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Abstract

In this paper, the Newtonian incompressible Navier-Stokes equations in
cylindrical polar coordinates can be solved using a Galerkin finite element method
proposed based on an artificial compressibility scheme. In this study, two various
formulations of the viscous stress tensor are represented, named the rate of
deformation tensor T, and the velocity gradient tensor Ty,. A comparison is
undertaken between both options T4 and Tg,,. In this context, attention is paid to the
rate of convergence and the influence of variation in Reynolds number (Re) and
artificial compressible parameter f8,. by using both assumptions, T,; and T,,. The
critical values of Reynolds number (Re) and artificial compressible parameter £,
are highlighted in this study as well. Generally, through the analysis of results, we
detected that the results with the rate of deformation tensor T,.; are better than the
results with the velocity gradient tensor Ty,,.

Keywords: Finite Element Method; Galerkin Method; Artificial Compressibility
Method; Newtonian Flow; Navier-Stokes.
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1. Introduction

The present study is focused on solving the incompressible Navier-Stokes equations for a
Newtonian fluid with a special focus on the significance of the stress tensor (7) in
determining fluid behavior. The quantities often used in continuum mechanics are the rate of
deformation tensor and the spin tensor. These tensors are defined as follows:

l= %(Vu + (Vu)?), w= %(Vu — (Vw)"),
where u is the fluid velocity, see [1], [2], and [3].
Ignoring the torque on an element that is caused by flow (external torque), the viscous
"intrinsic' torque per unit volume of a fluid element is written (as an antisymmetric tensor w),
which represents the rate of change in intrinsic angular momentum density during time.
When particles have rotational degrees of freedom, they have an intrinsic angular momentum.

This angular momentum can be altered through collisions. The intrinsic angular
momentum can change over time, leading to an intrinsic torque that is not zero. As this
implies, an antisymmetric component with a corresponding rotational viscosity coefficient
will be present in the viscous stress tensor. Conversely, if the fluid particles have negligible
angular momentum or their angular momentum is not sufficiently coupled to the external
angular momentum, or if the time it takes for the external and internal degrees of freedom to
equilibrate is almost zero, then the torque will be zero and the viscous stress tensor will be
symmetric (similar to symmetric tensor 1). External forces can cause an asymmetric stress
tensor component, such as in ferromagnetic fluids that experience torque due to external
magnetic fields [4], [5].

In our previous study [6], we studied unsteady incompressible Navier-Stokes equations
with deformation rate (7) as velocity gradient tensor. There, the finite element method is
employed as a numerical approach based on artificial compressibility to treat the problem
under consideration. In addition, the tensor (T) is decomposed into a symmetric and a
skewsymmetric part, as

d=1l+w=Vu
To study this subject with a new modification, the same method that was used in our previous
investigation is applied with the antisymmetric part of the tensor (7) equal to zero. That is, T
only contains the symmetric part (!), and then compares the results for both cases. The
novelty of this study is represented by conducting the AC - method in a manner compatible
with the Galerkin finite element method under values of the artificial compressible parameter
Pac- Moreover, the temporal convergence rate of the system solution is taken under two
various formulations of the viscous stress tensor with the effects of 8. and Reynolds number
(Re), which was not addressed by researchers previously. Additionally, the determination of
the critical Reynolds number levels (Re) is also an exciting issue of this study. As is known,
nonlinearity in numerical studies represents a major challenge that needs to be addressed very
efficiently. So, the Newton-Raphson method is also applied to treat the nonlinear equations
with the backward different scheme within our algorithm.
The mathematical modeling of the motion of Newtonian flows is presented in the next
section. These equations are introduced in the cylindrical coordinates. The finite element
formulation and the numerical method are characterized in Section 3. In Sections 4 and 5, the
problem discretization and related numerical results are shown.

