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Abstract 

     In this paper, the Newtonian incompressible Navier-Stokes equations in 

cylindrical polar coordinates can be solved using a Galerkin finite element method 

proposed based on an artificial compressibility scheme. In this study, two various 

formulations of the viscous stress tensor are represented, named the rate of 

deformation tensor 𝑇𝑟𝑑  and the velocity gradient tensor 𝑇𝑔𝑣 . A comparison is 

undertaken between both options 𝑇𝑟𝑑 and 𝑇𝑔𝑣. In this context, attention is paid to the 

rate of convergence and the influence of variation in Reynolds number (𝑅𝑒) and 

artificial compressible parameter 𝛽𝑎𝑐 by using both assumptions, 𝑇𝑟𝑑 and 𝑇𝑔𝑣. The 

critical values of Reynolds number (𝑅𝑒) and artificial compressible parameter 𝛽𝑎𝑐 

are highlighted in this study as well. Generally, through the analysis of results, we 

detected that the results with the rate of deformation tensor 𝑇𝑟𝑑 are better than the 

results with the velocity gradient tensor 𝑇𝑔𝑣. 
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 الخلاصة 
ستوكس غير    -العناصر المحدودة  لحل معادلات نافييه   -في هذا البحث ، تم اقتراح طريقة  كالركن     

القابلة للضغط النيوتونية في الإحداثيات الأسطوانية بناءً على طريقة الانضغاط الاصطناعي. في هذه الدراسة  
( وموتر تدرج السرعة  𝑇𝑟𝑑، تم تمثيل صيغتين مختلفتين من موتر الإجهاد اللزج ؛ يسمى معدل موتر التشوه )
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( والمعلمة الانضغاطية  Re. تم تسليط الضوء على القيم الحرجة لرقم رينولدز )𝑇𝑔𝑣و      𝑇𝑟𝑑الافتراضين ؛   
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1. Introduction 

     The present study is focused on solving the incompressible Navier-Stokes equations for a 

Newtonian fluid with a special focus on the significance of the stress tensor (T) in 

determining fluid behavior. The quantities often used in continuum mechanics are the rate of 

deformation tensor and the spin tensor. These tensors are defined as follows: 

 

 𝑙 =
1

2
(∇𝑢 + (∇𝑢)𝜏),          𝑤 =

1

2
(∇𝑢 − (∇𝑢)𝜏), 

 where 𝑢 is the fluid velocity,  see [1], [2], and [3]. 

Ignoring the torque on an element that is caused by flow (external torque), the viscous 

'intrinsic' torque per unit volume of a fluid element is written (as an antisymmetric tensor w), 

which represents the rate of change in intrinsic angular momentum density during time. 

When particles have rotational degrees of freedom, they have an intrinsic angular momentum. 

 

     This angular momentum can be altered through collisions. The intrinsic angular 

momentum can change over time, leading to an intrinsic torque that is not zero. As this 

implies, an antisymmetric component with a corresponding rotational viscosity coefficient 

will be present in the viscous stress tensor. Conversely, if the fluid particles have negligible 

angular momentum or their angular momentum is not sufficiently coupled to the external 

angular momentum, or if the time it takes for the external and internal degrees of freedom to 

equilibrate is almost zero, then the torque will be zero and the viscous stress tensor will be 

symmetric (similar to symmetric tensor l). External forces can cause an asymmetric stress 

tensor component, such as in ferromagnetic fluids that experience torque due to external 

magnetic fields [4], [5].  

 

     In our previous study [6], we studied unsteady incompressible Navier-Stokes equations 

with deformation rate (T) as velocity gradient tensor. There, the finite element method is 

employed as a numerical approach based on artificial compressibility to treat the problem 

under consideration. In addition, the tensor (T) is decomposed into a symmetric and a 

skewsymmetric part, as 

 𝑑 = 𝑙 + 𝑤 = ∇𝑢. 
To study this subject with a new modification, the same method that was used in our previous 

investigation is applied with the antisymmetric part of the tensor (T) equal to zero. That is, T 

only contains the symmetric part (𝑙), and then compares the results for both cases. The 

novelty of this study is represented by conducting the 𝐴𝐶 - method in a manner compatible 

with the Galerkin finite element method under values of the artificial compressible parameter 

𝛽𝑎𝑐 . Moreover, the temporal convergence rate of the system solution is taken under two 

various formulations of the viscous stress tensor with the effects of 𝛽𝑎𝑐 and Reynolds number 

(Re), which was not addressed by researchers previously. Additionally, the determination of 

the critical Reynolds number levels (Re) is also an exciting issue of this study. As is known, 

nonlinearity in numerical studies represents a major challenge that needs to be addressed very 

efficiently. So, the Newton-Raphson method is also applied to treat the nonlinear equations 

with the backward different scheme within our algorithm. 

