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Abstract 

     In order to examine various geometric features, we expanded the 

supertrigonometric function (STF) and superhyperbolic function (SHF) into the 

open unit disk. A convolution differential operator of the STF provides the formulas. 

The suggested operator works with both integral and double differential inequalities. 

As a result, we present a collection of findings that includes recent works. The idea 

of subordination and superordination serves as a guide for our method, and we then 

developed the primary conclusion as a double side’s theorem. 
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1. Introduction 

     Xiao-Jun [1, 2] has recently created the theories of the Wiman function, STFs, and SHFs. 

The Wiman function and connected functions integral representations are explored, and the 

generic fractional calculus operators are thoroughly covered as well. The integral equations 

and mathematical factors (model, design, formula, etc.) connected to the Wiman function are 

additionally in depth, along with the shortened Wiman function, STFs and SHFs. These 

functions produced the STFs and SHFs through the STFs and SHFs addressed the theory of 

the hypergeometric function. A depth discussion is provided on the integral formulas for the 

STFs and SHFs as well as the Laplace transfigures for the new special functions. The classical 

fractional calculus including the hypergeometric function is taken into consideration, along 

with the suggested truncated hypergeometric, STFs and SHFs. Additionally, the integral 

equations and mathematical models are included and connected to the hypergeometric 

function.   Based on the presentation of STFs and SHFs, we extended these functions into the 

open unit disk to study some geometric properties. The formulations are suggested by a 

convolution differential operator of the STFs and SHFs. The proposed operator is involved in 

double differential inequalities, as well as integral. As a consequence, we introduce a set of 

results containing recent works. Our technique is indicated by the theory of subordination and 

superordination and then we formulated the main result as a double sides theorem.  

 

2. Support results 

   Let   be the class of functions in the open unit disk    {                 } of the 

form: 

          
     

     
 and let   denote the class of functions analytic in  , and usually defined by  

 

                                                   ∑   
                                                   (1) 

     Assume the analytic functions   and   in  , then   is subordinated to   if there exists a 

Schwarz function  , analytic in   with        and       with              for 

    satisfying the inequality            
 

     This subordination is equivalent to           and          , specifically, if the 

function   is univalent in  . Suppose that       and                   . If      
and                             are univalent and if    admits the second inequality  

                                                                                                                      (2) 

consequently,   is the differential superordination equation's solution. Keep in mind that   is 

referred to as being superordinate to   if   is subordinate to   .  

For     and   Miller and Mocanu [3] proved the following implication:  

                                           
For     given by (1), Ali et al. [4] employed the outcomes of Bulboacă [5] found sufficient 

conditions on        to get  

      
      

    
        

where    and    are given univalent functions in   with                A review of 

efforts on this direction can be found in [6-15].  

 

 We shall apply the following preliminaries in order to demonstrate our findings: 

Lemma 1 [16]: Define the set   of all functions   that are univalent on       , such that  

                                            {        
   

      }                                                    (3) 

 and are implies that,         for              
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 Lemma 2 [16]: Define the univalent function      in   and analytic functions   and   in a  

domain   admitting      with        when        . Also, define  

             (    )                          
Consider that   

    (i)       is starlike univalent in  , and  

    (ii)     
      

    
    for       

 If 

               (    )   (    )         (    )              

and      is the best dominant (BDT).  

Lemma 3 [17]: Define a univalent function      in   and    and   be two analytic functions 

in a domain   admitting       Let 

(i)    
  (    )

 (     )
    for     and  

(ii)                is starlike univalent in    
If    [       ]     with         and                       is univalent in  , also 

 (    )         (    )                 (    )              
and      is the best subordinate.  