2. Mathematical modelling

The motion equations for a fluid that is incompressible consist of the continuity balance
equation, which is defined as:
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V.u=0, (1)
and momentum balance equation, which is defined based on two different viscous stress
tensors, are represented by T;.q and Ty, ( see [3]) :

T WV =2V (=pl + Ty, 2)

ou 1
S T @Vu= SV (—pl +Ty). (3)

Here, u is the velocity vector, p the hydrodynamic pressure, [ is the unit tensor, and T4 and
Ty, are the viscous stress tensors, such that

Tra = us(Vu + (V)"), Tgy = usVu,
where p; is the solvent viscosity.
On the other hand, Equations (2), and (3) can also be defined by the non-dimensional groups,
denoted by a *, are used

L

w=Uu ,p=uyp’, t=pt, L= L', V=1V,

where the scales of U, L, p, p and u; are velocity, length, density, pressure, and viscosity,
respectively, and defined the nondimensional Reynolds number (Re) as Re = pZ—l, see [7-
S

10].
ou v 1 v I+ T |
ot I (”' )“ Re . ( i T‘d)' ( )

ou 1
St wVu=—v. (—pI +Ty,). (5)

The numerical solution of these equations is a major challenge, due in part to the importance
of pressure in the equations. Thus, the Galerkin finite element method based on the artificial
compressibility (AC) method is employed to solve the system of governing equations. In this
context, the Navier-Stokes equations can be changed to a hyperbolic compressible system,
which can be solved by a standard time-dependent approach for more details details, see [11-

16]. Here, the continuity equation is rewritten in the form:

1 Op _
aa‘l‘v.u—o, (6)

where, B, is the artificial compressibility parameter.

2.1 Numerical background

The finite element method has become a popular method for solving incompressible
Navier-Stokes equations, see [17]. First, in the cylindrical components, Equations (6) and (4)
can be written as
Continuity equation

1 dp , Ouy, |, 1 10ug , Ouy
——+—+-u -——+—=0. 7
Bac Ot 6r+r T+rae+az (7
Momentum equation
r-component
ou, ouy | ugdur uf ou, 1dp , B 0%u,
u 2—T_SL4yu =—=——+=
6t+ r6r+r69 r+ Z 9z Re Or Re( or?
20u, , 10%u, 10dug , 19%ug , 9%u, azuz) ®)
ror r20602 r290  rafor 9z2 = o0zor’’
6-component
dug oug , ugdug , uUrlg dug 1 dp , B ,0%uy
— 4y, —2+=2= Uy —2 = ———+— (==
ot + T ar +2r 69-: t Z 9z rRe69+Re(6r2
1 duy 1 0%ug , 0%uy
+r2 00 + r2 962 0z2 ), ©)

z-component
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ouy dug | ug du, ouy 1dp B ,0%u,
= u, —=———- —_(—=
at t U ar '|2' r 692+ Z 9z Re 0z e(arz
10uy, 1 0%u; , 0°uy,
10uz 4 100y . 1
+r or +r2 002 622) ( O)

Next, the velocity u and the pressure p are approximated by an interpolation of the nodal
point values of the concerned quantity:

u(r,6,z,t) = Z L W1, 0, 2)u,(t),

p(T, 0,z, t) = Z:L:pl d)k(r' Q,Z)pk(t),

where m,, is the number of velocity nodes and m,, is the number of pressure unknowns (j =

1,2,...,6, the total number of nodes, which includes mid-side points, and k=1, 2, 3, the
number of vertex nodes only).
In matrix-vector notation, Equations (7)-(10) become

[Mp1[p] + [GE1[ur] + [g]lur] + [G7][us] + [G3][uz] = 0, (11)

[M][t] + [Q(ur, ug, u)][ur] + [qo][ue] — R—le [G1][ur] + 2[Cr]ur]
+2[c,][ur] + [Collur] + [CIlur] + [fillue] + [f2llue] + [H][u,] = 0, (12)

[M][tg] + [Q (ur, ug, uz)][ug
+[Colluel + [Co1{up] — [fs]lur] = 0, (13)

[M] [uz] + [Q(urrueiuz)][uz] - R_le [63][uz] + [Cr] [uz] + [Cr] [uz] + [CG][uz] + [Cz] [uz] =
0. (14)

Such that
1. Mass Matrix,

M) = fo YyrdQ, [My] = o= [, $pp7dO. (15)

2. Convective Matrix,

[QCutr g, )] = fo (o1, 2+ 2yppug 20 4 yypru, 2oyd,  (16)

— Jpe 2UUTugYTdQ,  [gr] = [oo ~YpTugpTdO.

