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Abstract

In order to examine various geometric features, we expanded the
supertrigonometric function (STF) and superhyperbolic function (SHF) into the open
unit disk. A convolution differential operator of the STF provides the formulas. The
suggested operator works with both integral and double differential inequalities. As a
result, we present a collection of findings that includes recent works. The idea of
subordination and superordination serves as a guide for our method, and we then
developed the primary conclusion as a double side’s theorem.

Keywords: Univalent functions, Hypergeometric supertrigonometric functions,
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1. Introduction

Xiao-Jun [1, 2] has recently created the theories of the Wiman function, STFs, and SHFs.
The Wiman function and connected functions integral representations are explored, and the
generic fractional calculus operators are thoroughly covered as well. The integral equations and
mathematical factors (model, design, formula, etc.) connected to the Wiman function are
additionally in depth, along with the shortened Wiman function, STFs and SHFs. These
functions produced the STFs and SHFs through the STFs and SHFs addressed the theory of the
hypergeometric function. A depth discussion is provided on the integral formulas for the STFs
and SHFs as well as the Laplace transfigures for the new special functions. The classical
fractional calculus including the hypergeometric function is taken into consideration, along
with the suggested truncated hypergeometric, STFs and SHFs. Additionally, the integral
equations and mathematical models are included and connected to the hypergeometric function.
Based on the presentation of STFs and SHFs, we extended these functions into the open unit
disk to study some geometric properties. The formulations are suggested by a convolution
differential operator of the STFs and SHFs. The proposed operator is involved in double
differential inequalities, as well as integral. As a consequence, we introduce a set of results
containing recent works. Our technique is indicated by the theory of subordination and
superordination and then we formulated the main result as a double sides theorem.

2. Support results
Let H be the class of functions in the open unit disk U: = {¢: & € C and |¢| < 1} of the form:
f) =&+ a8® + azé® + -,

and let A denote the class of functions analytic in U, and usually defined by

fE) =8+ Xm=2 ané™, €U, (1)

Assume the analytic functions v and v in U, then v is subordinated to v if there exists a

Schwarz function w, analytic in U withw(0) = 0 and |w| < 1 withv(§) = v(w(§)) foré e U
satisfying the inequality v(§) < v(§).

This subordination is equivalent to v(0) = v(0) and v(U) c v(U), specifically, if the
function v is univalent in U. Suppose that p, A € H and A(r,s,t,§):C3 x U — C. If p(¢) and
A(p(§),¢ép'(8),&2p" (8); &) are univalent and if p admits the second inequality

r(§) < A@(§),¢p'(§),$%p" (§); ), (2)
consequently, p is the differential superordination equation’s solution. Keep in mind that 4 is
referred to as being superordinate to v if v is subordinate to #.

For v, g and A Miller and Mocanu [3] proved the following implication:
P(&) < A@(£),¢p'(9),§%p" (§); &) = q(§) < p(®).
For f € A given by (1), Ali et al. [4] employed the outcomes of Bulboaca [5] found sufficient
conditions on v(§) € A to get
vl
0 (§) < fv(g) < 0:(9).
where g, and g, are given univalent functions in U with g, (0) = q,(0) = 1. Areview of efforts
on this direction can be found in [6-15].

We shall apply the following preliminaries in order to demonstrate our findings:
Lemma 1 [16]: Define the set Q of all functions f that are univalent on U — E(f), such that

E(f)i={0 €U : limf @) = o, 3)

and are implies that, f'(9) # 0 for 9 € dU — E(f).
Lemma 2 [16]: Define the univalent function q(§) in U and analytic functions 8 and 4 in a
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domain D admitting q(U) with A(w) # 0 when w € q(U). Also, define
Q(§):=¢q'(©)A(q(®)) and A(2): = 6(q(5)) + Q8.
Consider that
(1) Q(&) is starlike univalentin U, and
§h'(9)

(II) Re(TS)) >0 forE e U.
If

0(p(©)) +Ep'OAP®) < 0(a(®) + 4" O)A(®) = p©) < q(®)

and q (&) is the best dominant (BDT).

