)%z > up(uz + (1 —my)%; (12c¢)
Uy (1 —myx; > ug(uz + (1 —my)x; (12d)
(1 —mx2uy + ugxsxy > (1 —my)R X1, + UgXaXs (12e)

Proof: Consider the following function

1 2 \2 1 o \2 73 7 X3
Vo (X1, X2, X3,X4) = > (x; — %)+ E(xz — %)+ (x3 — X3 — X3 lnf—) + x4
3
It is easy to see that
v2(X1,X2,X3,X4) € C'(RLR), V (X1,X2,X3,X4) € Rﬁ- and (X1,X2,X3,X4) # (X1,%2,%3,0)
Furthermore by taking the derivative with time and simplifying we get that:

dv,
dt
= (% — %) [(xz —X,) — (xzz - J?22) —uy (% — %)
x1x3(ug + (1 —mx; + (1 —my)x,) — £ %3(uzs + (1 —my)x; + (1 - mz)xz))
(uz + (1 —my)x; + (1 —myp)xy)(uz + (1 —myx; + (1 —my)X,)

—uy(1 —m1)<

+ (x; — %) [ul(xl — %) —us(xy — X3)

xpx3(uz + (1 —mp)x; + (1 —my)x,) — £83(uz + (1 —my)x; + (1 — mz)x2)>_
(uz + (1 —my)x; + (1 —myp)xy)(uz + (1 —my)x; + (1 —my)X,)

—uy(1—my) <

2) Keuz(l —my)(x1(uz + (1 —mx; + (1 —my)x;) — % (uzs + (1 —my)x; + (1 - mz)x2)>
(uz + (1 —=my)x; + (1 —mp)xx)(uz + (1 —my)%; + (1 —my)%x,)
—m,) <(x2(u3 + (A —mx + (A1 —my)X,) — L (uz + (1 —my)x; + (1 - mz)x2)>
(us + (1 —myx; + (1 —mp)xx)(uz + (1 —my)%; + (1 —my)x,)

- u6x4] + [ugxzxy + (1 — muUgXy X4 — UggX4]
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Obviously % < 0 for every initial point and then v, is a Lyap. function provided that conditions

(11a-11f) hold. Thus E, is global stable this completes the proof.

Theorem (4): Assume that E; is local stable inR% . Then, it is a global stable in sub region of R% that
satisfies the following conditions

X, +x;>1+uy (13a)
ky +ky > up(1—my)(xq — x1)ks
+ u (1 —my)(xy — x3)ky (13b)
[up + ugle(1 —my)(A —my)xix, (x5 — x3)
> e(xz — x3)[u(1 —myks + uy(1 — my)kg (13¢)
Where

ki =up (1 —my)xyx3(xy — x7)
ky = ust(1 —my)xyx3(xz — x3)
ks = (1 + (1 —my)(x;, — x{))xi"x;‘ + (1 —my)xix;(x; — x3)
ke =11+ 1 —my) 0y —x1) + (1 —my)(xz — x3)]x2x3
ks = us(x; — x7) + (1 — my)x,x3
ke = usz(x; —x3) +
Proof: consider the following function
03 Gy a3 4) = = (i = 30?42 (= x3)? + (x3 xj-x; lnx—i> + (x4 —xj - znx—it)
2 2 X3 Xy
It is easy to verify that v3(xq,X5,X3,X4) € C'(R%, R)andv;(x],x5,x5,x5) =0  while
v3(Xq,X2,X3,X,) > 0 for all (x,x5,x3,%4) € RY and (x4, X3, X3,X4) # (X}, %5, x5, x3)then by find the
derivative with time, also simplifying it we get:

d173

dt

= (x; — %) [(xz —X;) — (xzz - %22) —uy (g — %) — (1 —m)(x1 x4 — X1 %y)

—u,(1—-m )< x1x3(uz + (1 —mX; + (1 —my)X,) — X, %3 >]
2 P\ s+ (1 —mpx; + (1 —my)xy)(us + (1 —m% + (1 —my)¥,)