3. Diffusive Matrix,

B oY 9y _ B YT B 1 0y oyYT
[CT] = Efge (67" ar)dﬂ [ = er ( lp )d‘Q C@ f e T_zﬁﬁdﬂr

[c1=L1. 2% a0, A=A =L, Svido,

_ B 1oypoy”
= fﬂe o 20 d. (17)
_5 61,[)61,0
fe 0z ar (18)
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4. Gradient Matrix,
[61] = [ 22 67d, [Go] = [0 255.07d, [Gs] = [, SE¢7d0.
(9] = o (Gow7)an. (19)
Quadratic and linear triangular shape functions will be utilized for velocities and pressure

according to the theory of area coordinates. In this context, the quadratic and linear shape
functions for the nature of triangular area coordinates are described:

Y = [A][R], (Quadratic) (20)
¢ = [I1l[E] = [E], (Linear) 21
where
1 0 0 -1 0 -1 L4
010 -1 -1 0 L3 L,
oo 10 -1 -1 _ |12 _1;
0000 4 0 L,Ls ’
0 0 0 0 0 4 - 1,1, ]

The natural triangular area coordinates L;, L,, and L3 of the cylindrical coordinates are
defined as

L; = oy ea(al+br+cz) (i=123)

where, 4,04 18 the area of the element’s triangular and a;, b;, and c; are coefficients.

The Equations (11)-(14) can be rewritten in the matrix formulation using these

assumptions:
M 0 0 01,y |K qu_Gluro
oo flil e mo € “ e
0 0 0 M,lp Gitg 0 G p 0
[Kr] = [Qr (ur)] + [Qz(u)] + 2[Cr] + 2[cr] + [C], 24)
[Kol = [Qr(ur)] + [Qz(u)] + [Cr] + [C2], (25)
(K] = [Qr(un)] + [Qz(u)] + [Cr] + [er] + [C7]. (26)

The mass and artificial compressibility matrix can be expressed by utilizing the theory of
area coordinates for triangular elements:

[M] = 201 Agrea  AI[RRT][A7]. @27
[Mp] = 2013 Agrea 5 [EIIET], (28)

where,
T'm — 1"1+T'32+T'3 ,Zm — Zl+232+23. (29)

The shape function's derivative form can be defined as:
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2 = [A1[BI[E]

2 = [A][C][E)

0z
where,
2b; 0 0 7 2¢; 0 0
0 2b, 0 0 2c, 0
0 0 2bs 0 0 2¢c3
[B] = b, b; O el = c; ¢ 0 f
0 bs; b, 0 3 Gy
lb; 0 b, | lc; O ¢ |

On the other hand, the final diffusion matrix formula can be written as follows:

(€] = 2T Aarea = [A)[B[ENET)[BTI[A7), [c;] = —2M Aarea - [A][RI[E7][B][A7],

Re Re

[C;] = 2n7nAarea % [AJ[C][ET[EFT[CTIA™],

[H] = 2% Aarea - [A][C][E][E7][B7][A7],

Re

Moreover, the gradient matrix is defined as
[G1] = 2nrnAgrea[A][B][E][E"],

[G3] = 21 Area[AlIC][E][ET],

[9] = 27 Agreq[E][RT][AT].
The convective matrix is given by
[Qr ()] = 21T Agreal A [RI[RTT[A"][wr ] [E¥][B¥][A7],

[Q2(u)] = 2T Agreal AlIRI[R*][A®][u ] [EF][BT][A],

[96] = —2mAarea[AI[RIIR*][A%][ug][R*][A7],

[97] = 2mAarea[A][R][R*][A*][ug][RF][A"].