Lemma 3 [17]: Define a univalent function q(¢) in U and g and 4 be two analytic functions

in a domain D admitting q(U). Let

(i) Re(i’((z((g))) > 0 for £ € U and

(i) £q'(6)A( q(&)) is starlike univalent in U.

If p € H[ q(0),1] n Q, with p(U) < D, and o(p(&)) + &p’' (§)A(p(£)) is univalent in U, also
0(a(®) +¢q'(©A(a(®) < o)) + &' () A(p()) = q(§) <p()

and q (&) is the best subordinate.

3. Convoluted operators
Let vic#0 €C, seN:={1,2,-}, v,2,-,v,2 and ¢,2,-+,¢;,2 (i,j EN:=
{1,2,---}) , the hypergeometric ,Supercos, function is defined by [1] and presented as:
(V)2m (V) am (=1)ME2™
o~ (c)om " (¢)2m 2m)! 7

iSupercos;[(vy,2) =+, (vi, 2); (€1, 2),+++, (¢}, 2); §] =

where

O)m = %=H(0+s—1):6(0+1)(a+2),...(a+5_1)_

By taking into account the iSlZpercosj function; we present the following complicated
operator. To accomplish our objective, we have used the m — derivatives (m € Z =
{..,—1,0,1,...}) as follows:

| iSupercos;[(vq,2) -+, (v, 2); (¢1,2), -+, (¢}, 2); f]]l =

Zoo Vi)am - Vi)am Zm(—l)m EZm—l
Mm=0 (c)ym(clam (2m)!

[ iSupercos;[(v1,2) -+, (v, 2); (c1,2), -+, (61, 2); §1]” =

200 Vi)om - Vi)am 2m(2m—1)(—1)m EZm—Z
M=0 (c1)om(c)am (2m)!

[ iSupercos;[(vy,2) -+, (v, 2); (c1,2), -+, (¢;, 2); €1]" = %o ((Vl)Zm"'(Vi)2m>

(Cl)zm"'(cj)zm
(2m(2m—1)...(2m—(m—1))(—1)m
X

(2m)! ) &

Given two functions f of the form (1) and A defined by
) =E+ ) fni™
m=2
the Hadamard product (or convolution) of f(§) and h(¢) given by

FmE =+ ) anfni™
m=2
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We proceed to formulate the linear convolution operator
iAj[[(Vbzl)Lii (Cl»21)1,j; E] =

m
[ iSupercos;[(v1,2) -+, (vi, 2); (c1,2), -+, (3, 2); €1]" * AE)
_ (VDzm = (Vi)am
=0 (Cl)Zm (Cj)Zm

RN TS (2m)! m

where, A($):= Ym=o 2m(2m—1)...(Zm—(m—l))(—l)mE :

Remark 1. By using the dimidiation formulas

@um=27(5), ().

The operator 4) becomes

C (V)om = (Vi)am

iAA; as follows:

&, (4)

Ail[ve 201 (e 201,55 €] = L @am &)am §m
5O, (Y, ), (4,
() (59, (@), (),
(N SRCNC SR
= ), (59, @, (29,
1 1
> Vm (5+ V1) - (Vdm (5 + Vi
— Z (ZZm)l—] (f )m (21 )m gm
m=0 (C)m (7 + Cl)m " (C]) (7 + Cl)m
_ [i ((mm - (Vm ) E_’"]
2\ Cn (), ) m

°° 1 R E
* Z r(m+ 1)(4m=/ (i N Vl)m (i i Vl)m
Le). - 6ro)
r=W(E) * EG).

where V; = 5 o =% (i,j e N:={1,2,--}),and W (&) indicates the Fox Write-function.

Therefore, our next operator is a generalization to the well-known Fox-Write operator.
Now, a shifted step on (4), we present the following normalized linear operator:

fm

m

U (v 2016 (602D €] = gzg iNj[(ve, - vi); (cq, 0, 6); )
_ N Waem-n - (V)2@m-n) gm
2, @ @

o i, T(vi+2(m-1))
= Ly .
E + Zm—Z v,C H{=1 F(c]-+2(m—1)

§m (5)

where
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, -1 ;
[ [roo ﬁ re) |
I=1 =1

Poonam et al. [18] presented a multiplier operator of order k (k € Z == {...,—1,0,1,...}) in
terms of univalent function by the following form:

Gﬂf(f)—f+z 1+22 )y] ©)

where (&) given by (1) and s > —1, andy > 0.