The mathematical modeling of the motion of Newtonian flows is presented in the next 

section. These equations are introduced in the cylindrical coordinates. The finite element 

formulation and the numerical method are characterized in Section 3. In Sections 4 and 5, the 

problem discretization and related numerical results are shown.  

 

2. Mathematical modelling  

     The motion equations for a fluid that is incompressible consist of the continuity balance     

equation, which is defined as:  
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 ∇. 𝑢 = 0,                                                    (1) 

and momentum balance equation, which is defined based on two different viscous stress 

tensors, are represented by 𝑇𝑟𝑑 and 𝑇𝑔𝑣 ( see [3]) : 

 
𝜕𝑢

𝜕𝑡
+ (𝑢. ∇)𝑢 =

1

𝜌
∇. (−𝑝𝐼 + 𝑇𝑟𝑑),                                   (2) 

  

 
𝜕𝑢

𝜕𝑡
+ (𝑢. ∇)𝑢 =

1

𝜌
∇. (−𝑝𝐼 + 𝑇𝑔𝑣).                              (3) 

Here, 𝑢 is the velocity vector, 𝑝 the hydrodynamic pressure, 𝐼 is the unit tensor, and 𝑇𝑟𝑑 and 

𝑇𝑔𝑣 are the viscous stress tensors, such that  

 𝑇𝑟𝑑 = 𝜇𝑠(∇𝑢 + (∇𝑢)𝜏),      𝑇𝑔𝑣 = 𝜇𝑠∇𝑢 , 

where 𝜇𝑠 is the solvent viscosity. 

On the other hand, Equations (2), and (3) can also be defined by the non-dimensional groups, 

denoted by 𝑎 ∗,  are used  

𝑢 = 𝑈𝑢∗  , 𝑝 = 𝜇𝑠
𝑈

𝐿
𝑝∗,    𝑡 =

𝐿

𝑈
𝑡∗,   𝐿 =

𝑈

𝐿
 𝐿∗ ,   ∇=

1

L
 ∇∗ , 

where the scales of  𝑈, 𝐿, 𝜌, 𝑝 and 𝜇𝑠 are velocity, length, density, pressure, and viscosity, 

respectively, and defined the nondimensional Reynolds number (Re) as  𝑅𝑒 = 𝜌
𝑈𝑙

𝜇𝑠
 ,  see [7-

10]. 

                              
𝜕𝑢

𝜕𝑡
+ (𝑢. ∇)𝑢 =

1

𝑅𝑒
∇. (−𝑝𝐼 + 𝑇𝑟𝑑),                                            (4) 

 

                                
𝜕𝑢

𝜕𝑡
+ (𝑢. ∇)𝑢 =

1

𝑅𝑒
∇. (−𝑝𝐼 + 𝑇𝑔𝑣).                    (5) 

 

The numerical solution of these equations is a major challenge, due in part to the importance 

of pressure in the equations. Thus, the Galerkin finite element method based on the artificial 

compressibility (𝐴𝐶) method is employed to solve the system of governing equations. In this 

context, the Navier-Stokes equations can be changed to a hyperbolic compressible system, 

which can be solved by a standard time-dependent approach for more details details, see [11-

16].  Here, the continuity equation is rewritten in the form: 

 
1

𝛽𝑎𝑐

𝜕𝑝

𝜕𝑡
+ ∇. 𝑢 = 0, (6) 

 where, 𝛽𝑎𝑐 is the artificial compressibility parameter. 