  

3. Convoluted operators 

            Let         ,      {     },             and              (       

{     }  , the hypergeometric             function is defined by [1] and presented as: 

           [                                 ]  ∑  

 

   

             
             

        

     
  

where  

       
      

    
 ∏ 

 

   

                              

  By taking into account the              function; we present the following complicated 

operator. To accomplish our objective, we have used the    derivatives      
{          }  as follows: 

[           [                                 ]]
 
 

                                                                                                 ∑   
   

             

             

       

     
       

[           [                                 ]]
 
 

                                                                                          ∑   
   

             

               

             

     
       

  

[           [                                 ]]
 

 ∑   
   (

             

             
)  

                                                                                  (
                          

     
)     

      Given two functions   of the form (1) and   defined by  

       ∑  

 

   

      

the Hadamard product (or convolution) of      and       given by  

           ∑  
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 We proceed to formulate the linear convolution operator       as follows:  

     [[                        ]  

                                                    [           [                                 ]]
 

                        

                                                                ∑  

 

   

             
             

                                                       

where,        ∑   
   

     

                        
     

Remark 1. By using the dimidiation formulas  

           (
 

 
)
 
 (
   

 
)
 
  

The operator (4) becomes                  

    [[                        ]   ∑  

 

   

             
             

   

 

 ∑  

 

   

    (
  

 )
 
 (
    

 )
 

     (
  

 )
 
 (
    

 )
 

    (
  
 
)
 
 (
    

 
)
 

     (
  
 
)
 
 (
    

 
)
 

   

 

 ∑        

(

 
 (
  

 )
 
 (
    

 )
 

  (
  

 )
 
 (
    

 )
 

 (
  
 )

 
 (
    

 )
 

  (
  
 )

 
 (
    

 )
 )

 

 

   

     

 

 ∑        (
       (

 
    )

 
        (

 
    )

 

       (
 
    )

 
  (  )  (

 
    )

 

)

 

   

     

 [∑  (
                

         (  ) 
 
)

 

   

 
   

  
]

 [∑              (
 (
 
    )

 
  (

 
    )

 

 (
 
    )

 
  (

 
    )

 

)

 

   

    ] 

             

where    
  

 
  ,     

  

 
         {     }   and        indicates the Fox Write-function. 

Therefore, our next operator is a generalization to the well-known Fox-Write operator. 

Now, a shifted step on (4), we present the following normalized linear operator:  

 

     [                        ]    (    [                     ]) 

                           ∑  

 

   

                     

                     
   

                                                                   ∑   
        

∏   
               

∏  
 
              

                                    

 where  
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     (∏ 

 

   

     )

  

(∏ 

 

   

     )  

    Poonam et al. [18] presented a multiplier operator of order   (    {          } ) in 

terms of univalent function by the following form:               

                                                  
        ∑  

 

   

[  
      

   
]
 

                                             

where      given by (1) and                  

    Now, let introduce the differential operator     
     

[                      ]     of 

supertrigonometric function by:  

    
     

[                   ]      

        ∑   
   [ 

      

   
]
 

 
∏   

    (         )  (         )

∏  
 
    (         )  (         )

                                                     

(7) 

For convenient we denote  

                                         
     

[  ]         
     

[                   ]                                   (8) 

 Remark 2: [19-27] The operator     
     

[  ] is a generalization of the several known 

operators which are exhibited by: 

(i)       
     [  ]         

                         ̌                

(ii)      
     [  ]       

                                         

(iii)     
     [  ]       

                      ̌  ̌                

(iv)      
     [  ]       

                                         

(v)       
         [  ]       

                                  

(vi)      
     [  ]       

                                                        

(vii)     
      [  ]                  (                               

(viii)     
      [  ]                                   

(ix)       
      [  ]     

     
                            , beside that 

(x)      
     

[  ]     is a linear operator considering a special form of the Dziok and Srivastava 

operator. 

     From (8), we have:  

 

Proposition 1:  For all      we obtain  
 

   
      

     
[  ]     

   (  
 

   
)    

     
[  ]          

       [     ]          

 

Proof.  By applying (8), we get 

 

   
      

     
[  ]     

    ∑  

 

   

   
      

   
 [  

      

   
]
 

      
        

    
 

   
 (  ∑  

 

   

[  
      

   
]
 

      
       ) 

  
 

   
   ∑   

    [  
      

   
]
 

      
         



Abdulnaby and Ibrahim                            Iraqi Journal of Science, 2024, Vol. 65, No. 6, pp: 5302-5312 

 

5307 

 where        
      (

∏   
    (         )  (         )

∏  
 
    (         )  (         )

) and       is given by  (5). 