Now, let introduce the differential operator M"V“[(vl,Z)Li; (c,2)1j; §]:A—> A of
supertrigonometric function by:

M [ ) (e Di)f©) = £+

(m-1)y1* M., r(vi+2(m-1))--r(vi+2(m-1)) m
%CZ"‘_Z[ s+1 ] M), (c1+2(m-1))- r(c,+2(m 1)) i § ()

For convenient we denote

Ml f ) = My [ 2D (e 201,51 (€). ®)
Remark 2: [19-27] The operator Mk “[vl] IS a generalization of the several known operators
which are exhibited by:

() M;7°[elf(§) =J5of(€)  (k €No, Ciitas operator).

(i) IVIJ."‘]'.”'0 [c]f (&) = D{fF (&) (k € Ny, Al — Oboudi operator).

(iii) Mj’fj’-l’o [c,1f (§) = DEF(&) (k € Ny, Sdldgean operator).

(iv) IVIJ.'fj'.y'y[cl]f(f) =Mf(&) (keN, Swamy operator).

V) M Helf (@) = JEF(€) (k € No, Swamy operator).

(vi) Mj’f]’-l"(S [c1f (&) = JEF(O) (k € Ny, Cho and Srivastava operator).
(vii) M]-Tju’l"g [alf (&) =Jusf (&) (u € Z*, Srivastava and Attiya).

(viii)) M [ f(8) =], f(§)  (Jung et al.).

(ix) (M_l’l"(S [ci1f (&) = M, f(&) (Cho and Kim operator), beside that

(x) Moy‘g[vl]f({) is a linear operator considering a special form of the Dziok and Srivastava

operator.
From (8), we have:

Proposition 1: Forall f € A, we obtain

LM @) + (1—25) M mlf @) = M vy, el ().

&+1
Proof. By applying (8), we get

T 1) B YRS i) PR Lt 14 NS

—(1—%)(&2 1+ D m5m>

e
(m-1)
= 4T, m[1+ O] g, em)

8+1

s+1

i, r(vi+2(m- 1)) T (vi+2(m-1))
I ,T(er+2(m-1))- F(C]+2(m 1))

where Y. =¥, . < ) and ¥, . is given by (5).
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Proposition 2: Forall f € Aand[ =1, ..., i, we obtain

M lf @) = (5) M+ 11£@) — (2

-2
) Ml i f ).

The main object here is to make use of a method found by the theory of differential
subordination involving the operator Mk”[ v;]. The operator is specified in (8) and obtains
adequate requirements for some normallzed analytic functions f(¢) # 0 and f to meet the

condition
kys
vilf (&)
AGE (—f )

where q,(¢) and g,(¢) are univalent in U such that q;(0) = g,(0) = 1. Further, several
outcomes and exceptional cases are illustrated in the following.

q2(¢$) (weC; w+0 and & € V), 9)

4. Applications of double differential inequalities

In this section, several findings on the subordination between analytical functions on the
open unit disk U are introduced beginning with Theorem 1, which is an application to Lemma
2.

Theorem 1: Define the univalent function q(§) with q(¢) # 0 and
function in U. For w,{, u,o € C and w, a # 0, let

ta (? is starlike univalent

§a"' () §d'®) © 2u 2
Re{1+558 208 12 q(6) + 2 (q(6))?) > 0 (€ V), (10)
and
M)\ M)
@ﬁ5<vl,w,c,u,a,f)<f):=r+c<% + |~
(s+1) *f ()
+ — 1. 11
ow y leJ+1y5[ ]f(f) l ( )
If the following subordination condition is fulfilled by g:
04 (v, 0,6, 1,0, £)(§) < T +2q(E) + p(q(§)? + 0 LE. (12)
Then
MY e\
(__, — ) <q(®), (13)

and q (&) is the BDT.
Proof. Assume that p(¢) is formulated by

ijfl'y'ﬁ[vl]f(f) ¢
pr=(ME) geus ex0irem,

such that

M IFO\T T @) = M ]
fp,(g)::w( y fwf ) {( f();z lf(a}

By a straightforward computation, we obtain the following relation:
/© _ 500 F @)
P M (€)

and by applying the identity equation in Proposmon 1, we obtain
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&'¢) _w MY i f (§)
o® 7 (‘Hl)M"““[ G