 

2.1  Numerical background 

     The finite element method has become a popular method for solving incompressible 

Navier-Stokes equations, see [17]. First, in the cylindrical components, Equations (6) and (4) 

can be written as 

Continuity equation  

 
1

𝛽𝑎𝑐

𝜕𝑝

𝜕𝑡
+

𝜕𝑢𝑟

𝜕𝑟
+

1

𝑟
𝑢𝑟 +

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
+

𝜕𝑢𝑧

𝜕𝑧
= 0. (7) 

 Momentum equation 

𝑟-component  

 
𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝜃

𝑟

𝜕𝑢𝑟

𝜕𝜃
−

𝑢𝜃
2

𝑟
+ 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧
= −

1

𝑅𝑒

𝜕𝑝

𝜕𝑟
+

𝛽

𝑅𝑒
(2

𝜕2𝑢𝑟

𝜕𝑟2  

 +
2

𝑟

𝜕𝑢𝑟

𝜕𝑟
+

1

𝑟2

𝜕2𝑢𝑟

𝜕𝜃2 −
1

𝑟2

𝜕𝑢𝜃

𝜕𝜃
+

1

𝑟

𝜕2𝑢𝜃

𝜕𝜃𝜕𝑟
+

𝜕2𝑢𝑟

𝜕𝑧2 +
𝜕2𝑢𝑧

𝜕𝑧𝜕𝑟
), (8) 

 𝜃-component  

 
𝜕𝑢𝜃

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜃

𝜕𝑟
+

𝑢𝜃

𝑟

𝜕𝑢𝜃

𝜕𝜃
+

𝑢𝑟𝑢𝜃

𝑟
+ 𝑢𝑧

𝜕𝑢𝜃

𝜕𝑧
= −

1

𝑟𝑅𝑒

𝜕𝑝

𝜕𝜃
+

𝛽

𝑅𝑒
(
𝜕2𝑢𝜃

𝜕𝑟2  

 +
1

𝑟2

𝜕𝑢𝑟

𝜕𝜃
+

1

𝑟2

𝜕2𝑢𝜃

𝜕𝜃2
+

𝜕2𝑢𝜃

𝜕𝑧2
),   (9) 

 𝑧-component  
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𝜕𝑢𝑧

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑧

𝜕𝑟
+

𝑢𝜃

𝑟

𝜕𝑢𝑧

𝜕𝜃
+ 𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
= −

1

𝑅𝑒

𝜕𝑝

𝜕𝑧
+

𝛽

𝑅𝑒
(
𝜕2𝑢𝑧

𝜕𝑟2
 

 +
1

𝑟

𝜕𝑢𝑧

𝜕𝑟
+

1

𝑟2

𝜕2𝑢𝑧

𝜕𝜃2 +
𝜕2𝑢𝑧

𝜕𝑧2 ). (10) 

Next, the velocity 𝑢 and the pressure 𝑝 are approximated by an interpolation of the nodal 

point values of the concerned quantity:  

 𝑢(𝑟, 𝜃, 𝑧, 𝑡) = ∑𝑚𝑣
𝑗=1 𝜓𝑗(𝑟, 𝜃, 𝑧)𝑢𝑗(𝑡), 

  

 𝑝(𝑟, 𝜃, 𝑧, 𝑡) = ∑
𝑚𝑝

𝑘=1 𝜙𝑘(𝑟, 𝜃, 𝑧)𝑝𝑘(𝑡), 

 

 where 𝑚𝑣 is the number of velocity nodes and 𝑚𝑝 is the number of pressure unknowns (𝑗 =

1,2, . . . ,6, the total number of nodes, which includes mid-side points, and k=1, 2, 3, the 

number of vertex nodes only). 

In matrix-vector notation, Equations (7)-(10) become  

 

 [𝑀𝑝][𝑝̇] + [𝐺1
𝜏][𝑢𝑟] + [𝑔][𝑢𝑟] + [𝐺2

𝜏][𝑢𝜃] + [𝐺3
𝜏][𝑢𝑧] = 0, (11) 

  

 [𝑀][𝑢̇𝑟] + [𝑄(𝑢𝑟 , 𝑢𝜃, 𝑢𝑧)][𝑢𝑟] + [𝑞𝜃][𝑢𝜃] −
1

𝑅𝑒
[𝐺1][𝑢𝑟] + 2[𝐶𝑟][𝑢𝑟] 

 +2[𝑐𝑟][𝑢𝑟] + [𝐶𝜃][𝑢𝑟] + [𝐶𝑧][𝑢𝑟] + [𝑓1][𝑢𝜃] + [𝑓2][𝑢𝜃] + [𝐻][𝑢𝑧] = 0, (12) 

  

 [𝑀][𝑢̇𝜃] + [𝑄(𝑢𝑟 , 𝑢𝜃, 𝑢𝑧)][𝑢𝜃] + [𝑞𝑟][𝑢𝑟] −
1

𝑅𝑒
[𝐺2][𝑢𝜃] + [𝐶𝑟][𝑢𝜃] 