 

Proposition 2:  For all     and          we obtain 

      
     

[  ]     
  (

  

 
)    

     [    ]     (
    

 
)    

     
[  ]      

 

     The main object here is to make use of a method found by the theory of differential 

subordination involving the operator     
     

[  ]. The operator is specified in (8) and obtains 

adequate requirements for some normalized analytic functions        and   to meet the 

condition  

                       (
    

     
[  ]    

 
)

 

                                              (9) 

where       and       are univalent in   such that              . Further, several 

outcomes and exceptional cases are illustrated in the following. 

 

4. Applications of double differential inequalities  

     In this section, several findings on the subordination between analytical functions on the 

open unit disk   are introduced beginning with Theorem 1, which is an application to Lemma 

2. 

Theorem 1: Define the univalent function      with        and  
      

    
 is starlike univalent 

function in  . For           and      , let  

                       {  
       

     
 

      

    
 

 

 
     

  

 
       }                       (10) 

 and  

       
                       (

    
       [  ]    

 
)

 

  (
    

       [  ]    

 
)

  

 

                                                                           
     

 
[
    

       [  ]    

    
      [  ]    

  ]            (11) 

 If the following subordination condition is fulfilled by  : 

                               
                                     

      

    
                     (12) 

 Then  

                                                     (
    

       [  ]    

 
)

 

                                             (13) 

 and      is the BDT.  

 Proof.  Assume that      is formulated by  

                                    (
    

       [  ]    

 
)

 

                                          

 such that  

           (
    

       [  ]    

 
)

   

  {
      

       [  ]     
      

       [  ]    

  
}  

 By a straightforward computation, we obtain the following relation:  

      

    
  [

      
       [  ]     

 

    
       [  ]    

  ] 

 and by applying the identity equation in Proposition 1, we obtain  
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[     

    
       [  ]    

    
       [  ]    

      ]  

 Depending on the following setting: 

                             
 

 
  

 it is simple to confirm that   and   are analytic in   and   { } accordingly and that      
          Additionally, define  

                      
      

    
 

such that  

                                     
      

    
  

 Obviously,      is starlike in  , and  

 {
      

    
}   {  

       

     
 

      

    
 

 

 
      

 

 
       }     

By applying Lemma 1, assertion (13) of Theorem 1 is attended. 

    Now, by taking      
    

    
          and      

   

   
  in Theorem 1 with an 

application of Lemma 2, we get: 

Corollary 1:  For           such that       , if     , (10) holds true and  

    (
    

       [  ]    

 
)

 

  (
    

       [  ]    

 
)

  

 

            
 

 
[
    

       [  ]    

    
      [  ]    

  ]     
    

    
  (

    

    
)
 

  
      

            
  

 then  

                                                (
    

       [  ]    

 
)

 

 
    

    
                         (14) 

 and 
    

    
 is the BDT.  

Also, by consuming      (
   

   
)
 

        in Theorem 1, we have:  

Corollary 2:  For           such that      , if    , (10) holds true and 

    (
    

       [  ]    

 
)

 

  (
    

       [  ]    

 
)

  

 

                  
 

 
[
    

       [  ]    

 
   
      [  ]    

  ]      (
   

   
)
 

  (
   

   
)
  

  
   

      
  

 then  

                                            (
    

       [  ]    

 
)

 

 (
   

   
)
 

                            (15) 

 and      (
   

   
)
 

 is the BDT.  

Further, if     
 

       
      { }                                     ,   

   ,       and   
 

 
 , in Theorem 1, then the following result is what Srivastava and 

Lashin [28] get: 

 

Corollary 3: For           such that       and      , if    , (10) holds true 

and  
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 then  

      
 

       
  

  and          is the BDT.  