Depending on the following setting:
O(w):=1+{w+puw? and ¢p(w):= %,

it is simple to confirm that 8 and ¢ are analytic in C and C\{0} accordingly and that ¢(w) #
0 (w # 0). Additionally, define

—(+ 1))

Q():=¢q'¢) p(q(&)) =0 G
such that
L _ , . $q9'(®)
h(z):=0(q()+Q) =1t+{q) +u@@) +0o G

Obviously, Q(¢) is starlike in U, and
Sh(EN _ §q"(5) $4'G) ¢
o) R To e ORE LY B
By applying Lemma 1, assertion (13) of Theorem 1 is attended.

Now, by taking q(¢) = Lras

1+B¢
application of Lemma 2, we get:

Corollary 1: For w,{,u,o € Csuchthat w,a # 0, if f € A, (10) holds true and

k+1,y,8 w k+1,y,8 2w
" (Mi, Ly E[w]f(f)) u <MJ” g[wlf(é’))

k+2y5
i vdf & 2 -
Fo(+1)? [— 1]<T+g1+Af+M(1+Af) boADE

,—1<B<A<1andq(¢)= 1—415 in Theorem 1 with an

f'

l"f”‘s[v 17 1+B¢ 1+B¢ (1+A48)(1+B§)’
then
M2 v F ) © 1+4¢§
v
<—€ < Tpe (w€eC;, w=+0) (14)
and +A$ is the BDT.
B d
Also, by consuming q(§) = (1—:@) ,0<d <1,inTheorem 1, we have:

Corollary 2: For w,{,u,o € C suchthat w,o # 0, if f € A, (10) holds true and
M@\ (M e\
T+ {|(~L—| +u|—~L—

3 3
k+2ys
Vil £ () 1+6\4 1+8) 24 2d¢
+O'(5+1) [Wy(ﬂ 1] <T+((§) +‘U(1—_€) + 0o -2
then
M1 \Y aead
L] 5 .
<—St ) < (1_5) , (WeEC; w=+0) (15)

and q (&) = (%f) is the BDT.

Further, if () = = (d € OO,k =05 ¢ =1(I=1,,)), v =1(=1,),u=
(=0, w=1=1ando = % , in Theorem 1, then the following result is what Srivastava and
Lashin [28] get:

Corollary 3: For w,{,u,0 € Csuchthatw,oc # 0and 0 < d < 1, if f € A, (10) holds true and

3308



Abdulnaby and Ibrahim Iragi Journal of Science, 2024, Vol. 65, No. 6, pp: 3302-3312

e _1+¢
“ire “1-¢

then
1
1)< a—ee@
and (1 —&)?disthe BDT.

In the next outcome, we establish Theorem 2 using justifications similar to those given in
Theorem 1 with the equation in Proportion 2.

Theorem 2: Define the univalent function q(¢) such that q(§) # 0 and ig) is starlike in U.

Forw,(,u,c € C,w,c #0andl =1, ...,1, Iet

£ ¢ (f) 2
Re{1 +28 ;’@ £906) + 2 (q©)?) > 0 (16)
and
MEV [+ 10F @) M4y + 11O\
)({f,é(vl,w,f,ﬂ,o',f)(f) :=T+C( J lf > +,u< J léZ >
+o(vi+1)= [ Mkﬂy :nwigﬁz) 1l. (17)
If the following subordination condition is fulfllled by g:
X (0,61, 0, () < T+4q(E) + (g + 0 i‘l’(g).
Then
(M) <q®), @EC w#0), 18)

and q (&) is the BDT.
Remark 3: We point out that Theorem 2 can be reformulated for several choices of the function

q as are in Theorem 1.
Next, we prove some of the superordinations results by applying to Lemma 3:

Theorem 3: Define the univalent function g in U as follows: q(¢) # 0 and C;(—(;)) to be starlike

in U. Assuming that
Re{$q(®) +Z@©)} >0, (19)
forall {,o,uinCando # 0, if f € A,

k+1,y,8 w
0% (M” g[vl]f(f)> € QN H[q(0)1]:=V

and 6% ,(v;, w,{, 1, 0, f) is univalent in U, then

T4+0q(E) +u@@))? + o i‘;(g) <05, (v, 11,0, f).