 +[𝐶𝜃][𝑢𝜃] + [𝐶𝑧][𝑢𝜃] − [𝑓3][𝑢𝑟] = 0, (13) 

  

[𝑀][𝑢̇𝑧] + [𝑄(𝑢𝑟 , 𝑢𝜃, 𝑢𝑧)][𝑢𝑧] −
1

𝑅𝑒
[𝐺3][𝑢𝑧] + [𝐶𝑟][𝑢𝑧] + [𝑐𝑟][𝑢𝑧] + [𝐶𝜃][𝑢𝑧] + [𝐶𝑧][𝑢𝑧] =

0.                                                                                     (14) 

 

Such that   

1.  Mass Matrix,  

 [𝑀] = ∫
Ω𝑒 𝜓𝜓𝜏𝑑Ω,   [𝑀𝑝] =

1

𝛽𝑎𝑐
∫
Ω𝑒 𝜙𝜙𝜏𝑑Ω. (15) 

  

2.  Convective Matrix,  

 [𝑄(𝑢𝑟 , 𝑢𝜃 , 𝑢𝑧)] = ∫
Ω𝑒 (𝜓𝜓𝜏𝑢𝑟

𝜕𝜓𝜏

𝜕𝑟
+

1

𝑟
𝜓𝜓𝜏𝑢𝜃

𝜕𝜓𝜏

𝜕𝜃
+ 𝜓𝜓𝜏𝑢𝑧

𝜕𝜓𝜏

𝜕𝑧
)𝑑Ω, (16) 

  

 [𝑞𝜃] = −∫
Ω𝑒

1

𝑟
𝜓𝜓𝜏𝑢𝜃𝜓𝜏𝑑Ω,         [𝑞𝑟] = ∫

Ω𝑒

1

𝑟
𝜓𝜓𝜏𝑢𝜃𝜓𝜏𝑑Ω. 

  

3.  Diffusive Matrix,  

 [𝐶𝑟] =
𝛽

𝑅𝑒
∫
Ω𝑒 (

𝜕𝜓

𝜕𝑟

𝜕𝜓𝜏

𝜕𝑟
)𝑑Ω, [𝑐𝑟] = −

𝛽

𝑅𝑒
∫
Ω𝑒 (

1

𝑟
𝜓

𝜕𝜓𝜏

𝜕𝑟
)𝑑Ω, [𝐶𝜃] =

𝛽

𝑅𝑒
∫
Ω𝑒

1

𝑟2

𝜕𝜓

𝜕𝜃

𝜕𝜓𝜏

𝜕𝜃
𝑑Ω, 

 

 

 [𝐶𝑧] =
𝛽

𝑅𝑒
∫
Ω𝑒

𝜕𝜓

𝜕𝑧

𝜕𝜓𝜏

𝜕𝑧
𝑑Ω, [𝑓1] = [𝑓3] =

𝛽

𝑅𝑒
∫
Ω𝑒

1

𝑟2
𝜓

𝜕𝜓𝜏

𝜕𝜃
𝑑Ω, 

  

 [𝑓2] =
𝛽

𝑅𝑒
∫
Ω𝑒

1

𝑟

𝜕𝜓

𝜕𝑟

𝜕𝜓𝜏

𝜕𝜃
𝑑Ω. (17) 

  

 [𝐻] =
𝛽

𝑅𝑒
∫
Ω𝑒

𝜕𝜓

𝜕𝑧

𝜕𝜓𝜏

𝜕𝑟
𝑑Ω. (18) 
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4.  Gradient Matrix,  

 [𝐺1] = ∫
Ω𝑒

𝜕𝜓

𝜕𝑟
𝜙𝜏𝑑Ω, [𝐺2] = ∫

Ω𝑒

1

𝑟

𝜕𝜓

𝜕𝜃
𝜙𝜏𝑑Ω, [𝐺3] = ∫

Ω𝑒

𝜕𝜓

𝜕𝑧
𝜙𝜏𝑑Ω. 