3. Simple test problem

(30)

1)
(32)
(33)
(34)
(35)
(36)
(37)
(38)

(39)

In this study, the model is a very simple channel with a circular cross-section. The no-slip
condition is imposed on the channel wall, and along the outflow boundary, zero radial
velocity applies. Poiseuille flow is specified at the inlet (see Figure (1)). For the purpose of
convergence analysis, consideration is given to a simple geometry that can be effectively
meshed into a small number of elements, as it will allow for faster convergence and multiple
test runs. This geometry is then subject to testing using FEM code at At is 0(1072) and the
time procedure is checked for convergence to a steady state using relative norms, provided

that it meets the appropriate tolerance criteria, which is 107
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U, = U, =0 (Top Wall)

L

ur =0 ur = 0
U. = Ps Flow Pp=0
(Inlet) (Outlet)

L L L

u, = U, = 0 (Bottom wall)

Figure 1: Schema for flow problem, boundary conditions

4. Numerical results and discussion

In the current study, the effects of artificial compressibility on the convergence level based
on two different tensors, Ty, and T4, are presented. Here, the influence of B, on the solution
components (velocity and pressure) under T, is presented in Figure (2) for different settings
of B4 =10,100,1000 and fixed value Re = 1. The results reveal that the rate of
convergence is increased as the value of 3, is decreased.

4, =100 10° =10
3,.=1000 3,,=1000

108 . ‘ 108
‘ CEI— el
a6

0 50 100 150 0 10 20 30 40 50 60 70 80

(a
X (b)

Figure 2: Convergence of velocity and pressure components, B_ac-various, Re=1.

Figure (3) provides a comparison between velocity and pressure convergence by using T,
and T4, which depends on the time size by the effect of the 5, parameter. The results show
a superior rate of convergence for all solution components within the deformation tensor T,.4
compared to the Ty, tensor at B, = 100 and Re = 1 (see Figures (3a, 3b))._We noticed that,
with a small value of S,., the convergence of velocity and pressure becomes more difficult
and requires a larger number of iterations. Figures 3¢ and 3d introduce a similar test with
Bac = 15 and Re = 1. In this situation, the results diverge with the deformation tensor Ty,
while an opposite feature appears under the T,.4 tensor, indicating the efficiency of using the
deformation tensor T}4.
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108 ‘
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10*
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30 01 2 3 4 5 6 7T 8 9 10
- step
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20 With T
1020 WithT,, 10 T,

With T
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With T,
v

10" 107

10" 10"

105 10°

0 200 400 600 800 1000 1200 1400 0 20 40 60 80 100 120 140 160 180 200

- step

(© (d)

Figure 3: The comparison of velocity and pressure at B_ac-various, Re=1 by using T rd and
T gv.

Table 1, shows the critical value of B, by using T;4 and Ty, as well as the number of time-
step required for convergence. The findings reveal that for both cases, the critical levels of
Bac are B = 16 (Tyy,) and B, = 0.025 (T,4). Notably, for the Ty, tensor and higher levels
of B¢, the level of time-step increments of velocity and pressure decreases than to the T4
instance. From comparing the values from the result, we can note that, by using T,4, we
obtain better results compared to those under T,,, which indicates the effect of the spin tensor
in Ty, on the solution.

Table 1: Critical B_ac and Convergence rate: with T gv vs T rd: Re=1.

Along

With Ty,

With T,

Critical S,

Bac =16

Bac = 0.025

Convergence rate

Time- step

Pressure=1266.02

Pressure=67964.07

Velocity=2338.98

Velocity=23318.85

The rate of convergence for axial velocity and pressure components is provided in Figure
(4) for both tensors T, and T;.4 based on two different values of the artificial compressibility

parameter ,. = 16 and S,. = 0.025, respectively, and fixed Re = 1. Generally, with T,
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the level of time steps is much lower than that with T,,4, so the level of convergence of
solution components is faster with the Ty, tensor.

Our particular interest in this investigation is to study the critical level of the Reynolds
number(Re). Obviously, reaching a high level of Re is a very difficult and interesting issue;
thus, we paid attention to determining that level of Re. The anticipated finding is that the
level of time steps increases as Re increases. From Figure (5), it can be seen the results of the
convergence of pressure and velocity are illustrated at fixed fS,. = 100 and with various
levels of Re. Figure 5(a-c) shows that the level of convergence for velocity is higher than
pressure; pressure convergence is smoother than velocity convergence. Because of the
nonlinear nature of the momentum equation encountered in numerical solutions of velocity
behavior, one can observe that the highest value Reynolds we have reached is Re = 37 in our
investigation.