+ (xz — %) [ul(xl —X1) —us(xy — X3)

—u,(1—m,) x%3(uz + (1 —my)¥; + (1 —my)¥,) — %% (uz + (1 —my)xy + (1 —my)xy)
4 2 (us + (1 —my)xy + (1 —my)xy) (uz + (1 —my)¥; + (1 — my)%,)

+(x3

— %) [(euz(l —my)(x (uz + (1 —mx; + (1 —my)¥,) — X (uz + (1 —my)x; + (1 — mz)x2)>
; (us + (A —mpx; + (1 —my)xy)(us + (1 —my)x; + (1 —my)x,)

+ euy (1

—m,) <(x2(u3 + (1 —m¥ + (1 —my)X;) — X (uz + (1 —my)x; + (1 - mz)x2)> e
2 (uz + (1 —my)x; + (1 —myp)xx)(uz + (1 —my)¥; + (1 —myp)X,) o

- 374)] + (x4 — Xy)[ug(xz — ¥3) + (1 — myug(x; — X;)] .

Clearly,% < 0, and then v; is a Lyap. function provided that the given conditions (13a-13c) hold.
Therefore, E3is global stable in the interior of a basin of attraction of E3 and the proof is complete.

5. Numerical illustrate
In this section, the dynamical behavior of system (2) is studied numerically for different ets of
initial values and different sets of parameters values.
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It is observed that for the following set of hypothetical parameters system (2) has an asymptotical
stable steady state point E;=(0.2,0.99,0.0) as shown in Figure-1

u;= 0.05, u,=0.00001, uz= 0.25, u,= 0.00001, us= 0.01

Us= 0.1, u;= 0.05, ug= 0.002 ; ug=0.02, uyp=0.1 (14)

m;= 0.01, m,= 0.02, e =0.003

{b)

@)

X1 X2

10 ¢
Time x10

08

07

06

05-

X1
04

X3

03

02~

01

Time

Figure 1-Trajectory of system (2) that begin from different initial point, (0.9,0.7,0.5,0.3) and
(0.3,0.9,0.9,0.8) for the data given by Eq. (14). (a) Trajectories of immature prey as a function of time
(b) Trajectory of mature prey as a function of time. (c) Trajectory of susceptible predator as a function
of a function of time.

from values of parameters that given in Eq. (14) with ug= 0.001, ug= 0.0002.the solution of system (2)
approaches to E, =(0.5,0.9,0.6,0) as shown in Figure-2
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Figure 2-Trajectory of solution of system (2) for above parameters from different set of initial points
(0.9,0.7,0.5,0.3) and (0.3,0.3,0.9,0.6). (a) Trajectories of immature prey (b) Trajectory of mature prey
(c) Trajectory of susceptible predator (d) Trajectory of infected predator.

It is observed that for the following set of hypothetical parameters that satisfies stable conditions of
positive steady state point E;=(0.4,0.8,0.5,0.3) system (2) has asymptotic stable positive steady state
point as shown in Figure-3

u;= 0.05, u,= 0.00001 uz= 0.25, u,= 0.05, us= 0.01

ug=0.003, u;= 0.05, ug= 0.002 , uy= 0.02, u;=0.01 (15)
m;= 0.01, m,=0.02 , e =0.003.

1781



Ahmed and AL- Husseiny Iragi Journal of Science, 2019, Vol. 60, No.8, pp: 1766-1782

X1 05 05F

L L L L i
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35 4

)
1 038
09!
08/
07

X4
06

05

04

03K

. . . .
02 0 05 1 15 2 25 3 35 4

0 05 1 15 2 25
ime x10' lime

Figure 3-Trajectory of system (2) that begin from different initial points (0.9, 0.7, 0.5, 0.3) and (0.1,
0.1, 0.9, 0.8). For the data given by Eq(15) (a) Trajectories of immature prey as a function of a time.
(b) Trajectory of mature prey as a function of a time (c) Trajectory of susceptible predator as a
function of a time (d) Trajectory of infected predator as a function of a time.
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