  

 [𝑔] = ∫
Ω𝑒 (

1

𝑟
𝜙𝜓𝜏) 𝑑Ω . (19) 

 

Quadratic and linear triangular shape functions will be utilized for velocities and pressure 

according to the theory of area coordinates. In this context, the quadratic and linear shape 

functions for the nature of triangular area coordinates are described: 

 

 𝜓 = [𝐴][𝑅],         (𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐) (20) 

  

 𝜙 = [𝐼][𝐸] = [𝐸],       (𝐿𝑖𝑛𝑒𝑎𝑟) (21) 

 where  

 [𝐴] =

[
 
 
 
 
 
1 0 0 −1 0 −1
0 1 0 −1 −1 0
0 0 1 0 −1 −1
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4 ]

 
 
 
 
 

,       [𝑅] =

[
 
 
 
 
 
 
𝐿1
2

𝐿2
2

𝐿3
2

𝐿1𝐿2

𝐿2𝐿3

𝐿3𝐿1]
 
 
 
 
 
 

,           [𝐸] = [
𝐿1

𝐿2

𝐿3

].  (22) 

     The natural triangular area coordinates 𝐿1, 𝐿2, and 𝐿3 of the cylindrical coordinates are 

defined as  

 𝐿𝑖 =
1

2𝐴𝑎𝑟𝑒𝑎
(𝑎𝑖 + 𝑏𝑖𝑟 + 𝑐𝑖𝑧),       (𝑖 = 1,2,3) 

where, 𝐴𝑎𝑟𝑒𝑎 is the area of the element’s triangular and 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are coefficients. 

 

     The Equations (11)-(14) can be rewritten in the matrix formulation using these 

assumptions: 

 [

𝑀 0 0 0
0 𝑀 0 0
0 0 𝑀 0
0 0 0 𝑀𝑝

] [

𝑢̇𝑟

𝑢̇𝜃

𝑢̇𝑧

𝑝̇

] +

[
 
 
 
 𝐾𝑟 𝑞𝜃 𝐻

−1

𝑅𝑒
𝐺1

𝑞𝑟 𝐾𝜃 0 0

0 0 𝐾𝑧
−1

𝑅𝑒
𝐺3

𝐺1
𝜏 + 𝑔 0 𝐺3

𝜏 0 ]
 
 
 
 

[

𝑢𝑟

𝑢𝜃

𝑢𝑧

𝑝

] = [

0
0
0
0

], (23) 

  

 [𝐾𝑟] = [𝑄𝑟(𝑢𝑟)] + [𝑄𝑧(𝑢𝑧)] + 2[𝐶𝑟] + 2[𝑐𝑟] + [𝐶𝑧], (24) 

   

 [𝐾𝜃] = [𝑄𝑟(𝑢𝑟)] + [𝑄𝑧(𝑢𝑧)] + [𝐶𝑟] + [𝐶𝑧], (25) 

   

 [𝐾𝑧] = [𝑄𝑟(𝑢𝑟)] + [𝑄𝑧(𝑢𝑧)] + [𝐶𝑟] + [𝑐𝑟] + [𝐶𝑧]. (26) 

 

     The mass and artificial compressibility matrix can be expressed by utilizing the theory of 

area coordinates for triangular elements: 

 

 [𝑀] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝐴][𝑅][𝑅𝜏][𝐴𝜏], (27) 

  

 [𝑀𝑝] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎
1

𝛽𝑎𝑐
[𝐸][𝐸𝜏], (28) 

 where,  

 𝑟𝑚 =
𝑟1+𝑟2+𝑟3

3
, 𝑧𝑚 =

𝑧1+𝑧2+𝑧3

3
. (29) 

 The shape function's derivative form can be defined as: 
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𝜕𝜓

𝜕𝑟
= [𝐴][𝐵][𝐸], 

 

 
𝜕𝜓

𝜕𝑧
= [𝐴][𝐶][𝐸], 

where,  

 [𝐵] =

[
 
 
 
 
 
2𝑏1 0 0
0 2𝑏2 0
0 0 2𝑏3

𝑏2 𝑏1 0
0 𝑏3 𝑏2

𝑏3 0 𝑏1 ]
 
 
 
 
 

, [𝐶] =

[
 
 
 
 
 
2𝑐1 0 0
0 2𝑐2 0
0 0 2𝑐3

𝑐2 𝑐1 0
0 𝑐3 𝑐2

𝑐3 0 𝑐1 ]
 
 
 
 
 

. 