Implies that,

MY
1) < (%) @ (€ Cw*0) (20)

and the g is the best subordinate where 6} ,(v;, w,{, i, o, f) is defined by (11).
Proof. By letting

k(W):=T1+{w +uw? and p(w):=—

3309



Abdulnaby and Ibrahim Iragi Journal of Science, 2024, Vol. 65, No. 6, pp: 3302-3312

then k, ¢ are analytic in C and C\{0}, respectively, with ¢(w) = 0 (w € C\{0}), since q is
convex then
K'(q(§) _

¢ 2u )
Reoa@) Re{Za(§) + (a2} > 0

forall {,o,u in C and o # 0. The assertion (20) of Theorem 3, follows by an application of
Lemma 3.

Theorem 4: Define the univalent function g in U with q(§) # 0 and q((;) to be starlike
univalent in U. Assuming that
2
Re{$q(0) + 2 (@)%} >0, (21)
forall {,o,uinCand o # 0, if f € 4,
My + 1£(©))”
0+ ’ 3 ey,

where V= [q(0),1]1 N ¢ and x;,(v;, c;, w,, 1, 0, f) is univalent function in U, then

T+4q(&) +u(q(§))* + qu(g) < x5s(vuw, 3, p0,f)

implies that,
MV v+ 11£(E)

q(f)<< : >,‘° (weCw+0) (22)
and the g is the best subordinate where x ,(v;, w, ¢, i, 0, f) is defined by (17).

The following differential sandwich theorem is created by merging the above results. By
combining Theorem 1 and Theorem 3, we introduce:
Theorem 5: Define two univalent functions g; and g, in U with q;(§) # 0 and q,(¢) # 0,

(¢ € U) such that qul(g) and fng)) to be starlike. Suppose g, and g, achieve (19) and (10)
1 a2

respectively. If f € A,
k+1y,8
0% <M ; ]f(f)) v

and O% ,(v;, w, ¢, u, 0, f) is univalent in U, then
§q1(¢
7481 () + u(@ ()2 + 22D < 0f (v, 0,810, )

q1(8)
<Tt+7q,(¢) + H(QZ(E))Z + O_quzzg))’

for {,u,w,o € C, w,0 # 0 implies

Mk+1y5[ ] f
q1(€)<< 3 A )> < q2($)

and g, and g, are coordinately the best subordinate and dominant.
Moreover, we have the next double sides result by using Theorem 2 and Theorem 4.

Theorem 6: Define the two univalent functions g, and g, in U having the properties q;(¢) #
0 and ¢,(¢) # 0, (¢ € U) such that gql((;)) and quzg)) are starlike. Consume ¢, and g, admit
(21) and (16) correspondingly. If f € A,
(Mﬁﬁw+ﬂﬂ®y)
0+ : ev,
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and x; s(vi, , ¢, 1, 0, ) is univalent in U, then

T+ 0 (®) + 1@ (©)? + 1L < vk (w0, ¢ 10, f)

q1($)
§43(¢
<T+8q () + p(g2(9) + 02,

for {,u,w,o € C, w,0 # 0 implies
M v+ 107\
q:(6) << 2 ‘E ) < q,(8)

and g, and g, are correspondingly the best subordinate and dominant.

5. Conclusions

We defined and studied aspects of subordination applications for the convoluted operator
presented in (8) as the differential of a super-trigonometric function using notions of differential
subordination and superordination. The original theorems established inequalities, which give
the best subordinate and dominant and intriguing corollaries, correspondingly. As a
consequence, sandwich results are presented. In investigations using geometric theories, the
convoluted operator of differential of a super trigonometric function produces good results; it
may be used to propose new classes of analytic functions. Theorems relating to neighborhood,
the radii starlikeness or convexity, closure theorems, distortion theorems, and coefficient
estimations can all be examined.
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