108 10"
3,.=0.025 Re=1
ac

3. =16 7 =16
ac ac

7. =0.025
ac

E(p)

Time «10% Time < 10%

Figure 4: Critical B_ac and Convergence rate: with T gv vs T rd: Re=1.

200 400 600 800 1000 1200 1400 1600 0 500 1000 1500 2000 2500 3000
Time

(a) ®)

s} 2000 4000 8000 8000 10000 12000 14000

Figure 5: Velocity and Pressure convergence, 8,. = 100, Re variation.
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Furthermore, Table 2 provides the critical Reynolds number (Re) for both tensors Ty, and T;4

at fixed f,. = 100. From the results, one can see that a high level of Re is observed with T,.4
compared to Ty,, around Re ~ 0(37) for T,.4 and Re ~ O(7) for Ty,. More details are
provided in Figure( 6), where one can see that the convergence of solution components with
T4y and critical Re is faster than that with T,;. The rate of deformation significantly
influences the level of convergence.

Table 2: Critical Re and Convergence rate: with Ty, vs Tyq: Bq=100.
With T,

Along With T,.4

Critical Re Re it =7 Re..i; = 37

Convergence rate Pressure=1.77 Pressure=2350.38

(Time -step) Velocity=3457.64 Velocity= 14000

10t

Re=37
Re=T

Re=37
Re=7

102 L

10000 14000 10° : ‘
0 500 1500

8000

6000

0 2000 4000 12000

2000

(a) (b)
Figure 6: Critical Re and Convergence rate: with T gv vs T rd: B_ac=100.

The comparison between the results of the effect of T4 and Ty,
will be illustrated in Figure( 7).
Figure (7) investigates the level of convergence of velocity and pressure. It also uses two
different values of Re = 1,7 and a fixed 5, = 10, by using both settings of tensors T}4
(Figure( 7a, 7b)) and Ty, (Figure( 7¢, 7d)). The results reveal that the rate of convergence for
both solution components with the T4 tensor is faster than that with the T, tensor, and a
significant difficulty with a high level of Re due to the effect of the antisymmetric part of T,
In addition, we can note that, for low levels of ,., an opposite feature occurs (see Figure(
4)). In conclusion, we can say that, using the T,.; tensor with low .. is better than utilizing
the T, tensor; in contrast, the Ty, tensor is optimal with a high B,.
Figure (8) illustrates the behavior of velocity components when the Reynolds number is
increased using T4 and Tg,. The results demonstrate that when using Ty, in Figure (8a), the
results diverge for values of Re greater than 7, and when using T,.; in Figure (8b), the results
diverge when Re exceeds 37.

on improving the solution
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Figure 7: The comparison convergence of velocity and pressure with Re-various and

B_ac=10 using the two types T rd, T gv.
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Figure 8 : The comparison of velocity at convergence by using the two types T rd, T gv.
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5. Conclusions
In this article, the Navier-Stokes equations that govern the fluid flow in a cylindrical

coordinate system are solved effectively using the artificial compressibility technique within
the finite element method. This study covers the analysis of these equations with two
formulations of viscous stress tensor: rate deformation tensor (7T,4) and velocity gradient
tensor (Ty,,). The numerical results under both settings of stress tensor are presented to show
the effect of various parameters on the rate of convergence of solution components. In this
context, we investigated the highest values of the Reynolds number that can be accessed and
the effect of Re and f,. within both stress tensors. Improve the solutions and get fast
convergence by using the artificial compressibility parameter (S,.) is conducted as well. The
main findings of the present study reflect that there is a strong relationship between the
artificial compressibility parameter (S,.) and stress tensor. In this matter, we found that a
high level of B, with T;.4 tensor or a low level of B, with Ty, tensor is enough to make a
significant improvement in the level of solution convergence. To confirm the findings, we
compared the results obtained in this article with the numerical results obtained in our
previous paper, [6]. From this comparison, we can say that we were able to reach the number
of Re of higher and reach the smallest level of 5, than the previous study, [6].
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