 

On the other hand, the final diffusion matrix formula can be written as follows: 

 

[𝐶𝑟] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎
𝛽

𝑅𝑒
[𝐴][𝐵][𝐸][𝐸𝜏][𝐵𝜏][𝐴𝜏], [𝑐𝑟] = −2𝜋𝐴𝑎𝑟𝑒𝑎

𝛽

𝑅𝑒
[𝐴][𝑅][𝐸𝜏][𝐵𝜏][𝐴𝜏], (30) 

  

 [𝐶𝑧] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎
𝛽

𝑅𝑒
[𝐴][𝐶][𝐸][𝐸𝜏][𝐶𝜏][𝐴𝜏], (31) 

  

 [𝐻] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎
𝛽

𝑅𝑒
[𝐴][𝐶][𝐸][𝐸𝜏][𝐵𝜏][𝐴𝜏],    (32) 

 Moreover, the gradient matrix is defined as  

 [𝐺1] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝐴][𝐵][𝐸][𝐸𝜏], (33) 

  

 [𝐺3] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝐴][𝐶][𝐸][𝐸𝜏], (34) 

  

 [𝑔] = 2𝜋𝐴𝑎𝑟𝑒𝑎[𝐸][𝑅𝜏][𝐴𝜏]. (35) 

 The convective matrix is given by  

 [𝑄𝑟(𝑢𝑟)] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝐴][𝑅][𝑅𝜏][𝐴𝜏][𝑢𝑟][𝐸
𝜏][𝐵𝜏][𝐴𝜏], (36) 

  

 [𝑄𝑧(𝑢𝑧)] = 2𝜋𝑟𝑚𝐴𝑎𝑟𝑒𝑎[𝐴][𝑅][𝑅𝜏][𝐴𝜏][𝑢𝑧][𝐸
𝜏][𝐵𝜏][𝐴𝜏], (37) 

  

 [𝑞𝜃] = −2𝜋𝐴𝑎𝑟𝑒𝑎[𝐴][𝑅][𝑅𝜏][𝐴𝜏][𝑢𝜃][𝑅𝜏][𝐴𝜏], (38) 

  

 [𝑞𝑟] = 2𝜋𝐴𝑎𝑟𝑒𝑎[𝐴][𝑅][𝑅𝜏][𝐴𝜏][𝑢𝜃][𝑅𝜏][𝐴𝜏]. (39) 

 

3. Simple test problem 

     In this study, the model is a very simple channel with a circular cross-section. The no-slip 

condition is imposed on the channel wall, and along the outflow boundary, zero radial 

velocity applies. Poiseuille flow is specified at the inlet (see Figure (1)). For the purpose of 

convergence analysis, consideration is given to a simple geometry that can be effectively 

meshed into a small number of elements, as it will allow for faster convergence and multiple 

test runs. This geometry is then subject to testing using FEM code at Δ𝑡 is 𝑂(10−2) and the 

time procedure is checked for convergence to a steady state using relative norms, provided 

that it meets the appropriate tolerance criteria, which is 10−6 
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Figure 1: Schema for flow problem, boundary conditions 

 

4. Numerical results and discussion 

     In the current study, the effects of artificial compressibility on the convergence level based 

on two different tensors, 𝑇𝑔𝑣 and 𝑇𝑟𝑑, are presented. Here, the influence of 𝛽𝑎𝑐 on the solution 

components (velocity and pressure) under 𝑇𝑔𝑣 is presented in Figure (2) for different settings 

of  𝛽𝑎𝑐 = 10,100,1000  and fixed value 𝑅𝑒 = 1 . The results reveal that the rate  of 

convergence is increased as the value of 𝛽𝑎𝑐 is decreased. 

 

   

                         

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Convergence of velocity and pressure components, β_ac-various, Re=1. 

 

Figure (3) provides a comparison between velocity and pressure convergence by using 𝑇𝑔𝑣 

and 𝑇𝑟𝑑, which depends on the time size by the effect of the 𝛽𝑎𝑐 parameter. The results show 

a superior rate of convergence for all solution components within the deformation tensor 𝑇𝑟𝑑 

compared to the 𝑇𝑔𝑣 tensor at 𝛽𝑎𝑐 = 100 and 𝑅𝑒 = 1 (see Figures (3a, 3b)). We noticed that, 

with  a small value of 𝛽𝑎𝑐, the convergence of velocity and pressure becomes more difficult 

and requires a larger number of iterations. Figures 3c and 3d introduce a similar test with 

𝛽𝑎𝑐 = 15 and 𝑅𝑒 = 1. In this situation, the results diverge with the deformation tensor 𝑇𝑔𝑣, 

while an opposite feature appears under the 𝑇𝑟𝑑 tensor, indicating the efficiency of using the 

deformation tensor 𝑇𝑟𝑑. 