 

     In the next outcome, we establish Theorem 2 using justifications similar to those given in 

Theorem 1 with the equation in Proportion 2. 

 

Theorem 2: Define the univalent function      such that        and 
      

    
 is starlike in   . 

For          ,       and        , let  

                                   {  
       

     
 

      

    
 

 

 
     

  

 
       }                       (16) 

 and  

    
                      (

    
     

[    ]    

 
)

 

  (
    

     
[    ]    

 
)

  

 

                                                               
 

  
[

    
     [    ]    

 
   
       [    ]    

  ]                                (17) 

 If the following subordination condition is fulfilled by  :  

    
                                     

      

    
  

 Then  

                                              (
    

     
[    ]    

 
)

 

                                              (18) 

 and      is the BDT.  

Remark 3: We point out that Theorem 2 can be reformulated for several choices of the 

function    as are in Theorem 1. 

    Next, we prove some of the superordinations results by applying to Lemma 3:  

Theorem 3: Define the univalent function   in   as follows:        and 
     

    
 to be starlike 

in  . Assuming that  

                                                        {
 

 
     

  

 
       }                                             (19) 

 for all       in   and    , if    ,  

  (
    

       [  ]    

 
)

 

    [      ]     

 and     
                is univalent in  , then  

                  
      

    
     

                 

 Implies that,  

                                           (
    

       [  ]    

 
)                                        (20) 

 and the   is the best subordinate where     
                is defined by (11).  

 Proof. By letting  
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 then     are analytic in   and   { }  respectively, with              { }   since   is 

convex then  

  
        

       
   {

 

 
     

  

 
       }     

 for all       in   and    . The assertion (20) of Theorem 3, follows by an application of 

Lemma 3.  

Theorem 4: Define the univalent function   in   with        and 
     

    
 to be starlike 

univalent in  . Assuming that  

                                                       {
 

 
     

  

 
       }                                         (21) 

 for all       in   and    , if    ,  

  (
    

     [    ]    

 
)

 

    

where   [      ]     and      
                   is univalent function in  , then  

                  
      

    
     

                

 implies that,  

                                             (
    

     [    ]    

 
)                                              (22) 

 and the   is the best subordinate where     
                is defined by (17).  

 

     The following differential sandwich theorem is created by merging the above results. By 

combining Theorem 1 and Theorem 3, we introduce: 

Theorem 5:  Define two univalent functions    and    in   with         and         

      such that 
   

    

     
 and 

   
    

     
 to be starlike. Suppose    and    achieve (19) and (10) 

respectively. If    ,  

  (
    

       [  ]    

 
)

 

    

 and     
                is univalent in  , then  

                  
   

   
    

     
      

                

                                                                                    
   

   
    

     
  

 for           ,       implies  

      (
    

       [  ]    

 
)

 

       

 and    and    are coordinately the best subordinate and dominant.  

Moreover, we have the next double sides result by using Theorem 2 and Theorem 4.  

 

Theorem 6: Define the two univalent functions    and    in   having the properties       

  and               such that 
   

    

     
 and 

   
    

     
 are starlike. Consume    and    admit 

(21) and (16) correspondingly. If    ,  

  (
    

     [    ]    

 
)
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 and     
                is univalent in  , then  

                  
   

   
    

     
     

                

                                                                                    
   

   
    

     
  

 for           ,       implies  

      (
    

     [    ]    

 
)

 

       

 and    and    are correspondingly the best subordinate and dominant.  

 

5.  Conclusions  

     We defined and studied aspects of subordination applications for the convoluted operator 

presented in (8) as the differential of a super-trigonometric function using notions of 

differential subordination and superordination. The original theorems established inequalities, 

which give the best subordinate and dominant and intriguing corollaries, correspondingly. As 

a consequence, sandwich results are presented. In investigations using geometric theories, the 

convoluted operator of differential of a super trigonometric function produces good results; it 

may be used to propose new classes of analytic functions. Theorems relating to neighborhood, 

the radii starlikeness or convexity, closure theorems, distortion theorems, and coefficient 

estimations can all be examined. 
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