 

 

(a

)                                                     
(b) 
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Figure 3: The comparison of velocity and pressure at β_ac-various, Re=1 by using T_rd and 

T_gv. 

 

Table 1, shows the critical value of 𝛽𝑎𝑐 by using 𝑇𝑟𝑑 and 𝑇𝑔𝑣, as well as the number of time- 

step required for convergence. The findings reveal that for both cases, the critical levels of 

𝛽𝑎𝑐 are 𝛽𝑎𝑐 = 16 (𝑇𝑔𝑣) and 𝛽𝑎𝑐 = 0.025 (𝑇𝑟𝑑). Notably, for the 𝑇𝑔𝑣 tensor and higher levels 

of 𝛽𝑎𝑐, the level of time-step increments of velocity and pressure decreases than to the 𝑇𝑟𝑑 

instance. From comparing the values from the result, we can note that, by using 𝑇𝑟𝑑 , we 

obtain better results compared to those under 𝑇𝑔𝑣, which indicates the effect of the spin tensor 

in 𝑇𝑔𝑣 on the solution. 

 Table  1: Critical β_ac and Convergence rate: with T_gv vs T_rd: Re=1. 

Along With 𝑇𝑔𝑣 With 𝑇𝑟𝑑 

Critical 𝛽𝑎𝑐 𝛽𝑎𝑐 = 16 𝛽𝑎𝑐 = 0.025 

Convergence rate Pressure=1266.02 Pressure=67964.07 

Time- step Velocity=2338.98 Velocity=23318.85 

 

     The rate of convergence for axial velocity and pressure components is provided in Figure 

(4) for both tensors 𝑇𝑔𝑣 and 𝑇𝑟𝑑 based on two different values of the artificial compressibility 

parameter 𝛽𝑎𝑐 = 16 and 𝛽𝑎𝑐 = 0.025, respectively, and fixed 𝑅𝑒 = 1. Generally, with 𝑇𝑔𝑣 , 

(a)                                                                                     (b)                                                                                     

(c)                                                                                     (d)                                                                                     
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the level of time steps is much lower than that with 𝑇𝑟𝑑 , so the level of convergence of 

solution components is faster with the 𝑇𝑔𝑣 tensor.  

Our particular interest in this investigation is to study the critical level of the Reynolds 

number(𝑅𝑒). Obviously, reaching a high level of 𝑅𝑒 is a very difficult and interesting issue; 

thus, we paid attention to determining that level of 𝑅𝑒. The anticipated finding is that the 

level of time steps increases as 𝑅𝑒 increases. From Figure (5), it can be seen the results of the 

convergence of pressure and velocity are illustrated at fixed 𝛽𝑎𝑐 = 100 and with various 

levels of 𝑅𝑒. Figure 5(a-c) shows that the level of convergence for velocity is higher than 

pressure; pressure convergence is smoother than velocity convergence. Because of the 

nonlinear nature of the momentum equation encountered in numerical solutions of velocity 

behavior, one can observe that the highest value Reynolds we have reached is 𝑅𝑒 = 37 in our 

investigation.  

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4: Critical β_ac and Convergence rate: with T_gv vs T_rd: Re=1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

                                                                                             

 

 

 

 

 

 

(a)                                                                                     (b)                                                                                     

(b)                                                                                     
(a)                                                                                     

(c)                                                                                     

Figure 5: Velocity and Pressure convergence, 𝛽𝑎𝑐 = 100, 𝑅𝑒 variation.                                                                                  
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Furthermore, Table  2 provides the critical Reynolds number (𝑅𝑒) for both tensors 𝑇𝑔𝑣 and 𝑇𝑟𝑑 

at fixed 𝛽𝑎𝑐 = 100. From the results, one can see that a high level of 𝑅𝑒 is observed with 𝑇𝑟𝑑 

compared to 𝑇𝑔𝑣 , around 𝑅𝑒 ∼ 𝑂(37)  for 𝑇𝑟𝑑  and 𝑅𝑒 ∼ 𝑂(7)  for 𝑇𝑔𝑣 . More details are 

provided in Figure( 6), where one can see that the convergence of solution components with 

𝑇𝑔𝑣  and critical 𝑅𝑒  is faster than that with 𝑇𝑟𝑑 . The rate of deformation significantly 

influences the level of convergence. 

 

Table  2: Critical 𝑅𝑒 and Convergence rate: with 𝑇𝑔𝑣 vs 𝑇𝑟𝑑: 𝛽𝑎𝑐=100. 

Along With 𝑇𝑔𝑣 With 𝑇𝑟𝑑 

Critical 𝑅𝑒 𝑅𝑒𝑐𝑟𝑖𝑡 = 7 𝑅𝑒𝑐𝑟𝑖𝑡 = 37 

Convergence rate Pressure=1.77 Pressure=2350.38 

(Time - step) Velocity=3457.64 Velocity= 14000 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Critical Re and Convergence rate: with T_gv vs T_rd: β_ac=100. 

 

     The comparison between the results of the effect of 𝑇𝑟𝑑 and 𝑇𝑔𝑣 on improving the solution 

will be illustrated in Figure( 7). 

Figure (7) investigates the level of convergence of velocity and pressure. It also uses two 

different values of 𝑅𝑒 = 1, 7 and a fixed 𝛽𝑎𝑐 = 10, by using both settings of tensors 𝑇𝑟𝑑 

(Figure( 7a, 7b)) and 𝑇𝑔𝑣 (Figure( 7c, 7d)). The results reveal that the rate of convergence for 

both solution components with the 𝑇𝑟𝑑 tensor is faster than that with the 𝑇𝑔𝑣 tensor, and a 

significant difficulty with a high level of 𝑅𝑒 due to the effect of the antisymmetric part of 𝑇𝑔𝑣. 

In addition, we can note that, for low levels of 𝛽𝑎𝑐, an opposite feature occurs (see Figure( 

4)). In conclusion, we can say that, using the 𝑇𝑟𝑑 tensor with low 𝛽𝑎𝑐 is better than utilizing 

the 𝑇𝑔𝑣 tensor; in contrast, the 𝑇𝑔𝑣 tensor is optimal with a high 𝛽𝑎𝑐.  

Figure (8) illustrates the behavior of velocity components when the Reynolds number is 

increased using 𝑇𝑟𝑑 and 𝑇𝑔𝑣. The results demonstrate that when using 𝑇𝑔𝑣 in Figure (8a), the 

results diverge for values of 𝑅𝑒 greater than 7, and when using 𝑇𝑟𝑑 in Figure (8b), the results 

diverge when 𝑅𝑒 exceeds 37. 

 

 

(a)                                                                                     (b)                                                                                     
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Figure 7: The comparison convergence of velocity and pressure with Re-various and 

β_ac=10 using the two types T_rd, T_gv. 

  

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 : The comparison of velocity at convergence by using the two types T_rd, T_gv. 

 

(a)                                                                                     (b)                                                                                     

(c)                                                                                     (d)                                                                                     

(a)                                                                                     (b)                                                                                     
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5. Conclusions 

     In this article, the Navier-Stokes equations that govern the fluid flow in a cylindrical 

coordinate system are solved effectively using the artificial compressibility technique within 

the finite element method. This study covers the analysis of these equations with two 

formulations of viscous stress tensor: rate deformation tensor (𝑇𝑟𝑑) and velocity gradient 

tensor (𝑇𝑔𝑣). The numerical results under both settings of stress tensor are presented to show 

the effect of various parameters on the rate of convergence of solution components. In this 

context, we investigated the highest values of the Reynolds number that can be accessed and 

the effect of 𝑅𝑒  and 𝛽𝑎𝑐  within both stress tensors. Improve the solutions and get fast 

convergence by using the artificial compressibility parameter (𝛽𝑎𝑐) is conducted as well. The 

main findings of the present study reflect that there is a strong relationship between the 

artificial compressibility parameter (𝛽𝑎𝑐) and stress tensor. In this matter, we found that a 

high level of 𝛽𝑎𝑐 with 𝑇𝑟𝑑 tensor or a low level of 𝛽𝑎𝑐 with 𝑇𝑔𝑣 tensor is enough to make a 

significant improvement in the level of solution convergence. To confirm the findings, we 

compared the results obtained in this article with the numerical results obtained in our 

previous paper,  [6]. From this comparison, we can say that we were able to reach the number 

of 𝑅𝑒 of higher and reach the smallest level of 𝛽𝑎𝑐 than the previous study, [6]. 
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